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Abstract 
In cloth simulation particle systems models, bending stiffness involve forces which are either represented as 
additional springs, or as out-of-plane forces along surface normals. While the former solution is quite 
inaccurate for both small and large curvatures, the latter requires significant computation and is unsuited for 
fast computation required by real-time or interactive systems. We present a linear approach which combines 
simplicity and accuracy, being perfectly suited for the implicit integration schemes used in particle systems. 
 
Categories and Subject Descriptors: I.6 [Computing Methodologies]: Simulation and Modeling; I.3.5 [Computing 
Methodologies]: Computer Graphics - Computational Geometry and Object Modeling - Physically-Based Modeling. 

 

 
1. Introduction 

Tensile stiffness is fairly easy to simulate, as it involves 
computing deformations and forces within mesh elements. 
On the other hand, the simulation of bending stiffness is 
more complicated, as several adjacent mesh elements have 
to be considered simultaneously. Furthermore, this 
necessitates the action of out-of-plane forces that are 
usually more expensive to compute than in-plane forces. 

Several solutions have been proposed in the literature, 
representing two main approaches. The first is to use 
crossover springs that extend the surface, opposing 
transversal bending [Pro95] [EWS96]. The second is to 
evaluate precisely the angle between adjacent mesh 
elements and to create between them normal forces that 
oppose this angle through opposite bending momentum 
[GHDS03] [BMF03] [VCT95] [TW06]. This approach can 
reach similar accuracy as grid continuum-mechanics 
[TPBF87] [BHW94] and grid particle system derivatives 
[BW98] which are fairly complex to evaluate. 

The crossover spring approach (Fig.1 top) is believed to be 
the simplest. It is typically implemented in spring-mass 
mechanical representations, allowing a homogeneous 
simulation system. Unfortunately, this approach is also very 
inaccurate. First, when bending is low, crossover springs 
are quite unable to produce significant out-of-plane forces. 
Therefore, they are unsuited for the simulation of surfaces 
with high bending stiffness with an acceptable accuracy. 
Furthermore, they highly interfere with the tensile stiffness 
of the surface. Another issue is their “side-flipping” that 
may occur in highly bent situations, producing collapses 
and very large nonsymmetrical deformations, a situation 
which may be exacerbated with the use of nonsymmetrical 
mesh elements. This is why this approach is mostly used 
with regular grid representations of the surface [Pro95] 
[EWS96]. On the other hand, the normal force approach 
(Fig.1 bottom) can accurately represent bending stiffness, 
and there is also no significant interference with the tensile 
stiffness of the surface. However, the computational price 

of this method is much higher. First, evaluation of polygon 
normals is required, and evaluation of the bending angle 
often goes through significant computation [BMF03] 
[GHDS03] often involving trigonometric functions. Then, 
the preservation of total rotational momentum requires a 
constant recomputation of the coefficients distributing the 
forces over the particles according to the current position of 
the particles. Therefore, the computation of the Jacobian 
required for implicit integration methods may get fairly 
complicated, and is often carried out through 
approximations that degrade the numerical performance. 

 
Fig.1: Three ways for creating bending stiffness in a triangle mesh: 
Using tensile crossover springs over mesh edges (top), using forces 
along triangle normals (bottom), and, as we propose, using forces 

evaluated from a weighted sum of vertex positions (right). 

Through this work, we propose an alternative approach 
which combines fairly good accuracy for representing 
quantitative bending stiffness with a very simple and 
efficient computational procedure. 

The idea of our method is the following: We compute a 
“bending vector” that represents the bending of the surface 
through a simple linear combination of particle positions, 
and we then redistribute this vector as particle forces 
according to the bending stiffness of the surface (Fig.1 
right). We will show that this scheme preserves total 
translational and rotational momentum conservation 
without the need of recomputing the distribution 
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coefficients according to the current position of the 
particles. This leads to a very simple computation process 
which is perfectly linear, and thus very well adapted to 
implicit numerical integration. 

In the following, we describe the our linear bending 
stiffness model using irregular triangle meshes, which 
correspond to the most general context used in simulation 
of deformable surfaces. However, all concepts exposed 
hereafter can be transposed without major difficulties to 
simulations that are based on surface representations made 
of regular grids. 

2. Computational Details 

We start from two adjacent triangles (PA,PC,PD) and 
(PB,PD,PC) as shown in Fig.2. Their common edge has a 
length noted l and their respective heights relatively to 
vertices PA and PB are noted hA and hB. 

2.1. Measuring Local Curvature 

The two adjacent triangles approximate a curved surface 
that contains the four vertices of the two triangles, and we 
assume that the surface is only curved orthogonally to the 
edge (PC,PD) (Fig.2 left). This is indeed not an obvious 
assumption, since any kind of surface curvature may 
produce some bending around the edge. However, this 
choice can be assumed as being the best, as the direction of 
the edge bending matches the curvature of the surface. 
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Fig.2: The curved surface equivalent to two adjacent triangles 

(left), and the computation of its curvature (right). 

Our goal is now to estimate this curvature from the height 
difference noted r between the edges (PA,PB) and (PC,PD) 
(Fig.2). As we restrict ourselves to linear bending, we 
assume that the bending stiffness remains constant whatever 
the amount of curvature, and therefore we evaluate it 
assuming the edge angle between the adjacent triangles 
remain small. In these conditions, we can “measure” the 
curvature γ of the surface by fitting a quadric polynomial 
having a second-order coefficient γ/2 through the three 
points (-hA,0), (0,-r), (hB,0) as follows (Fig.2 right): 
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Solving this system, we obtain the curvature: 
 

BA hh
r2=γ  (2) 

Now, we need to compute the height difference r from the 
current position of the triangles. Again in the context of 
small edge angle, this is approximated through the projected 

length of a bending vector R on the approximate normal of 
the surface N (normalized to unit length) so as (Fig.2): 
 NRr ⋅=  (3) 

The bending vector R indeed represents a kind of “second-
order deformation difference” between the two elements, 
and its normal component represents the actual surface 
bending. It can be computed as a simple linear combination 
of vertex positions, as follows: 
 

DDCCBBAA PPPPR αααα +++=  (4) 

The coefficients are computed through the segment 
intersection rule (Fig.3): 
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Using the normals: 
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Fig.3: Computing the particle weights from the polygon normals 

using the segment intersection rule. 

2.2. Applying Bending Momentum 

The main idea of our linear bending stiffness scheme is to 
apply forces on the particles that directly oppose the 
bending vector R of the current deformation, without 
projection along N, or any other intermediate computations 
that would explicitly evaluate the actual values of the 
bending strain and stress. 

Thus, we consider that the bending forces FA, FB, FC, FD 
are applied on the vertices PA, PB, PC, PD respectively along 
the vector R. That can be done as follows, with a stiffness 
coefficient λ that would bring adequate scaling: 
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This distribution, which uses the same coefficients as (4), 
has been chosen for satisfying total mechanical momentum 
conservation in the system, as detailed in Section 2.3. 

Finally, we need to compute the value of the stiffness 
coefficient λ according to the linear bending stiffness 
modulus μ of the surface and the geometry of the triangles. 

The bending momentum created by the forces FA and FB 
applied on respectively PA and PB around the edge (PC,PD) 
can be expressed from the height difference r, through (7), 
(5) and (3) as follows: 
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The bending momentum also results from the bending 
stiffness modulus μ of the bent surface of curvature γ 
applied over the length l of the edge (PC,PD). From this, 
using (2): 
 

BA hh
rll μγμ 2=

 (9) 

A non-obvious issue is to take into account how adjacent 
edge bends combine together for describing the actual 
surface curvature. Energetic considerations, mainly detailed 
by [GHDS03] with results from [MDSB03] suggest that λ 
should be evaluated by equating (8) with one third of (9). 
Therefore: 
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2.3. Checking Momentum Conservation 

Whatever the expected accuracy of the represented 
stiffness, an essential feature of any mechanical modeling 
of internal forces is the conservation of total translational 
and rotational mechanical momentum. Failing to comply 
with this will produce unrealistic “ghost forces” that can 
bring mechanical objects to unrealistic equilibrium postures 
or perpetual motion. 

This question is straightforward for spring-based models: 
Any exactly aligned opposite forces have a null 
translational and rotational mechanical momentum 
contribution. However, the normal-based models need a 
constant update of the force distribution coefficients 
according to the current positions of the particles for 
ensuring null mechanical momentum contribution. 

Regarding our model, the question is trivial for the 
translational momentum. Since we have from (5): 
 0=+++ DCBA αααα  (11) 

Using (7), we have the following translational momentum 
contribution: 
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What about the rotational momentum contribution? Using 
(7) and (4), it can be computed as follows: 
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This is indeed an essential feature of our model: Only (4) 
and (7) are required for having exactly total mechanical 
momentum conservation, both translational and rotational, 
whatever the current position of the particles and whatever 
the actual way of computing coefficients, provided that (11) 
is fulfilled. Thus, momentum conservation is not broken by 
having the coefficients αA, αB, αC, αD computed 
independently from the current position of the particles. 

The simplification of our model is therefore the following: 
The coefficients αA, αB, αC, αD can be precomputed using 
the initial geometry of the mesh. Then, for each iterations, 
we only need to compute the linear evaluations (4) and (7), 

which is quick and straightforward. Indeed, this is also why 
our bending model is perfectly linear. In the context of cloth 
simulation, where the 2D fabric coordinates of the mesh 
vertices are usually available, it is wise to use these for 
precomputing the coefficients through (6) and (5), as they 
represent exactly the mesh in its undeformed state. 

2.4. Computing the Jacobian 

As discussed above, our model is implemented so that the 
coefficients αA, αB, αC, αD do not depend on the current 
position of the vertices PA, PB, PC, PD. In these conditions, 
the Jacobian of the bending stiffness forces is simple and 
straightforward to compute from (4) and (7) without any 
approximation. This is done as follows, with I denoting the 
identity matrix, and with any J and K among (A,B,C,D): 

 I
P
F

KJ
K

J ααλ−=
∂
∂  (14) 

Thanks to a perfectly linear bending model, the Jacobian of 
all bending forces is constant and totally independent from 
the current particle positions. This allows efficient 
numerical resolution through usual implicit numerical 
resolution methods [BW98] [EEH00] [HE01] with good 
convergence properties, along with possible algorithmic 
optimizations for performing the computation quickly. 

2.5. Algorithm Summary 

Precomputation: For each internal edge of the mesh: 
• Evaluate αA, αB, αC, αD using (6) and (5). 
• Evaluate λ from the bending stiffness μ using (10). 
• Eventually, pre-evaluate the Jacobian contribution (14). 

Computation: For each internal edge of the mesh: 
• Evaluate the bending vector R using (4). 
• Evaluate particle forces FA, FB, FC, FD using (7). 

2.6. Extending the Bending Stiffness Model 

So far, we have described a model of isotropic bending 
stiffness. Anisotropic (direction-dependent) bending 
stiffness can be modeled by assigning to an edge of the 
mesh a stiffness which depends on the angle of the edge 
relatively to the surface coordinates. Hence, given weft and 
warp bending stiffness μU and μV, the equivalent bending 
stiffness μ orthogonally to the edge of angle θ relatively to 
the weft direction would be: 
 θμθμμ 22 cossin VU +=  (15) 

Another possible extension could be the consideration of 
nonlinear bending strain-stress laws. The local curvature of 
the surface may be approximated from the bending vector R 
using (2) and (3) by the following evaluation: 
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Eventually,this approximation may then be used for giving 
a nonlinear behavior to the bending strain-stress law, for 
instance by scaling R accordingly before applying (7). 
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Also, a rest curvature γ0 could be given to the surface by 
adding an offset R0 to R before applying (7), with: 
 NhhR BA 02

1
0 γ=  (17) 

Similarly, viscous stiffness can easily be added to the model 
through a bending vector “velocity” R’ computed from the 
vertex velocities PA’, PB’, PC’, PD’ as follows, to be then 
redistributed similarly as viscous forces over the particles: 
 

DDCCBBAA PPPPR ′+′+′+′=′ αααα  (18) 

These two extensions would however introduce some 
rotational mechanical momentum in (13), as R0 and R’ are 
not necessarily collinear to R. Although often small enough 
to be ignored in most practical cases, it should eventually be 
compensated through significant additional computation. 

2.7. Side Effects on Tensile Stiffness 

Only the normal-based method ensures a perfect decoupling 
between tensile and bending stiffness. On the other side, the 
spring-based model involves very large coupling, and is 
totally inappropriate for models that require good 
quantitative accuracy on the stiffness behavior of the 
mechanical surface. Meanwhile, the presented linear 
method does involve some coupling, which in practice 
shows up as two effects (Fig.4), as follows. 

When the edge bending remains small, the linear method 
introduces some stiffness that does not only oppose 
curvature, but also any deformation and orientation 
difference between adjacent elements. Fortunately, this 
local effect does not introduce large-scale tensile stiffness in 
the surface as would the spring-based approach do, but only 
produces some local “fairing” of tensile deformations, 
producing no noticeable effects in the global draping. 

When the edge bending gets large, the linear bending 
method introduces some tensile compression effects that 
might possibly “crunch” mesh elements which have low 
tensile stiffness compared to the bending stiffness. This 
effect is however unlikely to show noticeable effects with 
the tensile-bending stiffness ratio of usual materials. 
However, this outlines what could be the largest drawback 
of our model: It is quite inadequate to prevent the 
occurrence of self-collisions that result from wrinkle 
collapses and edge flipping through the sole use of large 
bending stiffness when edge bending may become large. 

  
Fig.4: Bending stiffness may oppose tensile deformation difference 

for low edge bending (left), and produce tensile compression for 
high edge bending (right). 

3. Results 

This model has been implemented in a cloth simulation 
system which uses an accurate particle scheme of nonlinear 
anisotropic tensile surface elasticity representation, 
integrated with Implicit Euler [EEH00]. This system is 

being used for accurate garment simulation (Fig.7). For 
comparison, an alternate spring-based and normal-based 
bending stiffness models have also been implemented. 

We have carried out a number of tests for assessing the 
accuracy of the bending stiffness produced by our model. 
Using the drape test (Fig.6) test, we did not notice any 
significant difference of our model compared to the normal-
based model. We expect some differences to show up as 
individual mesh edges start to show large bending angles, a 
situation which is however not visible in the drape test since 
tensile stiffness in the mesh actually limits the wrinkle 
details down to polygon size. We have also assessed mesh 
independence of the bending stiffness behavior through 
resolution tests (Fig.5). Comparing both models in this 
context, the vertical fall difference remains well below 1%. 

 
Fig.5: Bending stiffness is accurate enough for being fairly well 

resolution-independent. 

Performance was measured as the time taken for particle 
bending force evaluation on a 10.000 polygon surface, 
measured on a 3GHz Pentium4 PC (in milliseconds): 

 
Spring-Based Normal-Based Our Model 

34 ms 190 ms 42 ms 

The computation time of our model is quite comparable to 
the spring-based model (slightly more computation, but no 
square roots to evaluate), and way shorter than the normal-
based model (normals and coefficients no not need to be 
evaluated at each iteration). Furthermore, our method also 
benefits from a very simple and precomputable Jacobian. 

It should be also noted that thanks to its linearity, and 
therefore a constant Jacobian without any approximation, 
we also observe a significant performance increase when 
using implicit integration methods, as we can use 
significantly larger iteration time steps and less Conjugate 
Gradient iterations in the linear system resolution without 
excessively increasing the numerical error of the resolution 
(The amount is much dependent on many other factors of 
the simulation system). To assess this, we have compared 
the overall performance on the disk shown in Fig.6 top right 
(0.01 N.m bending stiffness), using 100 millisecond 
iteration timesteps. The underlying tensile model is a 
spring-mass model and the integration method is Implicit 
Euler [EEH00] (computation speed given in iterations per 
second, including rendering): 

 
No Bending Normal-Based Our Model 

14 itr / s 5 itr / s 11 itr / s 

It can be noted that we were not able to perform correctly 
this simulation, which involves quite high bending stiffness, 
with the spring-based model (very inaccurate drape and 
numerical problems due to the very high spring stiffness). 
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Fig.6: Drape test with various bending stiffness: 0.1, 0.01, 0.001, 

0.0001, 0.00001, 0.000001 N.m. Tensile stiffness 100 N/m, density 
0.1 kg/m2, radius 1 m, approximately 4000 polygons. 

4. Conclusion 

In terms of computational simplicity and speed, our model 
competes very well with the simple crossover spring model, 
by requiring only simple linear operations for each iteration. 
Furthermore, no square roots or trigonometry are required, 
and the resulting Jacobian is constant and can be evaluated 
without approximation. This is indeed a huge computational 
advantage when using implicit numerical integration 
methods. The accuracy of our model is furthermore quite 
close to the accurate normal-based method, without 
requiring most of its complex computation. 

In summary, we cannot identify any context where the use 
of the spring-based method would be more advisable 
comparatively to ours: Our method offers much better 
accuracy (particularly when dealing with low curvature and 
high bending stiffness) with similar or even significantly 
better computation time when considering implicit 
integration methods. Meanwhile, the only situations where 
we still advocate the use of the normal-based method are 
when mesh deformation constraints are large enough for 
producing large bending around mesh edges despite high 
bending stiffness, when this bending has to be explicitly 
considered for highly accurate nonlinear models, and when 
such models are used for preventing surface tangling using 
collision processing techniques such as those described in 
[BFA02]. 

Still, the proposed model is a very good compromise for 
simulating accurately bending stiffness in many different 
contexts, and its simplicity and linearity opens the door to 
efficient implementations based on vector computation and 
dedicated hardware. 
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Fig.7: A fast model to simulate very efficiently complete garments 

with materials that may have fairly large bending stiffness. 


