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Abstract

The goal of this paper is to perform simulations that capture fluid effects from small drops up to the propagation of
large waves. To achieve this, we present a hybrid simulation method, that couples a two-dimensional shallow water
simulation with a full three-dimensional free surface fluid simulation. We explain the approximations imposed
by the shallow water model, and how to parametrize it according to the parameters of a 3D simulation. Each
simulation is used to initialize double layered boundary conditions for the other one. The area covered by the
2D region can be an order of magnitude larger than the 3D region without significantly effecting the overall
computation time. The 3D region can furthermore be easily moved within the 2D region during the course of
the simulation. To achieve realistic results we combine our simulation method with a physically based model to
generate and animate drops. For their generation we make use of the fluid turbulence model, and animate them
with a simplified drag calculation. This allows simulations with relatively low resolutions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computing Methodologies]: Computer Graph-
icsAnimation; I.6.3 [Computing Methodologies]: Simulation and ModelingApplications;

1. Introduction and Related Work

In previous years, the physically based animation of liquids
has seen significant progress. Especially the work of Ron
Fedkiw [FAMO99] , his group [LGF04] [IGLF06], and Jos
Stam [Sta99] have enabled the realistic and efficient sim-
ulation of liquids with a free surface. A typical animation
to show the quality of a simulation is pouring liquid into
a glass. Nowadays the simulations recreating these effects
are hard to distinguish from reality. In this paper we will,
however, focus on scenes that have a larger scale, e.g. a ship
traveling through the ocean. The challenge is to capture both
the large scale movement of the water around the ship, as
well as the splashing of the waves around it, including drops
and spray. As all these phenomena contribute to the visual
appearance, they have to be captured to achieve a realistic
representation of such a scene.

For all classes of algorithms that are used to simulate free
surface flows, the problem is that the amount of computa-
tional work and the required resources grow significantly
when the resolution of the simulation is increased. The full

simulation of the above mentioned scene with a volume-of-
fluid Navier-Stokes solver would hardly be possible even on
large supercomputers. Adaptive techniques can be used to
alleviate this problem to some extent [LGF04], but usually
increase the complexity of a solver and have limits in their
ability to speed up the computational time. In the following,
we will describe a different approach that computes the
full fluid flow only in a bounded region of interest, and
uses a fast two-dimensional fluid simulation to compute
the fluid surface around it. We also choose not to simulate
the whole depth of the fluid, from the free surface to the
bottom (e.g. the ocean floor), but only an upper layer of
fluid. The small scale details such as drops are simulated as
particles with a simplified, yet physically based, algorithm.
The contributions of this paper are:

• a new hybrid method that couples a 2D shallow water sim-
ulation with a full 3D free surface simulation, and

• a physically based model for the creation and simulation
of drops.
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Although we use the lattice Boltzmann method to solve the
two- and three-dimensional fluid flows, variants of both our
hybrid method and the drop model could also be applied to
other types of fluid solvers.

In its different forms the Navier-Stokes (NS) equations
have long been used for physically based animation. [KM90]
were the first to use shallow water simulations in computer
graphics. As of today, this simplified model, which assumes
depth averaged fluid properties, is still a research topic e.g.
for computations performed on the GPU [HHL∗05]. The use
of a three-dimensional NS discretization with free surface
boundary conditions was demonstrated by [FM96]. By to-
day, various methods exist to directly solve or approximate
the NS equations. Apart from the level set based solvers
mentioned above, volume-of-fluid (VOF) methods are com-
monly used [MMS04], or, from the background of astro-
physics, the smoothed particle hydrodynamics (SPH) solvers
[KAG∗05]. To model large scale water surfaces deep-water
wave models are often used to compute the water surface
motion, e.g. in [Tes04] or [HNC02]. These, however, do not
solve the NS equations directly, but model the wave prop-
agation by different forms of trochoid function spectra. In
[RNGF03], Rasmussen et al. combined a 2D flow field with
periodic 3D simulations to create detailed smoke simula-
tions. Large scale open water scenes with 2D and 3D sim-
ulations were also used in TV and feature film productions,
however, without giving detailed information about the mod-
els used. Recently, an approach to optimize a fluid simula-
tions with tall and thin cells was proposed by [IGLF06], thus
also reducing the computational complexity for large fluid
volumes.

In the following we will use the lattice Boltzmann method
(LBM), which originates from discrete compressible gas
simulations [FdH∗87]. The LBM approximates the NS equa-
tions without the need for an iterative solver by relaxing
the incompressibility constraint [HL97]. It has been used
in various areas, e.g. for single phase fluid computations
[WZF∗03], or in combination with a VOF model to simu-
late free surface flows [TR04]. They also explain how typi-
cal limitations of VOF methods can be overcome within the
LBM algorithm. As the shallow water equations represent an
advection-diffusion problem similar to the full NS equations,
they can likewise be solved with the LBM. A derivation of
the appropriate changes to the basic algorithm can be found
in [Del01].

A different approach for detailed and accurate fluid simu-
lation solvers, that we will make use of in Section (4), can be
found in the area of chemical engineering. For cases such as
bubble column reactors, Eulerian-Lagrangian simulations of
these dispersed multi-phase flows, e.g. large numbers of bub-
bles in a relatively coarse fluid flow simulation [DKvS99],
are used to understand and optimize the physical processes
[BGD05]. These methods simulate bubbles with a spherical
shape, and model the forces caused by the turbulent fluid

Figure 1: The lattice Boltzmann grid models used for the
free surface (D3Q19) and the shallow water simulations
(D2Q9).

around them. Apart from level set methods, where particles
are used to accurately track the free surface, [TFK∗03] also
use particles to add small scale details. But in contrast to our
approach they generate drops based of the surface curvature,
and apply linear damping to model air resistance.

2. Animation of the Water Surface

Within a certain region of interest, e.g. around a moving ship,
we perform a full three-dimensional simulation of the free
surface fluid. We will briefly describe the algorithms used
to perform the three- and two-dimensional fluid simulations,
and then describe the coupling of both in more detail.

Free Surface Simulation: For solving the fluid phase
in the three dimensional region we use the D3Q19 lattice
Boltzmann model shown in Figure 1. This model requires
an equidistant grid (with a cell size of ∆x) and 19 floating
point values, one for each velocity vector, that are stored
in each cell. These distribution functions (DFs) represent a
small amount of fluid moving with the corresponding ve-
locity. The basic algorithm proceeds in two steps - first the
advection of the fluid molecules is handled by copying the
DFs to the neighboring cell along their velocity direction.
Once this is done for all cells in the grid, each again has a
full set of DFs, which is used to calculate the macroscopic
properties of the fluid – the density ρ and the velocity u. In
the following, fi will denote one of the nineteen DFs, with ei
being the corresponding velocity vector. Its inverse direction
is eĩ, thus eĩ = −ei.

ρ = ∑ fi u = ∑ei fi . (1)

Density and velocity are needed to calculate the equilibrium
DFs with

f eq
i (ρ,u) = wi

[
ρ +3ei ·u− 3

2
u2 +

9
2
(ei ·u)2

]
. (2)

Here w is a weight that depends on the length of the velocity
vector: wi = 1/3 for i = 1 , wi = 1/18 for i = 2, ...,7 ,
and wi = 1/36 for i = 8, ...,19. The equilibrium DFs from
Eq. (2) are necessary to compute the collisions that occur
between the molecules in a real fluid. With the LBM these
are calculated by relaxing the DFs towards the equilibrium
DFs depending on the fluid viscosity with:

fi(x, t +∆t) = (1−ω) f ′i (x, t +∆t) + ω f eq
i . (3)
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Here the relaxation parameter ω is calculated from the time
step of the simulation ∆t, the physical viscosity ν ′ and the
lattice viscosity ν with

ω =
1

3ν
+

1
2

,ν = ν
′ ∆t
∆x2 . (4)

The free surface model we apply only simulates the fluid
phase. Hence, DFs that would be streamed from the gas
phase have to be reconstructed in cells at the interface with

f ′ĩ (x, t +∆t) = f eq
i (ρA,u)+ f eq

ĩ (ρA,u)− fi(x, t) , (5)

where ρA is the reference density of the air, hence, in our
case ρA = 1. These free surface boundary conditions do not
include surface tension, but ensure an undisturbed move-
ment of the fluid in the gas phase. The mass flux between
cells is computed directly from the DFs that are streamed
from and to interface cells. This mass value m is addition-
ally stored for each cell, and can be used to determine the
fluid fraction ε = m/ρ of a cell. Thus, this value determines
how much of a cell is filled with fluid. Further details for a
free surface implementation with LBM can be found in e.g.
[KPR∗05]. At the boundary of the 3D domain we use bound-
ary conditions with a height dependent pressure and a veloc-
ity given by the shallow water simulation. In Section (3) this
will be described in more detail.

Turbulence Model: A problem of the basic LBM is,
that it can exhibit instabilities for lower viscosities and
thus values of ω close to 2. To alleviate this, turbulence
models are often applied. We make use of the commonly
used Smagorinsky turbulence model [Sma63], that locally
increases the fluid viscosity in regions where unresolved
flow features are detected, to model the energy dissipation
of small scale vortices [HSCD96]. The local increase of vis-
cosity is determined by the Reynolds stress tensor Π, that is
computed locally for each cell as

Πα,β =
19

∑
i=1

eiα eiβ
(

fi − f eq
i

)
, . (6)

This value is used to compute the correction factor

S =
1

6C2

(√
ν2 +18C2

√
Πα,β Πα,β −ν

)
. (7)

with a user defined constant C, that we have set to 0.04. The
modified viscosity of the cell is then calculated with

ωs =
1

3(ν +C2S)+1/2
, (8)

and used instead of the normal value for ω in Eq. (3).

Shallow Water Simulation: Shallow water, or St.
Venant, equations are usually used to simulate waves whose
wavelength is similar to the overall water height. In this case
the wave propagation speed is constant for all amplitudes.
Deep water waves on the other hand are dispersive, which

Figure 2: This picture gives an overview of our hybrid simu-
lation method. The full three-dimensional fluid flow is solved
in a given region of interest (illustrated by a 2D rectangle),
and coupled to a two-dimensional shallow water simulation
(shown as a 1D line in the picture).

means that the wave propagation speed depends on their am-
plitude. By using a shallow water model we make the as-
sumption that for the limited range of amplitudes generated
by the three dimensional simulation the wave propagation
speed is the same. The advantage of a shallow water simula-
tion is a full flow field for the water surface, that can produce
vortices or handle e.g. flowing rivers.

Shallow water simulations (SWS) can likewise be per-
formed using the LBM. In this case, instead of consider-
ing the fluid pressure, a height value is computed for each
cell. Overall, the algorithm is very similar to the basic algo-
rithm described above – both the streaming step and Eq.3 for
relaxation towards the equilibrium are still valid. The equi-
librium DFs to be used with Eq.3, however, are calculated
differently. Furthermore, as the fluid surface is only two-
dimensional, we use the D2Q9 LBM model with nine veloc-
ities. To distinguish the DFs of the shallow water simulation
from those of the three dimensional free surface simulation,
we refer to them as gl in the following. The fluid height h
and the fluid velocity for the shallow water simulation are
calculated as:

h =
9

∑
l=1

gl v =
1
h

9

∑
l=1

elgl . (9)

In contrast to the 3D LBM model, the velocity computation
of the SWS requires a division by the height, as shown in
Eq.9. With height and velocity, the equilibrium DFs are com-
puted as

geq
0 (h,v) = h

[
1− 5

6
Gh− 2

3
v2

]
, (10)

and

geq
l (h,v) = wlh

[
1
6

gh+
1
3

el ·v+
1
2
(el ·v)2 − 1

6
v2

]
, (11)

for l = 1..9. Here G is the gravity force, normal to the two-
dimensional plane of the SWS, and the weights wl have
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Figure 3: Wave propagation of a hemispherical drop on a
flat surface using our algorithm. The 3D simulation region
is highlighted in the middle.

the values wl = 1/18 for l = 2, ...,5, and wl = 1/36 for
l = 6, ...,9. An in depth description of shallow water LBM
can be found in e.g. [Zho04]. To establish a fixed height of
the SWS boundary, we set the cells there to have the equilib-
rium DFs for the initial height and a zero velocity.

As this shallow water solver is similar to a basic LBM
solver, the Smagorinsky turbulence model given by Eq.7 and
Eq.8 can likewise be used to increase stability. The only dif-
ference is that Πα,β is now computed as a sum over the nine
DFs of a SWS cell with Eq. (6). To ensure stability for vary-
ing velocities, we furthermore apply the adaptive time step-
ping as described in [TPR∗06] to both simulations.

3. Hybrid 2D/3D Simulation

An overview of our hybrid simulation approach is given in
Figure (2). Both algorithms have been parametrized to solve
the same fluid simulation problem, and are then coupled
at a interface region. In the following we will assume that
the SWS is performed in the xy-plane, and the gravitational
force acts in the direction of the negative z-axis. There is an
inherent difference between the two simulation approaches
that has to be overcome: the derivation of the SWS assumes
a depth averaged velocity and has a coupling between fluid
height and velocity. The 3D simulation, on the other hand,
can have a velocity varying along the z-axis, and has bound-
ary conditions (see below) that makes it independent of the
initial height of the fluid surface hini. In order to be able to
couple both simulations, we have developed the following
parametrization procedure for the SWS. It ensures that the
SWS and the 3D simulation have the same wave propaga-
tion speed.

We offset the SWS by a constant height hoff, as shown in
Figure (2). Here Sz is the height of the 3D domain in cells.
In combination with the gravity the height offset hoff de-
termines the wave propagation speed, and is set according
to the average wave height generated by the 3D simulation
havg. Assuming a common trochoid wave shape, we set hoff
to be half of the expected wave length, thus hoff = πhavg. For
the examples shown in the following we have used a value
of havg = 1/2hini. Now the gravity force of the SWS has
to be scaled according to the height offset. This is done by

Figure 4: The two cases that need to be distinguished to
generate a closed surface mesh for the 3D and shallow water
simulations.

G N ∆t v

G 2 1
√

2
√

2

N 1 2 e
√

2

Table 1: Behavior of the SWS upon parameter change. Here
N is the number of SWS cells along the x- or y-axis.

examining the behaviour of the SWS properties. Given an
arbitrary simulation setup, the properties of the fluid change
by a factor given in Table (1), when the value of the param-
eter in the first column is multiplied by 2. Thus, given the
initial SWS fluid height and n = log2(hoff +hini) we set the
SWS gravity G to match the given offset for the simulation
resolution. It is computed from the z-component of the 3D
gravity gz as:

G = gz ·
( e

2

)−n
. (12)

The 3D gravity is given by the physical value, usually G′ =
9.81 [m/s2], as g = (0,0,G′ ·∆t2/∆x). The initial time step
size ∆t is set according to the maximum fluid or moving ob-
stacle speed in the simulation setup. Now, when transferring
velocities in the xy-plane between the simulations, the in-
fluence of the offset and gravity scale have to be removed.
According to Table (1) this is accomplished by

vx,y = su ux,y , with su =
√

2
n

√sg
1/n

. (13)

3D to 2D Coupling: Here, we determine the height of the
fluid at a position within the 3D simulation region by search-
ing for the first interface cell. We start at the cell with grid
position (i, j,0), and assume a planar fluid surface. Hence,
the fluid height is computed for the first interface cell at
(i, j,kH) with

H(i, j) = kH + ε(i, j,kH)+hoff . (14)

The velocity at the water surface usurf is given by the inter-
face cell of the 3D simulation. To transfer the information
from the 3D simulation to the SWS a cell at (i, j), shown as
a circle marked with X in Figure (5), is initialized with the
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Figure 5: Detail of the double layer boundary conditions in
the overlapping interface region.

equilibrium DFs:

gl = geq
l

(
H(i, j),su usurf

)
. (15)

The cells where height and velocity are set with Eq. (15)
represent the inner boundary for the SWS. Further inwards
we perform the full 3D simulation, thus the cells of the SWS
do not have to be updated in this region, as their values are
never used. To ensure a transfer with as few disturbances
as possible, we use a double layered transfer. Thus, we use
a second type of boundary condition for the region of SWS
cells directly outwards of the boundary cells described above
(circle marked with O in Figure (5)). For the cells that are
updated according to Eq. (15) all DFs are reset each time
step, while for the second boundary layer we only rescale
the existing DFs to match the required fluid height:

g∗l = gl ·
H(i, j)
h(i, j)

. (16)

The combination of these two boundary conditions ensures
a correct transfer of both fluid surface height and velocity.

2D to 3D Coupling: The transfer from the SWS to the
3D simulation, is done by initializing the 3D cells to rep-
resent the SWS height and velocity. For a 3D cell at (i, j)
marked with O in the upper part of Figure (5) we thus ei-
ther remove cells from the simulation, if H(i, j) > h(i, j), or
otherwise add new ones. To correctly initialize the new cells
we directly use the velocity of the SWS. The z coordinate of
the velocity is calculated from the SWS fluid heights of the
current and previous timestep.

For the outer layer of the 3D simulation (square cells
marked with X in Figure (5)) we use velocity boundary con-
ditions with a fixed pressure. For the LBM the pressure of a
cell with height k in the domain is given by:

ρk = 1.0+(hini − k) ·gz · −3ω . (17)

Figure 6: Effect of the drag model for different size scales.
The simulations were parametrized to represent scales of
10cm,1m and 10m, from left to right. The smaller particles,
are slowed down, and cause mist below the outflow.

The pressure thus increases further down in the grid, with a
gradient that depends on the relaxation time ω . The veloc-
ity can again be taken directly from the SWS, as described
above. Note that it is in this case not necessary to scale the
SWS velocities, as we set the whole height of the 3D simula-
tion. These boundary conditions, however, do not ensure the
full propagation of arbitrary waves generated in the SWS re-
gion, as this would require an additional wave profile initial-
ization. Although these boundary conditions do not enforce
mass conservation for the transfer, this is not problematic as
the overall height of the fluid height is kept at the initial value
by the SWS with its outer boundary conditions.

The depth of the overlapping region for the two simula-
tions is variable, but we have found a distance of one eighth
of the 3D domain size to yield good results. A validation run
is shown in Figure (3). The circular wave retains its shape
while it is transferred from the highlighted 3D region to the
SWS region. The in- and outflow at the 3D domain bound-
ary furthermore causes no disturbances of the flow field. A
pure SWS simulation would not have been able to resolve
the drop forming in the middle of the 3D region, visible in
the right picture of Figure (3).

Surface Generation: To generate a mesh from the 3D
simulation, we use the marching cubes algorithm. A triangu-
lation of the SWS surface is easily computed by construct-
ing patches between four adjacent SWS cells that have x and
y coordinates according to their grid position, and a z co-
ordinate given by h(x,y). At the 3D domain boundary we
leave out the first row of SWS cells, and construct triangles
to connect the 3D mesh to the SWS patches. If both points
of a marching cubes cell lie on its z-edges, this is sufficient
to ensure a closed mesh. For all other cases, we also have
to connect triangles to the points above or below the cell at
the surface, as shown in Figure (4). In rare cases, e.g. when
a drop directly hits the connection line, this technique will
not result in a closed mesh. For our tests we have, how-
ever, not encountered any visible artifacts. In the interface
region, where we have full information from both simula-
tions, we linearly blend the fluid surface heights, to achieve
a smooth transition from one type of simulation to the other.
As the mesh generated from the fluid fractions already re-
quires smoothing, we also perform a smoothing of the inter-
face region to prevent any artifacts from misaligned normals.

c© The Eurographics Association 2006.



N. Thürey, U. Rüde & M. Stamminger / Animation of Open Water Phenomena with coupled Shallow Water and Free Surface Simulations

Figure 7: A stream of water hits a rock and a water surface In the rightmost picture the interface between 2D and 3D region
is highlighted.

4. Animation of Drops

For the animation of drops in our simulations we make use
of methods developed for dispersed gas-liquid flows. In the
following we will describe our model for the animation and
generation of water drops. Each drop is described by its po-
sition x, velocity w and radius r. We assume that the drops
are small enough to remain spherical due to surface tension.
Thus using the density of water ρW the mass of a drop is
given by its volume:

mP = ρW
4
3

πr3 . (18)

Generation: To generate particles in our simulation we
make use of the turbulence model explained in Section (2).
As it already determines how many unresolved flow features
a given cell has, we use it to compute a particle generation
probability for cells at the fluid interface. We compute this
probability from the absolute value of the Reynolds stress
tensor given by Eq. (6) and the physical speed u′ = u ∆x/∆t.
The stress tensor usually takes values of ca. Pm = 10−2 for
regions with significant unresolved detail independent of the
actual grid resolution. We assume that the range of veloci-
ties, where the pressure of the surrounding air causes insta-
bilities that lead to drops at the surface, is similar to that of
the drop terminal velocities, which motivates the following
probability function:

pD = Pab ∗ (u′)2 with Pab =
√

Πα,β Πα,β . (19)

Thus for a high physical speed of 10[m/s] and significant un-
resolved flow details this function will result in a drop gen-
eration probability close to one. Note that the calculation of
the Reynolds stress tensor is especially easy for LBM, as it is
computed locally from the derivative information contained
in the non-equilibrium parts of the DFs (see Eq. (6)). For
other types of solvers, this computation will require access
to neighboring grid cells to compute the derivatives. Upon
creation we initialize the drop velocity by the fluid velocity
and a randomized normal offset to avoid immediate collision
with the fluid surface.

Animation: For each LBM step, we simply update the
particle position using their velocities and the LBM time step
length:

x(t +∆t) = x(t)+∆tw . (20)

To update the particle velocities, we compute the balance
of the forces acting upon it:

mP
dw
dt

= FG +FD . (21)

where FG is the force due to gravity and FD is the drag force
caused by the drop of water moving through the air. In con-
trast to the dispersed flow simulations mentioned above, we
thus ignore any lift the drops might experience as well as
other forces that would e.g. be caused by the density gradi-
ent in the air. The lift is proportional to the ratio between
the involved fluids, which is close to zero for air and wa-
ter. Likewise, we assume a density gradient in the air very
close to zero. FG is directly computed from gravity and par-
ticle mass as FG = mP g, while the computation of the drag
force requires more effort. The movement of water drops
through the air has been studied in depth for meteorological
purposes, see e.g. [PK97]. From these studies it is known,
that rain drops usually have a size less than 4.5mm. Above
this size they will start to deform during their movement and
eventually break apart due to the high forces from the air in
comparison to the surface tension. It was furthermore mea-
sured, that these large drops have a terminal velocity of up to
wt1 = 9m/s, while smaller drops of with e.g. r = 0.5mm only
accelerate to ca. wt2 = 2m/s. Given a coefficient of drag CD,
the drag force acting upon a particle is calculated as:

FD =
CD

2
ρL π r2 wrel|wrel| , (22)

where wrel is the relative velocity of the particle. It is com-
puted from the velocity of the air wA by wrel = wA −w. As
we do not explicitly simulate the gas phase, we usually set
wA = 0. Other values could be used to simulate the effect
of wind. For the drag coefficient there are various approxi-
mations for different regimes of turbulence. As the case of
a larger spherical rain drop at terminal velocity is already
turbulent (Re > 1000), and the approximations are compu-
tationally very expensive, we fit the computation of the drag
coefficient to yield values in the required range. We thus re-
quire that the drag force and gravity acceleration balance for
the drops at their respective terminal velocities. Assuming
a linear change for both parameters, we compute the drag
force with a bilinear interpolation:

CD =
|wrel |

wt2 +(wt1 −wt2)wr
(

1
2

+
1
2

wr) . (23)
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Figure 8: Animation of a spherical object hitting the water surface.

with wr = (r1 − r)/(r1 − r2). For our simulations we have
limited the size of the drops to the range of r1 = 0.005m
to r2 = 0.0005m. After the computation of FG and FD we
update the velocity according to Eq. (21) with an Euler-step:

w(t +∆t) = w(t)+(FG +FD)mP∆t . (24)

Additional effects: To actually cause a disintegration of
a thin fluid sheet into drops, we randomly choose a size rD in
the given range, and subtract the mass of the drop from the
interface cell where it was generated. For simulations rep-
resenting a large scale, this could result in huge numbers of
particles – for these cases we subtract a multiple of the drop
mass from the cell, and display the drop as a correspondingly
larger transparent particle, thus representing multiple drops
of similar size. Once the drop hits the fluid surface again,
we add the mass that was subtracted before. Here, similar to
[TFK∗03], we trace the particle on the fluid surface to give
the impression of foam. Figure (6) shows examples of the
drag force influence for different scales. For the larger test
cases the higher velocities result in higher drag forces, re-
sulting in a noticeable slowdown of the smaller drops.

Another effect that cannot be directly simulated with the
algorithm explained in Section (2), is that of instabilities
caused purely by the relative physical velocity of the fluid
u′

rel, as the air is not simulated as a fluid itself. Thus, in order
to cause these instabilities, we use a simple approximation,
and manually add the following term

fi = fi +(Pm −Pab) ·wi
u′

rel
50

· ei , (25)

for cells, with Pab < Pm that do not generate particles.

5. Results

All results shown in the following were created using a phys-
ical viscosity of water νW = 1 · 10−6. To enhance the real-
ism, we add a texture to the water surface, giving the im-
pression of smaller chaotic waves. A test case of our simu-
lation method is shown in Figure (7). A stream of water hits
a rock and a water surface. The created waves spread out-
wards without a visible border between the SWS and the 3D
simulation. Simulation resolutions and times can be found
in Table (2). A test case that demonstrates the capabilities
our drop model is shown in Figure (8). A spherical object
is dropped into a fluid surface. The drop model, with up to

3D SWS Simulation Size

Figure (7) 1203 4802 14.6 s 0.2 m

Figure (8) 120 ·120 ·200 4802 34 s 10 m

Figure (9) 1203 9602 79.6 s 2 m

Table 2: This table shows grid resolutions together with
average simulation times per frame (measured with an 2.2
GHz Opteron CPU). The size value is the physical length
of a side of the 3D domain used for parametrization of the
simulations.

50000 drops at a single time step, enhances the impression
of a large simulation scale.

Given a working hybrid simulator, only small changes are
necessary to achieve animations such as shown in Figure (9).
Here we move the 3D domain according to the position of an
object in the xy-plane. For each movement of the domain by
∆x we copy the values stored in the grid by one in the de-
sired direction. During the next step, the boundary regions
of both simulations will again be correctly initialized for the
boundary conditions. In this example the foam particles on
the water surface clearly visualize the flow field in the shal-
low water region.

For a simulation run with a relatively large SWS domain,
such as shown in Figure (9), we have measured the work-
load distribution between the different parts of the algorithm.
In this case, ca. 68.8% are spent on the simulation of the
3D region. The 2D region, covering a 35 times larger area,
requires 24.9% of the time, while ca. 2.6% are spent on
the coupling of both simulations. The remaining 3.7% were
spent on drop calculation, surface mesh generation and ini-
tialization. The update of an SWS cell is on average three
times faster than the update of a 3D cell.

6. Conclusions and Outlook

We have presented an algorithm to efficiently simulate large
scale open water fluids. This is achieved by coupling a shal-
low water simulator with a 3D free surface simulation. Our
approach to model the formation and movement of drops al-
lows us to add detail to relatively coarse fluid simulations. In
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Figure 9: Pictures from an animation with a moving 3D domain.

conclusion, animations of large water surfaces, that would
require huge amounts of memory and computational time
with a conventional full 3D simulation, can be calculated
within a matter of hours. The chance to arbitrarily move the
3D domain within the 2D region furthermore increases the
flexibility of our approach.

As a future extension, we plan to increase the overall com-
putational speed by making use of adaptive grids and paral-
lelization for machines with multiple CPUs. For an interme-
diate scale, we are working on applying the methods from
SPH to the generated drop particles, to accurately capture
effects such as coalescence. It would furthermore be interest-
ing to add a model for the generation of drops in the SWS re-
gion as well, or couple it with an FFT solver for ocean waves
[Tes04]. An easy way to further speed up the computations
would be to reduce the SWS resolution by an integer factor,
and interpolate the values at its boundary. The problem of a
fixed wave propagation speed, on the other hand, could be
alleviated by overlaying multiple shallow water simulations
with different parametrizations. Finally, the method could be
used to couple multiple regions of three dimensional compu-
tation in one large water surface simulation. Given enough
computational resources in combination with low grid res-
olutions, this could be used to simulate interactive environ-
ments with large water surfaces e.g. for virtual reality appli-
cations.
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