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Abstract

A large body of traditional animation exists that contains characters with poses, expressions, and appeal not
easily achievable with modern 3D techniques. To create new uses for this body of animation, this paper presents
components of a system that can help incorporate the animation into re-usable libraries. In particular, we discuss
two semi-automatic techniques that allow the re-use of traditional animation. First, support vector machines
are used to segment cartoon images from their backgrounds for incorporation into an image library, for such
applications as re-sequencing. Second, a radial basis function implicit surface modeling technique and a fast non-
rigid elastic registration algorithm provide inbetween contours and textures given two key images of traditional
animation. Our system is fast, model-free, and requires minimal animator intervention.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation

1. Introduction

Many tools developed in computer animation are de-
signed to allow animators to obtain the expressiveness of
traditional animation more easily, e.g., [FBC*95, Rad99,
KMN*99], often by following the techniques discussed
in Lasseter [Las87]. However, these tools primarily focus
on the problem of creating new animations from models.
In contrast, there has not been much study of the prob-
lem of re-using traditional animation to create new anima-
tion [BLCDO02, dJB04]. Given the great aesthetics and ex-
pressiveness of traditionally animated characters, we seek to
capture those features by providing components of a system
to re-use the images. Part of the difficulty in studying this
problem is that the forms in which traditional animation are
available make it difficult to devise methods to manipulate
it easily. This paper takes steps to allow the incorporation of
traditional animation into a library such that the animation
can be re-used.

A library that successfully captures the aesthetics of tra-
ditional animation could be used in several ways. Using
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re-sequencing technology described in de Juan and Bo-
denheimer [dJB04], one could generate new animation us-
ing classic characters. Interactive educational applications
could be created with characters that respond to learners
rather than through pre-scripted video sequences. For ex-
ample, young learners might benefit from examples of Wile
E. Coyote and what happens when a spring-loaded boulder
launcher fails and flattens the coyote. Finally, large libraries
of cartoon character data might also be useful in restoring
damaged sequences of those characters.

A primary challenge in building large libraries of cartoon
character data is to put the characters into a form in which
the character is nicely separated from the background. Seg-
mentation is necessary if the character is to be placed into
a new environment or with a new background. Much older
cartoon data suffers from noise due to changes in lighting as
the cel animations were transferred to film, contamination of
the cel from one use to another as it was filmed, and degrada-
tion of the animation before being transferred to an archival
format. These factors make the segmentation problem quite
challenging, as we discuss in Section 3.

Once the segmentation problem is solved, we address the
challenge of re-using the animation. While both Bregler et
al. [BLCDO02] and de Juan and Bodenheimer [dJB04] dis-
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cussed this problem, they did so in different ways. A true
re-usable library of animation is closer in spirit to the sys-
tem of [dJB04]. However, one of the limitations of the sys-
tem described in that paper is the inability to generate new
images when a visual discontinuity (abrupt transition) is de-
tected in a re-sequenced animation. Addressing this issue re-
turns one to the 2D inbetweening problem discussed by Cat-
mull [Cat78], although the problem addressed here is more
limited: it suffices to generate an inbetween of two “key im-
ages” that are somewhat similar, not two keyframes. Our
work on this problem is presented in Section 4.

A fully automatic method for inbetweening would allevi-
ate some of the tedium associated with creating a tradition-
ally animated film. However, semi-automatic methods for in-
betweening provide a more interactive environment for the
artist, allowing for modifications during the creation of the
inbetweens, while still improving and speeding the process.
The most desirable qualities of traditional animation are the
nuances an artist adds to each character, giving that charac-
ter personality and style. Ensuring that the artist remains in-
volved in the inbetweening process, albeit minimally, should
provide a higher level of quality in the resulting animations.

Allowing the traditional animator to be in the process rep-
resents both a constraint and an advantage. The advantage
is, as mentioned above, that we can leverage the abilities of
the artist to produce superior animations. The constraint is
that we must maintain our data in a form with which the
traditional animator can work, i.e., line art. As a result, the
methods we discuss in this paper are strictly image-based,
and do not rely on underlying models for the characters such
as subdivision curves, patches, or other geometry.

We present examples and results of our system using three
cartoon sequences with different characters: Bugs Bunny,
Wile E. Coyote, and Daffy Duck. The original image size of
all data sets is 720 x 480. The Coyote data set is composed
of frames from three different cartoons, with a total of 527
images. The others are composed of frames from only one
cartoon, but have breaks where the scenes change. The Bugs
data set has 553 images and the Daffy data set has 560 im-
ages. Figure 1 shows examples of the frames from the orig-
inal data along with the corresponding segmented images
generated with the methods discussed in Section 3. These
characters and examples have very different color and ani-
mation properties, which demonstrate the generality and ro-
bustness of our methods.

2. Background

As mentioned above, there are few systems for re-using tra-
ditional cartoon animation, and our system dovetails with
our prior work [dJB04]. In that work, pre-segmented cartoon
images are re-sequenced using a manifold learning tech-
nique to create novel animations. Alternatively, Bregler et
al. [BLCDO02] proposed a method for re-using cartoon mo-

Figure 1: Examples of original and segmented frames from
Bugs Bunny, Wile E. Coyote, and Daffy Duck. Looney
Tunes characters are ™& (©Warner Bros. Entertainment
Inc.

tion data by capturing the motion of one character and retar-
geting it onto a new character.

Some work has been done to provide a means of produc-
ing cartoon animation more easily, but does not allow for the
re-use of that data. Litwinowicz [Lit91], and later Fekete et
al. [FBC*95], present a complete 2D animation system, al-
lowing the animator to draw characters directly into those
systems. Corréa et al. [CJITF98] developed a method for
applying complex textures to hand-drawn animation. Fi-
nally, Petrovic et al. [PFWFO00] inflate a 3D figure based on
hand-drawn art to produce shadows for cel animation. Their
method is also semi-automatic.

Our work was motivated by recent work in motion editing
re-use systems for 3D motion capture and video data, e.g.,
[Gl1e98, SSSE00, KGP02, LCR*02, AF02, WXSC04, PW99,
CBO04]. This body of research has had considerable success
in developing systems to present novel animation from an
existing library of motion capture data. Our work empha-
sizes re-using the images of traditional animation from a li-
brary of images rather than a library of motion data.

Discussion of the related work for the two components of
our system, segmentation and inbetweening, are divided into
the following subsections respectively.

2.1. Segmentation

Image segmentation is fundamental to image process-
ing [GWO1, SSO1]. Instead of approaching the problem as
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a conventional segmentation problem, we take advantage of
the simple colors, flat shading, and no lighting effects char-
acteristic of these cartoons to segment them via classifica-
tion using support vector machines (SVMs) [Vap98]. Since
we are interested in obtaining the character from the back-
ground, SVMs are used as binary classifiers. Gémez-Moreno
et al. [GMJA*03] use a similar approach for segmenting
color medical images.

We experimented with level set techniques [Osh03] for
segmentation. The SVM was superior both in the results it
gave and in its computational speed. Because of the amount
of noise in traditional cel animation, segmentation methods
such as level sets proved unsatisfactory. Additionally, level
set segmentation on quarter resolution color images took up-
wards of five minutes per image. In contrast, the SVMs re-
quired only three minutes to train the classifier and five sec-
onds to segment each full resolution color image.

2.1.1. Support Vector Machines

The SVM algorithm operates by mapping a given train-
ing set into a high-dimensional feature space and finding
a hyper-plane that separates the data into classes. To con-
struct an optimal hyperplane, the SVM minimizes a partic-
ular error function, and in this work, we use the C-SVM
classification [Vap98]. Given a training set of attribute-label
pairs (x;,y;), where i = 1.../, training vectors x; € R and
y; € {+1,—1}!, C-SVM minimizes the following error func-
tion:

1 7 !
min —w' w+C i
wb,E2 l:z‘iél

subject to y;(w! ¢ (x;) +b) > 1 — &. The training vectors x;
are mapped to a higher dimension by the kernel function ¢.
An appropriate nonlinear ¢ can always map the x; to a suffi-
ciently high dimension that a separating hyper-plane exists.
C is the penalty parameter of the error function, which con-
trols the trade-off between allowing training errors and forc-
ing rigid margins, w is a vector of coefficients, b is a con-
stant, and &; are variables for handling non-separable input
data. We chose to use a radial basis function (RBF) kernel
having the form ¢ = e M=’ \where y>0.

2.2. Inbetweening

Inbetweening is a studied but unsolved problem in 2D an-
imation, introduced to the computer animation community
by Burtnyk and Wein [BW76] with their template-based ap-
proach. Catmull [Cat78] described the main issues concern-
ing the inbetweening problem. In particular, to deal with
self-occlusion, Catmull [Cat78] suggested breaking the char-
acter into separate layers, a procedure we will follow (see
section 4.1). Reeves [Ree81] presented a method for creat-
ing inbetweens using moving-point constraints, curves that
constrain the path and speed of points on the character. Di
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Fiore et al. [DSEVO01] present a multi-level method for in-
betweening 2D animation by including 3D information as a
high-level deformation tool, and 2.5D information as mod-
eling structures. In their follow-up work, Van Haevre et al.
[VDVO05] unite their previous work with that of [dJB04] to
produce smooth, perpetual animations from a small number
of keyframes. Like their previous work, the keyframes must
be drawn directly into their 2.5D system, requiring an under-
lying representation of each image as subdivision curves or
surfaces. Kort [Kor02] introduced a method for integrating
vector-based inbetweening into an animation system, which
requires the user to draw the keyframes and identify the lay-
ers of each key image. Seah et al. [SLO1] presented a modi-
fied hierarchical feature-based matching method for motion
estimation to generate inbetween line drawings from a pair
of input line drawings. None of these techniques are com-
pletely suitable for data-driven inbetweening since they re-
quire the construction of contours or other representations of
the data requiring significant intervention.

The approach used here is closer to the shape interpola-
tion approaches of [BN92,5SG92, ACOLO00]. However, it em-
ploys radial basis functions (RBFs) to interpolate segmented
contours of images and generate implicit models. This tech-
nique was first presented by Turk and O’Brien [TO99] and
refined by Carr et al. [CBC*01]. We use the machinery of
[CBC*01] to generate an implicit model using RBFs, as we
have found it is faster than the related methods in [TO99],
which provided the inspiration for our technique. In our ex-
perience, using implicit surfaces presents a superior tech-
nique to vertex-based approaches [SG92, ACOLO0], since
vertex interpolation often leads to unacceptable deforma-
tions in the contours, such as arm shortening.

3. Segmentation of Cartoon Images to Establish
Character Data

Segmenting traditional animation proved surprisingly diffi-
cult. Cartoon characters are usually easily identifiable, and
often made up of a few solid colors. For example, Daffy Duck
is mostly black with some orange. However, because the an-
imation originally existed in cel format, and was often pho-
tographed as a means of transfer to film, there is significant
noise in the images that makes segmenting over many frames
problematic. As an example, Figure 2 shows deviations from
the mean of a pixel in the background from a Bugs Bunny an-
imation, a frame of which is shown in Figure 1. This pixel
is not atypical, and any segmentation technique will have
to deal with noisy pixels in both the foreground and back-
ground of the target images. Segmentation is the most time
consuming aspect of preparing existing cartoon data.

The first step for using SVMs to segment cartoon images
is to classify the training data by selecting the appropriate
attribute-label samples. Several features can be identified in
the characters that can be used as samples for training and
classifying. The most natural choice of a feature is the color
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Figure 2: The deviations from the mean color value for each

color channel from a single background pixel for the Bugs

Bunny sequence are shown as data points around a mean

value line.

of the character. Another choice of feature is the optical flow.
Many times the character will be on a moving background,
and one unique characteristic of hand-drawn cartoons is that
there are no shading or lighting changes in the images, so
the optical flow may be useful in locating the character. We
use two feature sets for classifying the data: color alone or
color with optical flow vector magnitudes. For both varia-
tions, the user selects pixels from one or several reference
images, labels each selection as part of the character (1) or
part of the background (—1), and the RGB values are rep-
resented in the range of [0, 1] and stored in x;. When using
color with optical flow vector magnitudes, the user again se-
lects several pixels from a reference image as before, and the
optical flow vector magnitudes are looked-up and included
with the RGB values. The optical flow vector magnitudes are
pre-computed using a standard algorithm [LK81] from the
temporally adjacent frames in the cartoon image sequences.
In our experience, user annotation of one reference image
per animation scene with a static background and three im-
ages per animation scene with a moving background usually
suffices, although nothing prevents a user from annotating
multiple images per scene. For all of our examples, the user
selected samples from three reference images, typically the
first, last, and middle frames of the sequence.

Once the training data is classified, the SVM is trained to
create a classifier model for each character. As mentioned
above, we use an RBF kernel, and we use the LIBSVM li-
brary [CLOI1] to train the SVM model. A grid search and
cross-validation on the training data is computed to find the
best C and y parameters for the error function and RBF ker-
nel. For each cartoon character, the best C and y parameters
are found and the whole training set is trained again to gen-
erate the final SVM classifier model. The SVM model gen-
erated for each character is then applied to every image in

Figure 3: An input image and resulting segmentation mask
using 81 RGB samples and corresponding optical flow vec-
tor magnitudes. Bugs Bunny is T™M& (©Warner Bros. Enter-
tainment Inc.

Figure 4: Segmentation with the SVM classifier model
trained using 68 RGB samples from three images. This ex-
ample shows the best classification of the Bugs character.
Bugs Bunny is "™& (©)Warner Bros. Entertainment Inc.

that character’s data set. The output of classification are the
predicted labels for each pixel, which become the resulting
binary segmentation mask. Figure 3 shows the result of us-
ing 81 RGB samples with optical flow magnitudes for the
SVM model. Figure 4 shows an improved result using only
68 RGB samples. This last result is the best achieved on the
Bugs Bunny data set.

The top row of Figure 5 shows the results of an SVM clas-
sifier trained on 108 RGB samples with optical flow vector
magnitudes, applied to the first of three Coyote sequences.
The center row of Figure 5 is the second Coyote sequence,
using an SVM classifier trained on 179 RGB samples with
optical flow vector magnitudes. The results for the third Coy-
ote sequence are shown in the bottom row of Figure 5, using
an SVM classifier trained on 140 RGB samples with optical
flow vector magnitudes. One of the difficulties with these
particular cartoon examples is that the character is walk-
ing across a moving background in the first two sequences.
Thus, there are new color samples revealed throughout the
sequences that may not be accounted for in the SVM mod-
els.

In all of the examples, there are some pixels that the SVM
model erroneously classifies as part of the character. For ex-
ample, the flower in the background of the Bugs Bunny se-
quence. The color of the flower and the color of the charac-
ter have exactly the same RGB values. To further improve
the segmentation masks, simple morphological operations
are performed. The segmentation mask is a binary image.
First each 8-connected region in the mask is labeled with a
number. For each region found, the area of the region is cal-
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Figure 5: An input image and resulting segmentation mask
for the first Coyote sequence (top), the second Coyote se-
quence (center), and the third Coyote sequence (bottom).
Wile E. Coyote is ™& © Warner Bros. Entertainment Inc.

culated and stored. The area of a region is the actual num-
ber of pixels in that region. The region with the largest area,
or larger than a preset value (e.g., 10,000 pixels), is likely
to be the character, so the region that meets that criteria is
kept in the mask while all others are removed. Finally, any
remaining 4-connected foreground pixels identified as holes
are automatically flood-filled. To avoid filling regions of the
character that are supposed to be small holes (e.g., a charac-
ter making a circle shape with their hand), the flood-fill can
be done interactively instead of automatically. However, in
all of our examples we use the automatic flood-fill to reduce
the amount of user intervention required. Figure 6 shows the
results of applying this method to one of the SVM segmen-
tation masks. If any remaining stray pixels are present, those
are easily cleaned up manually. For the Bugs Bunny data set,
only 20% of the masks needed minimal manual touching up,
and slightly more for the Coyote data set. Manual touch up
of these masks takes less than one minute per frame.

4. Inbetweening an Image Library for Re-Sequenced
Animations

Once a library of character image data has been assembled
using the techniques of the previous section, a method such
as that described in [dJB04] can be used to generate novel se-
quences. However, as noted by the authors, that system can-
not generate new images when a visual discontinuity (abrupt
transition from re-sequencing) occurs in a novel sequence.
To supplement such a method, we need to generate an in-
between shape between two frames of data. Our procedure

(© The Eurographics Association 2006.
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Figure 6: The result of applying morphological operations
to clean up the SVM segmentation result on Bugs using the
68 RGB sample SVM model. On the left is the SVM result,
on the right is the automatically cleaned mask.

involves three steps. In the first step, the character is par-
titioned into several layers such as head and torso. In the
second step inbetween shape contours are generated for each
layer using an RBF-based technique, and in the final step the
cartoon color or texture is fit to the inbetween shape using an
elastic registration technique.

4.1. Character Partitioning and Re-assembly

Given a pair of character images to be inbetweened, the pair
is first partitioned into character layers. This partitioning is
done to alleviate the problem of self occlusion [Cat78]. It
is carried out manually and takes only a few moments per
image to split the character into layers. For our examples,
we typically partition the characters into head, body, arms,
and legs layers.

After the inbetween is generated for each layer in the pro-
cess described below, the layers are automatically reassem-
bled. The location and scale of each layer are lost in the in-
between generation, but are computed using the original sil-
houettes and partitioned layers as references. To determine
the location, a translation, we use the average of the centroid
positions of each character layer from the original key im-
ages. The scale factor is computed using the average pixel

area of the key images defined as s = Af:‘ﬁ:n , where A,y is
the average area of pixels from the key images and A;yyeen 18
the area of pixels of the inbetweened contour (filled in to be
a silhouette) determined by the slicing operation described
next. By area, we mean the total number of pixels belonging

to the character or character layer.

4.2. Shape Contour Generation

Given input data from the previous segmentation and layer-
ing operations, we next generate an inbetween shape con-
tour. The idea is to generate a 3D mesh from two key im-
ages and slice that mesh in the middle to extract the in-
between shape contour, as outlined in the following steps.
First, silhouettes are created automatically from the key im-
ages. The silhouettes are then used to create contours defin-
ing the shapes to be inbetweened. The contours are gener-
ated by starting at a pixel on the edge of the silhouette and
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Figure 7: Visualization of the automatically generated con-
tour and normal points that serve as the input to the implicit
surface generation step.

tracing around the silhouette in clockwise order. The con-
tour image is just a clockwise ordered list of (x,y) pixel co-
ordinates. Next, using the ordered list of contour points, a
set of normals are computed. These normals (shown in Fig-
ure 7) define the interior and the exterior of the contour for
an RBF interpolation algorithm. The set of contour points
and normals are then given a z coordinate placing them in
3D space. The value of the z coordinate is a small number
relative to the scale of the contour points such that the con-
tour points are close enough not to cause any inward bowing
when fitting the RBFs. These point sets are used as input to
the RBF methods, which generate an implicit surface inter-
polating the contour points. We are using the RBF interpo-
lation and fast evaluation methods developed by [CBC*01].
A marching cubes algorithm then creates a mesh describing
the implicit surface, and the mesh is sliced in the middle to
create the inbetween contour. The process is quite fast and
completes in approximately one minute on a 1.4GHz Pen-
tium.

Sometimes the inbetween contour needs further refine-
ment, and then the following steps can be taken: (1) the indi-
vidual layers can be registered, (2) constraint points can be
added for the RBF contour interpolation, or (3) both meth-
ods can be used in conjunction. By default, the layers are
aligned using the centroid of the character layer (e.g., the
centroids of the heads for the head layer). To improve the
alignment, a more sophisticated transformation can be ap-
plied using an iterative closest point (ICP) registration algo-
rithm [BM92]. However, using ICP requires the user to se-
lect feature points on both layers for registration. Constraint
points can be used to improve the inbetween contours. The
user can select desired constraint points on the previous in-
between contour image to serve as extra data points that must
be interpolated by the RBFs. Alternatively or in combination

am
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Figure 8: Left: RBF solution for the Daffy head layer. The
head images were registered and two additional constraints
were used. Right: RBF solution for the Dafty body layer.

with the above, the user can select desired constraint points
on each of the original contour images. Normals are calcu-
lated for the selected constraint points, and are passed on
with the original contour points and normals into the RBF
contour interpolation routine.

Now we describe the RBF interpolation results, and note
when any of the additional refinement methods are used. The
first example uses two key images of Daffy Duck and both
techniques for contour refinement. The character is parti-
tioned into three layers for both key images: a head layer, an
arm layer, and a body layer. The head layers are registered
using the ICP method with 12 control points for each image.
Once the head images are registered, the contours are gener-
ated and the RBF interpolation method is employed. Two ad-
ditional constraint points are manually specified along with
the contour points on the head layers, which are inserted
at a z value half-way between the two key images. These
constraint points are used to restrict the fitting of the RBFs
around the lower part of Daffy’s beak. The arm layer and
body layers did not require any contour refinement. Fig-
ure 8 shows the RBF interpolation results for the Daffy head
and body layers. Figure 9 shows the inbetween contour for
the Daffy example described above. The inbetween contours
for each layer are reassembled automatically after using the
RBF contour interpolation method, as described previously.
The entire refinement process took two minutes.

Figure 10 shows the contour inbetweening results for
Bugs Bunny. For this example, Bugs was partitioned into
four layers: head, body, left and right arms. Figure 11 is an
example contour inbetween generated for Wile E. Coyote.
The Coyote was partitioned into four layers: head, left arm,
right arm, and body. The RBF solutions for these two exam-
ples did not require any additional contour refinement.

4.3. Texturing or Re-coloring the Inbetween Contours

The final step in creating an inbetween is filling in the color
and texture information. We have the color and texture infor-
mation for the original key images. The issue is how to color
and texture the inbetween contour based on this information.

(© The Eurographics Association 2006.
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Key image 1 Inbetween Contours Key image 2

Figure 9: Inbetween contours generated using RBF contour
interpolation method. Although the feet in the contours be-
came larger due to the auto-reassembly scaling described
in Section 4.1, the position relative to the other layers is
correct. The texture filling described in Section 4.3 will not
be scaled, so these scaling artifacts will be corrected. Daffy
Duck is T™& (©Warner Bros. Entertainment Inc.

Inbetween Contours

Key image 1

Key image 2
Figure 10: Inbetween contours for Bugs generated using

RBF contour interpolation. Bugs Bunny is ™& (©)Warner
Bros. Entertainment Inc.

In a production studio, a similar issue occurs when the line
art is scanned and goes to the next step of ink and paint.
Traditionally, the ink and paint process was done manually.
Some studios use a simple flood fill for each region of closed
contours in the line art. But an artist is still required to en-
sure that all contours are closed, else the flood fill would fail.
While some of the color information can be passed along
from one frame to the next, an artist is still required to touch
up many frames before they are finalized.

We use the two key images to fill the inbetween contour
by registering the key images and generating an intermedi-
ate image based on the registration. There is a large amount
of literature on image registration in the medical imaging
community, where we looked for inspiration. The method
we employ is non-rigid elastic image registration, described
by Wirtz et al. [WFMSO04], to register the two key images.

In this method, a preprocessing step is performed that
compensates for any artifacts due to rotation or translation
before the elastic registration proceeds. The process of elas-
tic registration is now described briefly; refer to [WFMS04]

(© The Eurographics Association 2006.

Inbetween Contours

Key image 1

Key image 2
Figure 11: Inbetween contours for Coyote generated us-

ing RBF contour interpolation. Wile E. Coyote is ™&
(©Warner Bros. Entertainment Inc.

for details. Each image, represented as slices in 3D space, re-
quires finding a transformation based on displacement fields
for each slice. A minimization of a functional consisting of
a distance metric and smoother (the elastic potential energy)
becomes the main objective. The distance metric is the sum
of squared intensity differences of each image after under-
going a transformation given by the displacement field. Two
parameters, A and U, are Lamé’s material constants. [l gov-
erns how far the material will stretch and is defined as the
stress divided by the area. A governs how fast the material
will stretch, and is dependent on p. Minimizing the series (or
pair) of images and displacement fields results in a system of
nonlinear partial differential equations, or the Navier-Lamé
(NLE) equation, given by

UVEU +A+)V(V-W)+f(u) =0

where W is the displacement field that tries to minimize the
sum of squared intensity differences of the images, f(u') is
the derivative of the distance metric. The second term im-
poses a restriction that the entire image (or surface mate-
rial) is as “stretchable” everywhere on the surface, while the
first term enforces a constraint on how far the material will
stretch. Simply put, the NLE equation describes the elastic
deformation of an object subject to a force, and here it is
simply the derivative of the distance metric. The object is
deformed until an equilibrium is reached between the forces.
Setting the material constants A and g of the object are
important for ensuring a good registration. Large material
constants make the object more rigid, while small material
constants are more susceptible to noise effects but allow for
larger deformation.

Once a deformation is known for registering the key im-
ages, the transformation can be applied to generate an in-
termediate image and used as a preliminary texture for the
inbetween contour. To extend the algorithm for elastic regis-
tration from grayscale images to color images, the deforma-
tion is computed on the luminance of the two key images and
stored. This deformation is then applied to each color chan-
nel separately, resulting in the final inbetween color image
to use for filling the inbetween contour. In our experience,
the material parameters 1 and A need only be set once, as
the amount of deformation allowed for the different cartoon
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Figure 12: Comparing elastic registration results for gener-
ating inbetweens on the Bugs Bunny head layer. Bugs Bunny
is ™g& ©Warner Bros. Entertainment Inc.

characters was the same. We found that the values u = 2.0
and A = 4.0 worked well.

The final inbetween typically requires only a small
amount of touch up, similar to the final touch up done in
a production studio pipeline. Our method requires only one
step where the artist touches up the result after generating
the inbetween texture. In contrast, three touch up steps are
typically used in a production studio, one when closing the
contours, one when filling, and one as a final pass.

The inbetween contours that were previously computed
are used with the elastic registration results in two ways.
First, the contour is used to automatically re-assemble the
character layers quickly, as described in Section 4.1. Sec-
ond, and more importantly, the contour is used to determine
the correct direction that the elastic registration is applied to
the key images. For example, the amount of force required
to deform image A into image B will be different than the
amount of force required to deform image B into image A.
We define ER; as the elastic registration result using key im-
age 1 as the source and key image 2 as the destination. ER> is
the elastic registration result using key image 2 as the source
and key image 1 as the destination. Figure 12 shows the two
key images, the inbetween contour C, and the results of ER|
and ER;. We can see that ER| is visually better than ER;.
However, to automatically determine which registration re-
sult more closely matches the contour C, we use the Haus-
dorff distance as applied in [dJB04] to compute the similar-
ity of C to ER| and C to ER,. A smaller similarity value
indicates a better match. ER| has a similarity value of 2.05,
while ER, has a similarity value of 2.33. As we expected,
the registration ER| is a better match to C, which is used in
the final inbetween.

We show the results of elastic registration for filling the
inbetween contours from Section 4.2. The same characters
and pairs of key images are used. Figure 13 shows a close
up of the Daffy head layer with the two key images, the in-
between texture generated using the elastic registration, an
overlay of the inbetween texture on the inbetween contour,
and the final result after a small amount of manual touch
up. Cleaning up the final result takes about one minute us-
ing image editing software. Figures 14, 15, and 16 show the
final results on the three characters. Using a purely image-
based interpolation method may introduce new artifacts, but

we believe any errors on a single frame of a sequence are
insignificant enough to not be easily seen.

Figure 13: Moving from left to right: a close up of the first
key image head layer, a close up of the second key image
head layer, the automatically generated inbetween color, the
intermediate color overlaid on the inbetween contour, and
the final inbetween for the head layer. Daffy Duck is ™&
(©Warner Bros. Entertainment Inc.

Key image 1 Final Inbetween Key image 2

Figure 14: The final inbetween frame for Daffy using elas-

tic registration for the color. See color plate. Dafty Duck is
T™g ©Warner Bros. Entertainment Inc.

Final Inbetween

Key image 1 Key image 2
Figure 15: The final inbetween frame for Bugs using elas-
tic registration for the color. See color plate. Bugs Bunny is

T™g& (©Warner Bros. Entertainment Inc.

5. Discussion

This paper presents two necessary components of a sys-
tem for building image libraries of traditional animation and
then re-using them. These techniques could work to extend
the system earlier of de Juan and Bodenheimer [dJB04]
or to further automate the system presented in Bregler et
al. [BLCDO2]. Such extensions could find application in film

(© The Eurographics Association 2006.
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Final Inbetween

Key image 1

Key image 2

Figure 16: The final inbetween frame for Coyote using elas-
tic registration for the color. See color plate. Wile E. Coyote
is ™& ©Warner Bros. Entertainment Inc.

restoration or interactive educational technology. The tech-
niques are semi-automatic, but require only minimal inter-
vention to guide the animator in building the image library
or touching up novel inbetweens.

The segmentation method seems robust and works well
on all examples we have tried it on. Indeed, the support vec-
tor machine technique outperformed the level set segmen-
tation technique that we tried, which was difficult to tune,
could not effectively deal with the amount of noise in the ani-
mations, and most importantly required significant computa-
tion time. In contrast, the SVM method required only about
five seconds to classify each full resolution image. Training
and cross-validation to find the best parameter values took
only two to three minutes per SVM classifier model. How-
ever, the SVM classifier is trained on only one character, so
if two characters appear in the same scene, we require two
passes, one for each SVM classifier. The same is true for the
morphological operations used to clean up the segmentation
masks, as only one character is assumed to be in the image.

The inbetweening procedure is also robust. Limitations of
this component include the requirement that a character be
manually partitioned into separate layers. Also, the method
will not produce a reasonable, detailed inbetween if the de-
formation between the key images is too great. In this case,
animator intervention is required. The processes described
here can, however, aid animators in the process of generat-
ing inbetweens, as it provides a strong template for a finished
product. Considering the minimal amount of user interaction
involved for a strictly image-based approach, we believe that
this method yields better inbetweens for two-dimensional
animation than has previously been reported. Future work
in this area will examine whether techniques such as Ju et
al. [JSWO05] can be used to reduce the limitations described
above. Also, the quality of the resulting animations using
our inbetweening procedure depends on more than simply
re-arranging similar looking frames. Some incorporation of
dynamics, such as velocity of neighboring frames, or higher
level cues such as timing of the original animation, are future
work.

(© The Eurographics Association 2006.
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