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Abstract

The simulation of strand like primitives modeled as dynamics of serial branched multi-body chain, albeit a
potential reduced coordinate formulation, gives rise to stiff and highly non-linear differential equations. We
introduce a recursive, linear time and fully implicit method to solve the stiff dynamical problem arising from such
a multi-body system. We augment the merits of the proposed scheme by means of analytical constraints and an
elaborate collision response model. We finally discuss a versatile simulation system based on the strand primitive
Jor character dynamics and visual effects. We demonstrate dynamics of ears, braid, long/curly hair and foliage.

1. Introduction and Related Work

The simulation of ears, tails, braids, long wavy/curly
hair, foliage, jewelry is peculiar in nature. The flexible
shape is characterized by a thin and long geometry,
which typically has a non-straight rest configuration.
The dynamics predominantly includes the bend and the
torsional components, and very rarely the length-wise
stretch component. Even though being one-dimensional in
nature, the intricate rendering aspects of these primitives,
along with potentially highly anisotropic physical properties,
demand a consistent/stable curvilinear coordinate system
all along the geometry. In this paper we would like to
present a versatile dynamic primitive that spans the stated
characteristics and applications. We name the system as
Oriented Strands, to clearly convey the picularity to the user.

Cosserat Models discussed in [Rub00] and first introduced to
computer graphics community by [Pai02] give an elaborate
continuum theory behind the dynamics of thin deformable
objects such as strand and shells. The discrete approximation
of the strand model come strikingly close to the strand-as-
serial-multi-body-chain model, first proposed by [HMTO1,
Had03]. Since then the paradigm is successfully used for
hair simulation by [CJY02,CCKO05]. We too model strand as
serial chain of rigid segments connected by spherical joints.
Previously, the hair was typically modeled using mass-
spring-hinge system, as individual hair strands [RCTI1,
AUKO92] or as wisps [PCPO1]. However, these models are
not effective in representing consistent coordinates and the
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Figure 1: Lanterns - consistent coordinates, twist dynamics

twist dynamics. An exhaustive overview of various hair
simulation techniques is given in [Had03].

[Fea87] developed one of the first multi-body reduced
coordinate formulations that has a linear complexity. [Mir96,
Kok04] further developed efficient and comprehensive
impulse and constraint formulations to it. [RGL05] extended
the formulation to achieve interesting sub-linear complexity,
and also gives a thorough overview of the other reduced
coordinate formulations. [Bar96, Sha0l] gives maximal
coordinate formulations which also are known to have
linear complexity using sparse-matrix solution methods.
The typical multi-body system resulting from the strand
model, gives rise to “stiff”” and highly non-linear differential
equations. The numerical difficulties stem from small
rotational inertia along the axis due to thin geometry, large
bend and torsional stiffness-to-mass-ratio and intricate non-
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straight rest shape. The non-linearity is due to velocity terms
corresponding to Coriolis forces and the specific choice
of the non-linear elastic model in our implementation to
limit unrealistic high deformations. These difficulties call
for an implicit integration scheme. Even though the reduced
coordinate formulation is efficient for multi-body systems
with large number of segments and relatively small number
of DOFs, it is difficult to realize an implicit integration
scheme, as pointed out by [HadO03]. Instead, [CCKO5]
use a traditional maximal coordinate formulation with
(soft) constraints [Bar96, Sha0Ol], followed by an implicit
integration. Complex collision response models with static
and dynamic friction can be integrated into the maximal
coordinate framework, with relative ease, using impact and
contact velocity constraints [CCKO05].

Nevertheless, the reduced coordinate formulation has certain
advantages. The generalized coordinates directly facilitate
the parameterization for bending and torsional stiffness
dynamics. Further, they have the exact same form as the
parameterization used in articulated character animation.
Thus the rest shape of the multi-body system can be
conveniently defined in terms of some animated local, e.g.
a hairstyle can be defined in terms of the frame associated
with the head joint. Even the dynamics is often expressed
in terms of successive local coordinates starting from the
base link. One can thus interpret the dynamic motion of the
strand as overall rigid-body transformation of the strand at
the base link, followed by secondary dynamics from the rest
shape expressed in terms of successive local frames. This
paradigm gives a tremendous advantage in terms of overall
simulation workflow. Typically the base link is constrained
to an animation path. Using the paradigm, it is trivial to
kick-start the simulation from an arbitrary starting position
and orientation of the base link. Moreover, certain concepts
such as posable dynamics, local dynamics, time-scale and
zero-gravity rest shape make the strand simulation system
versatile. As discussed subsequently, they are often trivial to
realize in the paradigm of reduced coordinate formulation.
Ultimately, the choice of reduced coordinate formulation
proved very rewarding for us.

The specific contributions of the paper are as follows.
In Section 2 and Section 3 we develop a linear time,
implicit and fully recursive scheme for reduced coordinate
formulation of general branched open-chain multi-body
system, using Differential Algebraic Equations (DAE). In
Section 4, we discuss how to realize external bilateral
and unilateral constraints on the formulated multi-body
dynamics. We also discuss the numerical issues associated
with the solution of Linear Complementarity Problem (LCP)
arising from the formulation. In Section 5, we develop an
elaborate collision response model with inelastic impact
and static/dynamic friction, using unilateral constraints.
Finally, in Section 6, we introduce the Oriented Strands
system, implemented as dynamics of serial multi-body
chain. We develop some novel concepts and give important

implementation details that makes the dynamic strand
primitive versatile. In Section 7, we present some illustrative
examples of dynamics of ears, braid, hair and foliage.

2. Differential Algebraic Equations

Typically, unconstrained dynamical problems such
as cloth [BW98] and general deformable models are
formulated as the following explicit Ordinary Differential
Equation (ODE) of degree two.

i=M"'Q(t,q,q) (1)

Constrained dynamical problems such as dynamics of multi-
body systems [Sha01,Bar96] are formulated as the following
semi-explicit ODE of degree two.

M(q)i = Q(r,q,q) — g’ A
®(r,q) =0 )

where, M is generalized mass matrix. The force function Q
and the constraint function & are typically non-linear and
“stiff”. In order to integrate the state vector [¢”,q”]7, in
a traditional way, one can try and solve for the derivatives
of the state vector [, q”]7, |, which often turns out to be
complex. Fortunately, the direct computation of derivatives
is not the only way, neither it is the most efficient way,
of solving the differential equations. Differential Algebraic
Equations solvers are remarkable, they advance the solution
[qT,qT},T — [qT,qT]tTH, as they estimate the derivatives
[@",q"]7, at the same time.

As far as we can track, Differential Algebraic Equations
(DAE) are new to computer graphics. In this section we
would like to give a gentle introduction to DAE. For
thorough discussion and associated theory we would like
to refer to [BCP96]. DAE solvers work on the system of
differential equations in its most implicit form. Consider the
following DAE of degree one.

F(y,y,t) =0 (3)

The implicit function F in differential variables y and
free variable + may be non-linear and “stiff”. Let the
set {y,y}: be the solution of the DAE, i.e. it satisfies
equation 3 at time f. Then the DAE solvers use an
extrapolation method, e.g. Backward Difference Formula
(BDF) of an appropriate order, to extrapolate the solution
to y,lH and while making a numerical estimate of the
derivative y} -+ 1- The estimates y,1 11 ,y,l 1 typically would not
satisfy equation 3. The solver then successively corrects the
solution and associated derivative estimate by number of
Newton-Raphson iterations. Let the residue associated with
the estimate of k™" iteration be

k ko Lk
rsip 1 = F(yi1, Vgt +1) “4)

The Newton-Rapson iteration takes the following form
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motion path

Figure 2: Strand as multi-body system
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Thus, in order to use DAE integrator such as
DASPK [BCP96], one has to provide the integrator
with a residual function rs that computes the residue from
the estimates of the solution the integrator provides. One
may also provide the Jacobian of the residue function
JoF /dy, or optionally the integrator can compute the
Jacobian numerically. The highlight of the solution method
is — the residue function rs and the Jacobian JF /dy are
often simple to evaluate. In the next section, we formulate a
fully recursive method to evaluate the residual function for
solution of a “sitff”” multi-body system.

3. Recursive Residual Formulation

To describe the dynamics of the multi-body system, we
use Spatial Algebra and associated notation developed
by [Fea87]. Consider a serial branched multi-body system
(MBS) having n links connected by n single DOF joints as
shown in Figure 2. There are no loops in the kinematic chain.

The base link is denoted by link and is typically constrained
to a motion path. The other links are numbered in a breadth
first manner. The velocity V;, the acceleration 4; and the
inertia matrix ij of link; are defined in the frame F_,-, which
is rigidly attached to the link’s principal inertia axis. The
joint variable g; defines the spatial transformation Xj that
transforms the spatial quantities defined in the parent’s frame
F; to the frame I ;j of link;. The derivatives of joint variables
qj and §; relate the velocity and acceleration of the parent
to the velocity and acceleration of link; via the spatial joint
axis §;.

v, = Xjf’i-i-gjq'j
a; = X,-ﬁ,-—i—ﬁjijj—wj%éjqj 6)
The set of joint variables ; and their derivative ¢, forms
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the system state vector y; = [qT, qT]tT, at time ¢. We would
like to solve the forward dynamical problem — given the
base velocity ¥ and the base acceleration &y, integrate the
state from y; to y;+1. In what follows we will develop a
recursive residual formulation based on DAE methodology
discussed in the previous section. The discussion is rather
a free physical interpretation, for the rigorous proof refer
to [RJFdJO4]. The procedure is surprisingly simple as
compared to the traditional methods such as Articulated
Body Method [Fea87], where one computes the state
derivative y, | explicitly.

The solution set {y:,y:} at time ¢ forms the input to the
DAE integrator. As highlighted in the previous section,
the integrator then estimates the new state yf +1> and it’s
derivative ny in succession. It is our responsibility to
compute the associated residue rs; | (yk J¥F ). Given ¥ and
4g, we first compute the spatial velocities ¥; and spatial
accelerations 4; for each link /ink;, j = 1..n using forward
kinematic relation, equation 6.

The residue associated with accelerations can be computed
using the force balance condition. Starting with the outer
most link /ink,, the forces acting on link, are spatial body
force in a,, combined spatial centripetal and Coriolis force
% 1,9, external spatial force f,. The force balance
equation for the spatial forces is

5y = Inan + WuxLi¥y — £ (7

We still have to relate the force residue s, which is a spatial
vector to the residue in joint acceleration which is a scalar.
We project the force residue on to the joint’s motion sub-
space defined by the spatial joint axis §j.

rsn = 8 Bn— On ®)
where, 8} is spatial transpose of the joint axis and Q,, is scalar
joint actuation force associated with the stiffness model.
The force residue projected on the joint’s motion space rsjy
vanishes when the estimated state and derivative vector is the
solution of DAE.

For simplicity, first consider a multi-body system with no
branches. Thus, the only parent of /ink, would be link,_.
In computing the force balance equation for link,_1, along
with all the obvious forces described for link,, we need
to add the residual force from [link, that gets applied via
the joint,. In order to do that, we need to transform the
force residue rs, into the frame of link,_i, using inverse

. | .
transformation matrix X, . The resulting force balance
equation for link,_1 is

I:\Sn—l = In—l ﬁn—l + i\In—1><In—l€’n—l - fn—l
o1 .
+ X, 1Sy
AS ~
ISp—1 = Sp_168,1 — On—1 ©
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We repeat this process for each link; till we reach the first
link /ink;. The residue associated with the joint velocities is
trivially the ]cciiffererllcce in joint velcl)ccities q'f* - qf? , Where q{-‘
belongs to y* and ¢;* belongs to y~.

Algorithm 1 lists the fully-recursive algorithm for
computing the residue, for a general multi-body system that
have branches.

It is possible to compute the analytic Jacobians for
the recursive residue formulation [RJIFdJ04]. Alternatively,
we can let the DAE solver compute the Jacobians
numerically. We particularly commend the efficient and
“smart” evaluations of Jacobians in DASPK, the DAE solver
we used for the implementation. The solver uses modified
Newton-Rapson iteration, where the Jacobians are evaluated
only when the solver observes a large change in the system’s
state. In practice, we found that the numerical evaluation of
Jacobians is not only adequate, but also versatile. Thus, we
can implement any complex stiffness model and associate
general external fields to the multi-body system, as discussed
in Section 6. It may not be possible to evaluate analytic
Jacobians for these.

Algorithm 1 res, | (y*, ¥*,%0.40)
k - kx
Require: ykz { (.lk }y": { ‘{k }
q q

: n—dim(q)

: for j=1tondo

i — parent (link;)

V=X 9i+8q;
ﬁjHXjﬁi+§jqj+\“/j§<§jqj
: end for

S s — 0 emr™”

crs— 0 e R

:fori=ntoldo

rs; <—i,' a + Q’,-%i,-f’i — ’fi

for all j < child(link;) do
o — i+ X |1

end for

rsi < §ffsi — Qi

: end for

skx ok
: return{ a a :|

R I o AT

— s e e o e
A A i Sl

—_
o]

rs

4. Analytic Constraints

The base joint in the multi-body system in Figure 2
is typically constrained to some prescribed motion path.
In practice, we would want to impose some additional
constraints on the system, e.g. constraining a point on some
other link to a motion path, or constraining a joint to an
animated value in time. These constraints are transient in
nature and often introduce cyclic dependancy in the system.

constraint path

Figure 3: Constraints

Thus they are treated as external constraints, as opposed
to defining them implicitly as part of reduced coordinate
formulation.

Initially, we enthusiastically tried the DAE’s natural way
of defining constraints via algebraic slack variables. The
general form of a DAE with algebraic constraints is

F(y,y.x,1)=0 10)

where X is the set of algebraic variables. For each constraint,
we formulated a scalar valued constraint function ¢;(y,y,?)
and inserted an algebraic variable associated with the residue
corresponding to the constraint condition x = ¢;(y,y,) =0
into the DAE. However, we soon abandoned this line of
thinking for the following reasons

e The constraints are transient in nature. We either have to
adjust the dimension of algebraic variables x according
to the number of active constraints, or represent all
the possible constraints and activate or deactivate them
algebraically.

e We found the DAE solver’s convergence rate deteriorates
rapidly with each additional algebraic constraint. Further,
if the constraint can not be satisfied, the integrator does
not converge.

e The algebraic constraints can only represent bilateral
constraints. The constraints arising from collisions are
unilateral. We would have to extend our scope to
Differential Variational Inequalities [PS03], which are
extension of DAE that handle inequality constraints on
differential and algebraic variables.

Instead, we augment the DAE based multi-body formulation
inspired by methodologies proposed by [Mir96] and recently
by [Kok04] on impulse dynamics and analytical constraints.
We would like to give a brief overview of the methodology,
along with the details on how we integrate it with the DAE
framework and some interesting implementation issues.

Consider a point constraint p; as depicted in Figure 3. The

(© The Eurographics Association 2006.
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trajectory of p;, starting with the initial conditions, can be

uniquely defined by the time varying acceleration a?n j- As
discussed in the previous section, we do not directly evaluate
the state derivative vectors ¥, in order to integrate the
system y; — y;+1. Therefore, we can not simply enforce
the acceleration constraint, by directly altering the state
derivatives y;11 as proposed by Kokkevis. We enforce the
constraint by applying an external force instead. However,
we don’t use a penalty like force formulation. Before every
DAE integration step, we analytically determine the precise
nature of the force fjn;, using the similar methodology as
in [KokO4]. The unit constraint direction n; is treated as
constant and is updated for every integration step. There is
a linear relationship between the magnitude of the applied

force f; and the resulting desired acceleration aj

4 _ 9a; 0
aj === fi+a; (11)
J ot j
af;
where, a? is the acceleration in the direction n; before the

force is applied. If we have another constraint point p; with
force having magnitude f; in the direction n;, the resulting
accelerations af’ and a‘f will be given by the following linear
system .
al | _ [ da;/df;  9da;/df; ] [ fi } L4
af daj/df; daj/dfj || fj a

0
) }(12)
J

Generalizing, for m such constraints we need to determine
the vector of f € R unknown force magnitudes by solving
the following linear system.

Kf+a’—a’=0 (13)
——
a

The Jacobian K € 8"*"™ can be evaluated by applying unit
test force at each constraint and evaluating the changes in
accelerations at every constraint. An efficient procedure to
evaluate the Jacobian using the framework of Featherstone’s
Articulated Body Method is given in [Kok0O4]. The
constraint forces thus determined are applied to the multi-
body system over the next integration step via the external
force term f', as discussed in the previous section.

We replace the constraint direction n by a spatial vector i to
generalize the type of the constraint that can be represented,
including the joint acceleration constraint. We further extend
the constraint system to include the unilateral constraints
such as collisions, friction and joint limits by posing it as
a Linear Complementarity Problem (LCP).

Kf+a’-a’>0 < f£>0 (14)
N——
a

The LCP states that forces f, applied only in positive
constraint direction, would strive to make the resulting
constraint accelerations a equal to desired acceleration a’.
However, force f; will be zero if the resulting constraint
acceleration a; is greater than desired acceleration afj We
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will discuss the significance of the LCP formulation when
we develop the collision response model in the next section.

At first, the solution of a LCP might appear as a daunting
task. However, the iterative LCP methods [CPS92] are
surprisingly simple and adequate for our purpose. [Ken(04]
gives a gentle introduction to the solution methods based
on various matrix splitting techniques. Apart from the
simplicity of the implementation, the iterative LCP solvers
have other advantages as compared to pivoting methods.
As we will discuss in the next section, we often need to
apply multiple constraints on a single link. In this case,
the Jacobian K will have linearly dependent columns.
The iterative methods try to distribute the required forces
evenly on the link, when multiple solutions exists in this
case. Secondly, the LCP may not have a solution. The
LCP problems arising from friction models are often non-
convex [Bar92, PT96], particularly for high friction values.
Further, the Jacobian can be singular or near singular if the
limited DOFs of multi-body system does not allow motion
in a constraint directions. In all these cases, we can bailout
early in the solution process and still have a finite and a well
distributed solution for the forces.

Algorithm 2 sor_Ilcp(A,x,b, ®, €, Kjer)
Require: A is symmetric, positive semi-definite
Ensure: w=Ax—b > 0,x>0, xTw=0

I: x<—0

2: n« dim(x)

3: for k = 1 to Kj., do

4 fori=1tondo

5: 80

6: for j=1toi—1do
7: 8:5+Ai’ij

8 end for

9: for j=i+1tondo
10: 8:5+Aiijj
11: end for

12: 6= (b,’*&)/(A,‘J+E)
13: x; = (1 —0)x; + 0d
14: x; =0 if x;<0
15:  end for

16: end for

We list an iterative LCP solver in Algorithm 2. Apart
from the lines 14 and 12 it is a standard successive-
over-relaxation linear system solver. Line 14 ensures the
inequality condition. We add € to the diagonal term in line
12 to make A positive definite, from potentially positive
semi-definite, and guard against potentially zero or near zero
diagonal terms in the Jacobian K. Further, instead of any
elaborate convergence check, we simply make fixed number
of iterations Kj.,, as we know that the solution may not exist.
Using forces for enforcing the constraints has an advantage
here. If the forces are indeterminate, they get projected into
the multi-body’s motion null-space, thus always giving valid
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configuration, without any “pops” in the simulation. Further,
as the forces are determined analytically, as compared to,
say, penalty based formulation, they are small for most types
of the constraints. Thus they are well within the stability
zone of the integrator taking 4-8 time-steps per frame. The
only exception to this is velocity impulse constraint, we
will discuss this case in detail in the next section. As the
constraint may not be satisfied accurately, we augment the
constraint acceleration by a proportional-derivative form. To
exemplify, for a positional constraint, the constraint desired
acceleration and the constraint direction be

d_ .d d . d
a; =p; + Kp(pi —pi)+ Ka(Di —vi)
d d d; d
aj =|lai |, m;=aj/a; (15)
where, pfi,p?,pfl are acceleration, velocity and position of
the constraint path, and p;,v; are the current position and
velocity of the constraint.

It is important to remove the effect of the constraint forces
applied to multi-body system from the previous integration
step, and adjust the initial constraint accelerations a0
accordingly, before we determine the next set of constraint
forces. We can use the same procedure that determines the
Jacobian K by method of applying test forces for this.

5. Collision Response

We use the unilateral position constraints discussed in the
previous section to develop collision response model for
the multi-body system. Collision Detection is a mature
subject in computer graphics. For brevity, we only enlist
the requirements from the collision detection system for
our purpose. Between the current configuration given by
the state vector y; and extrapolated configuration using
derivative vector y; and next integration time step h, we
find all the points on the multi-body system that would
collide with the obstacles. Figure 4 shows two such collision
positions — point p; is already penetrated the obstacle and
point p; is about to collide. There may be more than one
colliding point for a link. Let n; be the collision normal,
direction directly away from the obstacle, and a; and v; be
collision accelerations and velocities respectively, relative to
the obstacle.

We apply collision response in two steps — contacts and
impacts. We first compute the unilateral constraints that
would prevent collision points from accelerating towards
the obstacle. Followed by computation of velocity impulses
that would prevent collision points from moving towards the
obstacle.

contacts: We decompose the collision acceleration and the
collision velocity into the normal components a,;, v, and
tangential components a;;, v;;. To prevent any acceleration
towards the obstacle, we insert a unilateral constraint along
the collision normal direction n;. The unilateral constraint
corresponding to the friction acts in the tangent plane defined

a;
pe

Figure 4: Collision as unilateral constraints

by the collision normal. We could sample the tangent plane
into discrete set of tangents to formulate a complex and
numerically expensive friction model based of the discrete
frictional cone. Instead, taking inputs from [Kok04], we
formulate a novel technique as follows. We set the unilateral
constraint direction corresponding to friction as

ti:blnil( a;; +V”'/h) (16)

If both a;; and vy; is zero, we use previously determined
tangent vector for the contact. Finally, the LCP formulation
corresponding to the two unilateral constraints in the
direction n; and t; at collision position p; is

ai—d5>0 & fui>0
Hifai—fi>0 < A2>0
(@i—dh)+M>0 & f;>0 (17)

We set the desired normal acceleration a?; proportional
to the penetration depth d; if the point is penetrating,
see equation 15, or zero if the collision point is outside
the obstacle. The desired tangential acceleration a?; is set
to (— || v || /h). The LCP formulation will compute
required amount of normal force f;; to remove the normal
acceleration a,;. The tangential force f;; will be at most
Uifni» and try to remove any tangential non-zero velocity
component — the dynamic friction case, or if the tangential
velocity is zero it will try to remove any tangential
acceleration — the static friction case.

impacts: We use impulses to arrest the collision normal
velocity v,;. Only those contacts are considered that have
the normal velocity component v,; < 0. For the impulse
computations we can use the same acceleration constraints
discussed in the previous section by setting ag,- =—(1+
V)vyui, where Vv is collision restitution. Instead of applying
potentially large forces, we alter the joint velocities ;. This
would invalidate the consistent solution set {y:,y:}. We
should correct ¢ correspondingly. In reality, we found that
the solver is tolerant to the error.

(© The Eurographics Association 2006.
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6. Implementation Details

Having developed the theoretical framework in the last
three sections, in this section we would like to give a
brief overview of the Oriented Strands system modeled as
dynamics of multi-body system. It is implemented as a plug-
in to Maya, as well as plug-in to our proprietary animation
system. We use DASPK [BCP96] for our implementation.

Along with the robust formulation, any physically
based simulation system to be successful in production
environment needs to have an important aspect — to be
able to art direct. In the following subsections, we develop
some novel concepts towards that, along with few important
implementation details. In our opinion, choice of reduced
coordinate formulation and dynamics expressed in local
frames makes some of these concept easier to implement.

6.1. Simulation Parameters and Workflow

The dynamic strand is composed from a hierarchy of input
curves defined in a local frame, that defines the initial rest
shape of the corresponding multi-body system. We provide
the user with high-level control over the direct numerical
simulation by means of relevant physical parameters of the
dynamic strand, such as mass per unit length, strand radius,
bend stiffness/damping, torsional stiffness/damping, gravity,
air drag. The user can animate all the parameters and
specify their length-wise anisotropic variation. The collision
parameters collision restitution and static/dynamic friction
are defined per obstacle surface. The strand may have
additional anisotropic weights over collision parameters,
along with their length-wise variation.

6.2. Stiffness Model and External Forces

In Section 3, while developing the DAE based formulation,
we assumed single-DOF joints for the simplicity of
discussion. However, we use three-DOF spherical joint in
the implementation of Oriented Strands. The joint variable
of " joint is expressed as a quaternion q; € R* and the joint
velocity as a vector w; € 7. [Had03, Fea87] gives details
on how to formulate multiple-DOF joints.

We decompose the quaternion defining the relative
transformation between two links into a twist component
0, around the local y-axis and a pure bend component 6,
around a bend axis b. We provide a nonlinear stiffness model
as follows

Q, = K;(b) b tan((6, —67)/2)
Q: =K y tan((6; —67)/2) (18)

where 92 and 9? correspond to the rest configuration. K;
is torsional stiffness coefficient and Kj(b) is anisotropic
bend stiffness coefficient. The response model is almost
linear for small deformations. However, the non-linear
response prevents excessive deformations and potentially
joints snapping.

(© The Eurographics Association 2006.

We support general external force fields using the plug-in
architecture of Maya and that of our proprietary animation
system. The user can attach any complex combination
of time-varying fields such as wake, turbulence, fluid
simulations and general event driven scripted force fields.
The user can further specify length-wise anisotropic weights
for the external force fields. The user can optionally
include these fields in computing the Jacobians numerically
discussed in Section 3.

6.3. Accurate Acceleration of Base Joint

In the reduced coordinate formulation it is critical to
compute and supply the accurate velocities and accelerations
of the base joint’s prescribed motion path. We could have
evaluated them numerically, however that would mean
making repetitive evaluations of motion system at sub-
frame interval, which is typically very expensive. Instead
we interpolate the rigid-body transformation from four
successive frames. Constructing a C, continuous curve
that interpolates a number of prescribed rotations is a
well studied problem. We use the method developed
by [PK96], where we construct a piecewise cubic curve
whose coefficients a;,b;,c; are members of so(3). The
rotation is evaluated by taking the matrix exponential of this
polynomial.

6.4. Time Scale and Local Dynamics

Often the dynamical simulation are encountered with very
extreme and brisk animated motions. Although a robust
formulations will be able to cope with the scenario, often
the directors would want the motion to be selectively less
violent. We introduce time scale B to control the amount
of energy pumped in the system. It is a factor by which
velocity and acceleration of the base joint get scaled and is
typically between zero and one, however the user can set it
more than one to accentuate the motion. The local dynamics
Y is another similar parameter which blends out velocity and
acceleration of some local dynamics reference frame.

ﬁO = B (ﬁ()_"{ﬁref)
i\IOZB(QO_’Y@'mf) (19)

One scenario that is frequent is, a braid or long hair that
fly away when character starts running or rides a horse.
The local dynamics reference frame is simply set to the
character’s hip joint, and with appropriate local dynamics
parameter one can control the amount of flyaway the user
wants.

6.5. Posable Dynamics

Ears and tail, often have free secondary dynamic motion
when the animator lets them “loose”. However, animator
would want to hit a certain pose at a certain time to make
the character expressive. We tried different techniques that
are based on the motion control principle. However, it did
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not give desired results. For high values of K, and Kj; in
the PID controller (Equation 15), the constraint follows the
goal rather exactly. If we reduce K, and K, due to slew rate,
the PID controller gave a large error in achieving pose and
the solution oscillated a lot before coming to rest to the
animated pose. Surprisingly a very simple model worked
for this specific application. We insert a spring between the
dynamic strand and the desired animated pose at tip of each
segment, to give a penalty based “soft” constraint. The user
can animate the stiffness and damping, namely pose strength
and pose damping to achieve the Posable Dynamics.

6.6. Zero-gravity Rest Shape

The rest shapes of the dynamic strands are typically modeled
taking the gravity into account. Intricate hairstyle is a good
example of this. Unfortunately, when we start simulating
hair, the strands would sag under the gravity before they
finally settles down. This would change the original art
directed hair shape depending on the stiffness. Increasing
the stiffness to preserve the shape would give unrealistic
motion. One can go back and try to edit the rest shape so
as to achieve desired shape under gravity. However, this
would be very laborious and iterative process. We developed
a technique to automatically compute the equivalent rest
shape, without gravity, so that under gravity we would get
the desired shape. The problem is a straight forward inverse
dynamics problem in robotics. Given a set of external forces
(gravity) and given the desired configuration of multi-body
system, inverse dynamics problem finds set of joint forces
required to achieve certain joint accelerations, zero in our
case. We refer to [Fea87] for the details. We would like to
highlight that it would be difficult to formulate this in the
case of maximal coordinate formulation.

6.7. Strand-strand Interaction

Strand-strand interaction is not important in some simulation
scenarios such as foliage motion, braids and ears, whereas
it is critical in certain cases such hair simulation. We
have implemented a modular plug-in field to Maya that
computes the fluid like forces on a continuum, that can be
attached to the Oriented Strands system to realize the strand-
strand interactions as introduced by [HMTO1]. The other
interesting approaches to handle strand-strand interactions
include wisp level interactions [PCPO1, BKCNO3],
layers [LKO1] and strips [CJY02].

7. Examples

In this section we would like to exemplify the versatile use
of the dynamic strand primitive for character dynamics and
visual effects. With each example, we would like to highlight
the aspects of the formulation that is most relevant.

The example of lemurs dancing with fancy flower lanterns in
(Figure 1), highlights the importance of stable and consistent
coordinate frame along the strand. The tip of the strand is

Figure 5: Moving Jungle - branched dynamics, stiff
articulation, strong external force fields, scalability

Figure 6: Ears - posable dynamics

made heavy by using the length-wise variation of mass per
unit length parameter, and the flower geometry is simply
parented to the coordinate frame at the tip of the strand.
Subtle twist dynamics adds to the realism.

The foliage simulation is a great example of branched
dynamics. The individual trees are composed of hierarchy
of strands, some of the segments being very stiff towards
the trunk. One can follow the physically believable motion
of trees under the influence of (strong) external force field
such as wake and turbulence. It is also evident that the
strand system is very scalable. Each tree typically has 50-
100 segments and there are around 1000 trees in the “Blown
by Horn” shot (video 3).

Donkey’s ear exemplifies posable dynamics. Animators
precisely control the subtle secondary dynamic motion

(© The Eurographics Association 2006.
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Figure 7: Braid - “stiff " equations, local dynamics

Figure 8: Curly Bangs - intricate and zero-gravity rest shape

around the animated poses, using time-varing pose strength
parameter.

The bun followed by the long braid is composed of a
single strand. The very stiff intial section gives the subtle
interesting bounce and twist to the bun. The flexible section
corresponds to the braid. The local dynamics parameter is
used to control the amount of “floppyness” the braid exibits.

The simulation of curly bangs illustrate the ability of the
system to handle “stiff” equations arising from the intricate
rest shape. The rest shape is adjusted to account for the shape
change due to gravity.

The long hair simulations highlight the effectiveness of
the collision response model. The accurate computation of
velocity and acceleration of the base joint results in highly
realistic hair motion, where as time scale parameter gives
control.

Figure 9: Long Hair - accurate base acceleration, elaborate
collision response, time scale

(© The Eurographics Association 2006.

We have not done a comprehensive performance analysis
and optimization of the Oriented Strands system yet.
Nevertheless, we would like to state the typical performance
numbers for the hair simulations, as they represent the most
of the dynamic complexities. The simulation of curly bangs
uses 9 strands having an average 15 segments, each. The
simulation runs at interactive rate of 2-4 Hz. The long hair
simulations use 190 strands with 20-25 segments each. The
simulations take less than 20 seconds per animation frame.
The complexity of the strand dynamics is linear time in the
total number of segments n. Whereas, the collision response
is O(m?) in m number of collision points. Recently, we
tried to analyze the convergence characteristics of the solver.
We found that the solver uses sophisticated error control
and heuristics, which result in a very wide variation in the
number of non-linear iteration the solver takes. For the long
hair simulations, the number varies from 2 to 213 iterations,
with mean at 18.3 iterations. In the advent of multi-core
and multi-cpu workstations, we would like to note that
the computations of individual strands are embarrassingly
parallel.

8. Conclusion, Limitations and Future Work

The simulation system of Oriented Strands has found
widespread applications in feature animation and visual
effects. We would like to attribute the successful usage of
Oriented Strands to the robustness coming from the implicit
formulation and the comprehensive collision response
model, the intuitive workflow coming from local space
formulation, physically based stiffness and collision models.
In addition, innovative concepts such as time scale, local
dynamics, posable dynamics, zero-gravity rest shape make
Oriented Strands system “art directable”.

In this paper, our focus has been “stift” dynamics of
serial open-chain multi-body systems with constraints and
collision response. Fortunately, the DAE based formulation
can be extended to include closed-loops [RJFdJO4].
Unfortunately, the analytical constraints and collision
response model discussed so far do not readily fit the
framework of closed-loops. Thus, in future we would like
to extend, or develop new, methodologies to include closed-
loops. Intricate jewelry on animated characters is our main
motivation.

Other limitations of the proposed methodology are

e The approach is computationally expensive as compared
to previous methods in [Had03, CCKO5]. It would not
scale well to do e.g. fur dynamics.

e Although one can incorporate stretch in the strand system
by animating lengths of rigid segments, the system does
not handle stretch dynamically.

e Developing and implementing constraints and collision
response model is not as straightforward as compared to
maximal coordinate formulation [CCKO05].
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