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Abstract

In this paper we present a new real-time synchronization algorithm. In dynamic environments, motions need to be
continuously adapted to obtain realistic animations. We propose an advanced time warping algorithm to synchro-
nize such motions. This algorithm uses the sequence of support phases of the motions. It also takes into account
the priority associated to each motion. It is based on an algebraic relation to detect incompatible motions and to
select elements of the sequence to be enlarged. The resulting time warping function can be non-derivable so it is
corrected by using a cardinal spline interpolation. In this paper, we demonstrate that our algorithm always finds
at least one solution. This synchronization module is part of a complete animation engine called MKM already
used in production.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism–Animation

1. Introduction

Realistic human animation is widely used in multimedia
applications such as video games and movies. At the same
time, it remains a difficult and labouring task. The most
popular way to achieve such animations is the use of cap-
tured motions. Indeed, they implicitly respect the dynamic
laws. Moreover, it is now associated to motion editing tech-
niques that make the data set more flexible. One of these
techniques, motion blending, allows the creation of complex
animations from short captured motions. Unfortunately, the
blending algorithms can produce unexpected motions. For
example, if a movement with the left foot on the ground
is blended with another with the right foot on the floor,
the resulting motion will not respect any of the support
constraints of the two original ones. Consequently, the foot
will slide on the floor. To avoid such problems, the motions
have to be previously synchronized.

The work presented in this paper is placed in a context
of dynamic environments. Hence, the motions used during
the animations are interactively adapted. They can also be
adapted to external constraints specified by the user in real-
time (e.g., height of a chair while sitting). Moreover, we
want to animate several characters with different morpholo-
gies in real-time. To achieve all these requirements, we pro-

pose a new real-time synchronization algorithm based on the
blending module described in [MMKA04]. It uses an advan-
ced time warping technique based on the support phases of
the motions. It also uses priorities defined interactively for
each motion. In addition to priorities, the user can activate or
deactivate the motions by using the start/stop commands at
any time. The algorithm automatically synchronizes motions
and delays the start of a new one if it cannot be immediately
synchronized. Since our work is already used by industrial
partners, this intuitive control of the synchronization is really
important. The current areas of application of our works are
videogames, interactive fictions and virtual reality.

The remainder of this paper is organized as follows. We
first review related works in section 2. In Section 3, we
describe the framework in which our synchronization algo-
rithm is introduced. In Section 4, we define the creation of
the sequence of the support phases associated to motions
and its interpretation to detect incompatible motions and
then, in Section 5, we detail the synchronization algorithm
using these previously defined sequences. We then present
results in Section 6 and conclude with a brief discussion in
Section 7. At the end of the paper, appendix A is given to
make a recursive proof of our algorithm.
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2. Related works

Synchronizing motions has been studied using two main
approaches. The first one is to identify correspondences
between motions. These correspondences are used to find a
unique synchronization. The second one is to find transitions
between postures of motions. The transitions are then a set
of possible solutions. A cost function can be used to find the
most appropriate solution.

Correspondences between motions were first identified
using frequential information. The first synchronization
works were limited to specific motions like locomotion.
Unuma et al. [UAT95] used Fourier techniques to interpo-
late and extrapolate walking and running motions to give
emotions. Bruderlin et al. [BW95] made a multiresolu-
tion filtering algorithm to modify motions using the low,
middle or high frequencies. They also applied non-linear
time warping to make temporal correspondences between
motions. Finally, Guo and Robergé [GR96] proposed an
interpolation method based on a set of keyframes. They syn-
chronized locomotions by modifying the temporal parame-
ters of the keyframes. The main limitation of such studies is
that motions have to be periodic and of the same kind (e.g.,
locomotion).

Recent techniques have automatized the identification
of correspondences between a limited number of motions.
To achieve this, Ashraf et al. [AW00] used the kinematic
information contained in motions. These different kinds of
information are for example zero-crossing speed or angu-
lar minima. They extended their work using a multilayered
semantic representation of the motions [AW03]. The draw-
back of such methods is that motions must be similar regar-
ding dynamic information. As we want to synchronize really
different motions that are interactively adapted, such tech-
niques are not suitable. Moreover, these works were based
on joints angles. They imply the use of identical morpholo-
gies.

Other authors have tried to solve a global optimization
problem in order to synchronize (and adapt) general human
motions with spacetime constraints [RGBC96]. These tech-
niques, based on non-linear systems, involve problems such
as local minima and lack of interactivity since complete
motions are needed. Moreover, the specification of the
constraints that are dependent on the kind of motions is diffi-
cult.

More recently, new probabilistic algorithms were widely
used to find transitions between motions in a database and
create a motion graph [KGP02]. These transitions mainly
preserve dynamics by associating similar skeleton postures.
The database is precomputed and allows interactive anima-
tions. Some authors [LCR∗02], [BH00] use hidden Markov
chains to define these transitions. Nevertheless, the main
drawback of this kind of technique is that transitions are
computed automatically. Forecasting which motions will
be used to transit from one motion to another is difficult.

Moreover, bad transitions can be chosen if motions have
very different dynamic information or if the database is
too limited. Wang and Bodenheimer [WB03] proposed a
set of optimized weights for the cost function used by Lee
et al. [LCR∗02]. To minimize the choice of bad transi-
tions, Ashraf et al. [AW01] tried to correct the problem
by dividing the human skeleton into two groups: the upper
and the lower body. Schödl et al. [SSSE00] used this kind
of technique to analyze streams of video and drive these
streams through high-level user input. Despite these im-
provements, this kind of work often requires the use of
huge databases to ensure a minimal set of good transi-
tions between postures. Nevertheless, such databases are not
suitable with highly interactive animations. Indeed, interac-
tivity deals with a large number of postural configurations.
Moreover, they are not suitable for crowd animations either.
Captured motions implicitly contains their own morphology.
Each motion must be used on characters with the same kind
of morphology. We avoid this problem using a normalized
representation of the skeleton that allows to share automati-
cally a same motion with different characters (and different
morphologies) [MMKA04]. Furthermore, adding motions
in the database requires the computation of the set of all
the possible transitions with the other motions. Its cost is
directly dependant on the size of the database and conse-
quently increases with it. Finally, these databases contain
predefined motions. Interactively adapted motions cannot be
managed with such techniques.

After the search in the database, real-time adaptations
were proposed in order to enhance the interactivity of such
systems. Lee et al. [LCR∗02] used time warping to handle
the time of the animation and to adapt motions to the ground.
Kovar et al. [KG03] proposed registration curves to automa-
tically determine the relationships between timing and local
coordinate frame in order to animate a character who follows
a specified trajectory. Current studies still remain limited
since they synchronize fixed motions.

The study presented in this paper deals with a new
synchronization algorithm based on time warping [WP95],
[RCB98] with additional information: the sequence of sup-
port phases and a set of priorities associated to the motions.
Previous studies [AW01] have emphasized the importance
of the sequence of support phases. Zeltzer et al. [Zel82],
[Zel86] have used finite state machines where states repre-
sent the different phases of the locomotion cycle. For
example, this kind of information avoids the blending of two
motions: one with the right foot on the ground and one with
the left foot on the ground. It also allows to synchronize
motions of same kind (such as locomotion [MFCGD99],
[PSS02]).

Using the sequence of support phases means dealing
with concurrent constraints. There are two classical solu-
tions: the use of ordered priorities and the computation of
weights. The first one classifies constraints using their priori-
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ties and tries to respect the highest one first [BBET97]. Con-
sequently the lower constraints may not be respected. The
second one interpolates constraints using a weighted sum
[MMKA04]. This last solution does not respect any of the
original constraints but offers an intermediate solution that
ensures continuity. In this paper, we synchronize the support
phases of the different motions to ensure that we have a se-
quence of unique constraints before blending the motions.
Indeed, ordered constraints are not suitable because the sup-
port constraints for one leg is like a boolean: a leg is sup-
porting the body or not. Using weights does not ensure the
respect of the support phases.

3. Overview

The synchronization module presented in this paper is part
of a complete real-time kinematic animation engine called
MKM (Manageable Kinematics Motions). Its goal is to
allow and simplify the animation of different kinds of hu-
mans in dynamic environments. It uses morphological and
environmental adaptations. The latter are done in real-time
using an adimensional and normalized skeleton [MMKA04].
This representation of the motion automatically allows it to
be independent from the original morphology and then to
be shared between a lot of characters with different skele-
tons. The environmental adaptations are made using kine-
matic constraints and are computed after the blending to en-
sure they are respected (e.g., contact of the hands during
applause). The normalized skeleton is described in carte-
sian space allowing an easier and more intuitive set of
constraints. Finally, this representation limits the number of
parameters to compute at each time and consequently is less
computation expensive. With such a technique, we can ani-
mate a large number of characters in a dynamic environment.

Figure 1: MKM real-time animation engine. Synchroniza-
tion module ensures that actions can be blended.

As shown in Figure 1, the blending module blends
motions (hence postures at a given time) issued from actions.
These actions (Ai in the remainder of this paper) can simply
replay a motion or can adapt it to parameters as parametric
models do. Hence, information on used motions cannot be

precomputed since they can be modified in real-time. In-
deed, these actions are activated and deactivated at any time
by using the start/stop commands and priorities as shown in
Figure 2 and detailed in [MMKA04]. In this figure, t1 is the
starting time of the action (start command) and t3 its ending
time (stop command). t2 (resp. t4) is the complete activation
(resp. deactivation) of the action.

Figure 2: Activation and deactivation of actions. t1 is the
starting time of the action and t3 its ending time. t2 (resp. t4)
is the complete activation (resp. deactivation) of the action.

To manage such actions, we introduce a new synchroniza-
tion algorithm based on the sequence of the support phases
of the motion. The output of an action is then the motion
and its associated sequence (Si in the remainder of the paper
where i is the index of its action Ai).

4. Definition and analysis of the sequence

Our synchronization algorithm is based on sequences of sup-
port phases. The first part of this section deals with the re-
presentation of these sequences and the detection of incom-
patibilities between them. The second part explains how the
sequences are generated using this representation. Finally,
the last part describes how the detection process manages
motions with a different number of elements.

4.1. Algebraic relation

To determine if nA actions can be blended or not, we intro-
duce an algebraic relation

�
. It uses the sequence of support

phases Si associated to the action Ai. The latter is defined as a
sequence of elements from the set FS = {RS,LS,DS,∅,Err}
(Figure 3 shows a locomotion cycle described using our re-
presentation) where RS (resp. LS) is the period of time when
the right (resp. left) foot is on the ground, DS is used to de-
fine that the two feet are on the ground (double support), ∅
is during a jump (no foot contact on the ground) and Err is
the result of two not-synchronizable motions. Let Si(k) be
the kth element of this sequence.

The algebraic relation
�

from FS2 → FS is defined such
as a

�
b represents the resulting strike constraints from strike

a and strike b (cf. Figure 4).

This algebraic relation has been defined following these
rules:
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Figure 3: Definition of support phases of a locomotion. The
feet events are under the figure and our representation is
above.

Figure 4: Algebraic relation that determines if motions can
be blended.

• DS is the neutral element because our blending module
uses a neutral motion with two feet on the ground. This
motion always has the lowest priority and is overridden
by any other motion. It is useful when there is no active
motion to play. For example, if a locomotion with the
sequence Si = {RS,DS,LS,DS} is started, our algebraic
relation ensures that its sequence overrides the neutral
motion’s sequence.

• ∅ is the absorbing element. Contrary to the previous ele-
ment, it represents the jump motion during which support
constraints are disabled.

• Err is the absorbing element of the subset {RS,LS,DS}. It
means for example that even if only two motions are not
synchronizable amongst several others, the relation will
set an error Err.

• LS and RS are the elements that are completely incompa-
tible and that set an error Err if they are both to be verified
at the same time.

As our relation is commutative, two motions Ai and A j are

synchronized if and only if:

∀k, S1(k) � S2(k) 6= Err (1)

Moreover, as our algebraic relation is associative, we can
compute the nA sequences in any order with this equation:

�
i∈[1,nA]

Si = ((((S1 � S2) � S3) � . . . � SnA−1) � SnA)

(2)

Thus, from the two previous equations (1) and (2), the nA
actions are synchronizable if and only if:

∀k, �
i∈[1,nA]

Si(k) 6= Err (3)

4.2. Generation of the sequence

In this section, we present our generation of sequences
of support phases. However, the synchronization algorithm
uses the support phases in whatever way they were gene-
rated. It only considers that two successive elements in a
sequence are never identical. Currently, our sequences are
generated using two parameters (cf. Figure 5):

• the maximum authorized height for the lowest extremity
of the foot. It represents the height over which the foot is
not in contact with the ground;

• the maximum authorized speed when the foot is under the
previous threshold.

The foot is considered in contact with the ground if the two
previous parameters are respected. The second parameter is
useful to discriminate the foot strike (when speed is really
low) from moments when the foot quickly passes near the
ground (i.e. during the swing phase of a walk for example).

Figure 5: Interface of the support phases generator. At the
bottom, the two horizontal areas define the support phases
for each foot.

c© The Eurographics Association 2004.

328



S. Ménardais & R. Kulpa & F. Multon & B. Arnaldi / Synchronization for dynamic blending of motions

4.3. Extension of motions

Consider two actions Ai and A j with sequences Si (with five
elements) and S j (with only three elements) respectively. To
use our algebraic relation after the third element, we need to
extend the sequence of action A j. Moreover, with cyclified
motions such as locomotion, we need to extend its sequence
as long as the action is running. To this end, we consider two
kinds of motions (cf. Figure 6):

• Cyclified motions: their sequences are repeated as a
whole;

• Other motions: at the end of these motions, the actions
always return the last posture. So only the last element of
their sequence is repeated as long as necessary.

Figure 6: Extension of cyclic (A1) and non-cyclic (A2) ac-
tions. A1 is repeated as a whole; only the last element of A2
is repeated.

5. Synchronization algorithm

The synchronization algorithm uses three main steps to
achieve its work. The first step is the reorganization of the
elements of the sequences in order to synchronize them. The
second step is the tuning of the duration of the resulting se-
quence of support phases. Finally, the algorithm assures that
the temporal deformation resulting from the time warping
function does not engender speed discontinuities in the ani-
mation.

5.1. Chronological organization

Due to real-time interactions, the motions can start at any
moment (by using the start/stop commands). To use our re-
lation, we first make a change of variable to ensure that the
current sequence of each action is indexed by the same value
k as shown in Figure 7.

Always regarding the interactive and real-time constraint,
we do not want to apply our algebraic relation to all the
sequence but only to the next successive nk elements. The
following algorithm is then applied iteratively during the
animation.
Consider that the motion is synchronized until the step k+nk
(the animation is currently at the step k):

∀1 ≤ j ≤ k + nk, �
i∈[1,nA]

Si( j) 6= Err (4)

Figure 7: Change of variable for the indices. All the current
sequences are indexed by k (bottom of figure) whenever the
corresponding actions were started (top of figure).

Now, when the animation enters step k + 1, our algorithm
must synchronize step k + nk + 1:

�
i∈[1,nA]

Si(k + nk + 1) 6= Err (5)

If this previous equation (5) is not verified, our synchro-
nizing algorithm proposes to enlarge some of the last syn-
chronized elements at the step k+nk to respect the equation.
For example, consider two motions A1 and A2 (cf. top of
Figure 8) such as:

• S1(k + 1) = DS and S1(k + 2) = RS;
• S2(k + 1) = ∅ and S2(k + 2) = LS.

Let nk be equal to 1 (synchronization is just made over
one element of the sequence). In this example, S1 and S2 are
not synchronized at step k+nk+1 = k+2. Deleting or redu-
cing one of the two concerned elements does not solve the
problem. However, the animation is about to enter step k+1
when the synchronization process is activated, so we can en-
large one of the element Si(k + 1) without creating disconti-
nuities in the animation. In this example, extending element
S1(k + 1) solves the problem (cf. bottom of Figure 8).

Enlarging the last synchronized element of the sequence
always gives at least one solution to the synchronization
problem. Appendix A details the recursive proof of this algo-
rithm. Now, one solution has to be chosen from the set of
possible ones. To achieve this, the algorithm uses the priority
of the motions. From the highest priority to the lowest one,
it takes the first element of type RS or LS. This element gives
the type of constraint to be respected. Hence, extending all
the last synchronized elements of the other type (i.e., RS if
the element is LS) ensures that the constraint associated with
the motion with the highest priority is respected. Figure 9
shows an example of such a synchronization.

Now, we are sure that active motions can be synchro-
nized at nk steps from the current element of the sequence.
But there remains the start of the actions. When an action
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Figure 8: Example of extension of an element of the se-
quence. After synchronization, all the actions can be blended
and the relation determines the new support phase.

Figure 9: Example of synchronization using priorities. The
resulting support phase respects the action with the highest
priority.

Ai is activated, the algorithm tries to synchronize from the
first element Si(k) to the element Si(k + nk + 1). If there is
no error during this synchronization, the action is started at
the first synchronized element and the synchronization ite-
rative algorithm can be applied for the rest of its activation.
If a synchronization error occurs (the relation returns Err),
it means that there is no possible synchronization with the
current active actions. Then, the start of the action is delayed
until the next element of the sequence is reached.

The value of the number nk of support phases synchro-
nized by our algorithm can be discussed. When it is small,
the temporal deformation can be important to ensure the

compatibility of the motions. On the contrary, when it is
large, the knowledge of the future is required. Consequently,
it is more difficult to start a new action since the algorithm
must synchronize more support phases at the beginning of
the motion. The default value used for all our animations
inside MKM is 5. It allows to synchronize more than a com-
plete cycle of locomotion.

5.2. Duration of an element of the sequence

Now that elements of the sequence of support phases are
correctly reorganized, there remains to compute the dura-
tion of these elements. To achieve this, the synchronization
process uses the priority Pi defined for each motion Ai in or-
der to compute the normalized weight wi associated to the
legs [MMKA04]. Let ∆Si(k) be the duration of the kth ele-
ment of the sequence Si. The computed duration of all the
kth elements of all the sequence is then defined as:

∀k, ∆S(k) = ∑
i∈[1,nA]

wi ×∆Si(k) (6)

This duration is then used in the time warping process to
adapt the motion.

5.3. Temporal deformation

Changing the duration of the elements of the sequences in-
volves a compression or a dilation of time. Figure 10 shows
the temporal deformations due to the use of time warping.
Let t′ = Hi(t) be the time warping function that gives the
animation time from the real time. This function is not deri-
vable and engenders discontinuities in speed and accelera-
tion. After the computation of this initial time warping, we
estimate a function that allows to slow down or accelerate
the motion in order to avoid these discontinuities during ani-
mation.

Figure 10: Non derivable initial time warping.

Let t and v(t) be the current time (in element k) and
the corresponding derivative of the spline (Figure 11A). If
the duration ∆S(k) of element k has changed since the last
simulation step, then tn+1 has also changed (Figure 11B).
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In this case, we recompute the derivative of the extremity
of element k by taking the symetric of v(t) (Figure 11D)
and born it (Figure 11E). Finaly, the function on element
k is recovered by using a cardinal spline (Figure 11F). This
process gives a monotonic time warping (Figure 12) and is
performed each time elements’ durations vary.
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Figure 11: Monotonic spline construction process.
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Figure 12: Final monotonic time warping.

6. Results

One of the most visual artifacts produced by a bad transi-
tion between motions is sliding feet. Figure 17 compares a
same sequence of different locomotions using the synchro-
nization algorithm or not. The red parts of the animation
represent the phase of transition between motions. At the
top of this figure, the different locomotions are activated and
deactivated at predefined times. The three ellipses stress the
moments when the feet are sliding on the floor. The bottom
of the figure shows the same sequence of locomotions but
using the synchronization algorithm. This time, the feet do
not slide and the support constraints are respected. This fi-
gure shows that even with motions of the same kind (such as
locomotion in this example), the synchronization of motions
is really important.

Following the same wireframe representation, Figure 18
shows a more complex animation. It is composed of a loco-
motion, a fighting motion, another locomotion and finally a
jump. This figure shows the delay that can appear during the

synchronization of complex motions. The last row gives the
same synchronized animation using a skinned character.

The synchronization module has been tested and validated
in several applications using usual motions (walks and runs)
and specific ones (sports motions, dance). Common bipedic
sequences (including right and left supports) have enough
variations to ensure several solutions in our synchronization
algorithm. Figure 13 shows some examples of handball shots
synchronized with a run.

Figure 13: Synchronization sequences with handball shots.

However, it is still possible to fail synchronizing critical
motions like a right hopping with a left hopping motion. In
this case, the last motion waits for a better instant to begin
and checks the synchronization possibilities at each new ele-
ment step. These cases can be avoided by coupling normal
motions with critical ones to give more solutions to our syn-
chronization algorithm. Figure 14 shows an example of a
walk-to-hop sequence.
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Figure 14: Walk-to-hope sequence.

The dynamic synchronization associated with footprint
handling gives the opportunity to change the original
motions and actions priorities in real time while preser-
ving valid support constraints. Figure 15 shows an example
of dynamic blending between a side step motion and a
front/back walk in order to force the avatar’s displacement
on a linear path whatever its local orientation. The same
example could be easily extended to a non-linear path.

Figure 15: Dynamic blending and synchronization.

The last example shows an animation resulting from
the complete use of our system. The floor is interac-
tively modified and the character is animated using
several motions. These motions are synchronized, blended
and adapted to the environment in real-time. The mor-
phological adaptation is still made automatically with
the normalized skeleton. In figure 16, the floor is sta-
tionary only to allow a clear illustration. The video
(ftp.irisa.fr/local/siames/rkulpa/SCA04/dynamicEnv.avi)
gives the complete animation with the moving floor. Ano-
ther video (synchronization.avi) shows the original motions
and the result of their synchronization and their blending.
The last video clip (hopping.avi) show the automatic
synchronization of walks with right hopping motions.

Figure 16: The synchronization module is part of our com-
plete kinematical animation engine MKM. In this example,
the character is animated on an interactively changing
ground. For the picture, the floor was stationary.

7. Discussion

In this paper, we have presented a new real-time algorithm
that synchronizes several interactively adapted motions. This
algorithm is based on the time warping technique with addi-
tional information: the sequence of support phases for each
motion. We also introduced an algebraic relation between
support phases to verify if they are compatible for motion
blending. Its use is very easy since motions are basically
controlled by simple start/stop commands. The duration
used to activate or deactivate the motion is parameterized
for each action as well as the priorities. The weights asso-
ciated to motions are then computed automatically and are
used by our synchronization algorithm. The latter is part
of a complete kinematical animation engine: MKM. Using
an adimensional and normalized skeleton, a motion can
be automatically shared by several characters with diffe-
rent morphologies. Moreover, the synchronized motions are
blended by a specific blending module [MMKA04].

This complete real-time animation engine is already
used by industrial partners. Consequently, this package has
been widely tested with motions involving really different
kinds of dynamics and of support phases (such as fighting,
walking, running and dancing). It also works while using
parametric models such as locomotion or grasping models.
The activation time is instantaneous except for rarely criti-
cal situations such as simultaneously right and left unilateral
jumps. Even in this kind of situation, our synchronization
technique always finds a solution contrary to other current
studies using motion graphs or predefined correspondences
between motions. The computation cost of this algorithm
is negligible since it only synchronizes sequences when
motions change their support phases. Moreover, it does not
need information on all the sequence of support phases be-
cause it only synchronizes a limited number of its elements
(i.e. the support phases).

Like several systems based on kinematics, our system suf-
fers from some limitations. Indeed, nothing ensures that the
weighted sum of two motions that both respect dynamics
also respects dynamics. To take this kind of constraints into
account, there is some low computation cost kinematic so-
lutions. For example, the time warping technique can en-
gender large dilations of the motion duration. When it is
applied while jumping, the fundamental laws of dynamics
are not respected. One solution can be to freeze the weights
associated to the action during a jump phase. It means that
the blending is interrupted during a jump. This problem can
also be corrected by controlling the parabolic trajectory of
the root during the jump. Our perspectives are to incorporate
such techniques inside our system in order to improve the
respect of the fundamental laws of dynamics that already
exist intrinsically in the original motions. We are also cur-
rently working on a dynamic controller to reinforce the re-
sults.

Our system also lets the user choose the motions to blend
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to achieve better interactivity. If the user asks for starting
a special motion we directly try to synchronize it without
using another transitional one. Indeed, intelligent choices
of motions can be helpful to avoid large time warping but
can also produce unwanted transitional motions if only kine-
matics rules are taken into account (ie if motion nature is
ignored). Hence, we prefer synchronizing user motions di-
rectly while preserving from sliding feet problems. We also
add some algorithmic rules which help avoid large time
warping, like the possibility to split neutral constraint phases
(double support) or choose best solutions while taking ac-
count of time dilatation.

Finally, our synchronization algorithm is only based on
the sequence of support phases and limited to bipedic hu-
mans. It could be possible (mathematicaly) to extend the
algorithm (considering hands for example) if an new alge-
braic relation is proposed (associative and commutative).
Nevertheless, the more constraints we have, the more diffi-
cult it becomes to extract a general relation. We have decided
to ensure secondary constraints (feet are primaries) with
another part of MKM, independant of the synchronization
module described in this paper.
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Appendix A: Recursive proof of the synchronization
algorithm

The first part of this appendix shows that, considering that
an error has occurred during the synchronization process, at
least one solution is found.

Consider that the animation is entering step k. It means
that all the nA actions are synchronized until step k+nk−1:

∀ j ∈ [k− 1,k + nk− 1], �
i∈[1,nA]

Si( j) 6= Err (7)

Consider that the actions are not synchronized at step k +

nk (else the solution is already found):

�
i∈[1,nA]

Si(k + nk) = Err (8)

The algorithm tries to extend some of the last synchro-
nized elements. Thus, there is a solution if there is at least
one element at step k+nk−1 that can be extended to verify
the following equation (9).

�
i∈[1,nA]

Si(k + nk) 6= Err (9)

The first solution can be to extend all the nA last synchro-
nized elements:

�
i∈[1,nA]

Si(k + nk) = �
i∈[1,nA]

Si(k + nk− 1) 6= Err (10)

Unfortunately, this solution does not solve the problem but
just delays it.

Let A be the maximal set with the elements at step k + nk
that can be synchronized with the result of the previous step
k + nk− 1.


 �
i∈[1,nA]

Si(k + nk− 1)



 �
(

�
i∈A

Si(k + nk)

)

6= Err

(11)

This set cannot be empty since the error at step k+nk (cf.
equation (8)) involves the presence of RS and LS. So there
are compatible elements with one of them and so with all
the existing elements. Then, this set is also synchronizable
with the result of the previous step k + nk − 1. Now, two
cases have to be considered:

•
�

i∈[1,nA] Si(k + nk − 1) = ∅: in this case, extending one
of the absorbing elements (∅) is enough to find a solution
(even if the extension of a jump is not an ideal solution);

•
�

i∈[1,nA] Si(k + nk − 1) 6= ∅: since the result is not the
absorbing element (∅) then it is not in set A. Moreover,
there is no element of type ∅ at step k+nk since the result
is an error Err. So the following equation is verified:


 �
i∈[1,nA]

Si(k + nk− 1)



 �
(

�
i∈A

Si(k + nk)

)

6= ∅

(12)
As A defines the elements compatible with the previous
synchronization, then {i /∈ A} represents the indices of the
motions in which last synchronized elements have been
extended to solve the synchronization problem.

Set A does not represent all the solutions of the synchro-
nization. As it is never empty, it is only used to demonstrate
that there is always at least one solution.

c© The Eurographics Association 2004.

334



S. Ménardais & R. Kulpa & F. Multon & B. Arnaldi / Synchronization for dynamic blending of motions

Figure 17: The first row shows the animation without synchronization. When there are transitions between motions (in red) the
feet are sliding on the floor. With synchronization (second row), the foot strikes are respected.

Figure 18: This animation with motions such as walking, fighting, another walking and a jump shows delayed actions. Contrary
to the first row, the two others show the animation with synchronization.
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