
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Animation and Control of Breaking Waves

Viorel Mihalef1, Dimitris Metaxas1, Mark Sussman2

1 CBIM Center, Dept. of Computer Science, Rutgers Univesity
2 Dept. of Mathematics, Florida State University

Abstract

Controlling fluids is still an open and challenging problem in fluid animation. In this paper we develop a novel fluid
animation control approach and we present its application to controlling breaking waves. In ourSlice Method
framework an animator defines the shape of a breaking wave at a desired moment in its evolution based on a
library of breaking waves. Our system computes then the subsequent dynamics with the aid of a 3D Navier-Stokes
solver. The wave dynamics previous to the moment the animator exerts control can also be generated based on
the wave library. The animator is thus enabled to obtain a full animation of a breaking wave while controlling the
shape and the timing of the breaking. An additional advantage of the method is that it provides a significantly faster
method for obtaining the full 3D breaking wave evolution compared to starting the simulation at an early stage
and using solely the 3D Navier-Stokes equations. We present a series of 2D and 3D breaking wave animations to
demonstrate the power of the method.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismAnimation

1. Introduction

One of the most complex natural phenomena in the world
of liquids is that of the breaking wave. The famous painting
“The Great Wave” (fig.1) by Hokusai, Japan’s best known
plastic artist, provides wonderful insight into the nature of
the difficulties associated with simulating breaking waves.
One can notice the presence of multiple scales of dynamics,
ranging from the fine scale of the spray and the foam, pass-
ing through the small/intermediate scale of the ripples on the
wave surface, and ending with the larger wavelength of the
wave that overturns and breaks. While there are no satisfac-
tory physical models for the foam/spray dynamics (see the
Related Work section for more about this) we would like in
this paper to address the simulation and control of the larger
scale dynamics of the waves.

In the best of worlds, an animator will have the freedom
to choose how the free surface of a liquid will look like at
a specific moment in time, where it will be located and how
its general subsequent evolution will look like. Our work is
an attempt to get closer to this ideal type of control over the
coarse behavior of a liquid while still maintaining realistic
fluid behavior based on the laws of physics. We are focus-

Figure 1: “The Great Wave” by Hokusai is a beautiful show-
case of the various scales involved in breaking.

ing on specifying the shape and location of the free surface
of a liquid at a given moment in time, that is of central im-
portance for the animation. While our case study is that of

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

breaking sea waves, the method applies to more general fluid
simulations.

We start from the reasonable assumption that each verti-
cal slice of a three dimensional breaking wave (parallel to
the wave direction of propagation) mimics the dynamics of
a two-dimensional one. This leads to the idea of using two-
dimensional simulations to help: 1. generate theshapeof a
3D wave at a chosen moment in time and 2. generate the
velocitiesof the 3D wave at that time instant. The useful-
ness of the idea resides not only in enabling us to start the
3D simulation using a physically correct velocity field but
also in allowing us to recover some if not all of the previ-
ous dynamics of the wave. On top of control we also gain
speedup of the calculation, given that we start it much later
than in a standard CFD computation, where one begins from
a height-field geometry (sinusoidal for example). Let’s also
emphasize that this method is usable in various other con-
texts, for example in controlling the geometry of a smoke
plume or of the fiery ball in a nuclear explosion - like the
one in [RNGF03], which shares the same spirit with the
present work. One needs to only generate the 2D simulations
and then integrate them in a 3D shape while controlling the
3D geometry. This is the essence of what we call theSlice
Method. In its application to breaking wave simulation it can
be summarized as follows:

1. the animator builds the 3D shape of the breaking wave
by choosing each of its vertical 2D slices from a library of
waves; the animator can also preview the short time expected
behavior

2. the program generates the subsequent evolution by
flowing forward in time based on the 3D Navier-Stokes
equations.

3. (optional) the program generates previous evolution by
flowing the free-surface back in time using the pre-computed
2D dynamics.

The outcome in our specific case study is obtaining the
dynamic behavior of overturning 3D waves from the onset
up to post-breaking stages, having as initial information the
shape at some chosen time step. The animator has control
over the shape of the wave at that time step and its intended
subsequent behavior without the need of specifying the ve-
locity by hand (specification which would be essentially im-
possible to do in order to get realistic behavior). In order
to populate the 2D wave library we had to do extensive 2D
simulation work and we report here some of the results.

2. Related Work

In an attempt to present the roots of our approach, we give
here a short overview of previous work on liquid simulation
and fluid control reported in the graphics community. We
briefly discuss ocean surface animation, then general sim-
ulation of liquids and end with a short account of control
methods.

(a)

(b)

Figure 2: (a) Snapshot of a real wave (courtesy Joseph
Libby) (b) Simulation using the Slice Method

2.1. Ocean Surface Animation

The simulation of ocean surface has been essentially a 2D
story. Without going into details, one can distinguish two
main animation approaches. The first one is represented by
[FR86, Pea86, Sch80, TB87] who used parametric functions
(a mix of Gerstner and Biesel swell models) to model the
free-surface of water in order to simulate wave transport.
The second one attempts to synthesize the ocean surface
as a height field with a prescribed spectrum based on semi-
empirical models, and it includes work by Mastin [MWM87]
and Tessendorff [Tes99]. An interesting work by Thon et al.
[TDG00] attempts to bridge the two approaches by using
a synthesized spectrum to control a Gerstner model. They
generate the small scale disturbances by adding a spectrum-
driven Perlin noise model [Per85].

2.2. Simulation of Liquids

For a while the main thrust in simulating liquids was trying
to augment the 2D models to produce 3D effects. Kass and
Miller’s model [KM90] was essentially a height field with
dynamics governed by the 2D shallow water equations and
it was extended in [CL94] by incorporating pressure effects,

c© The Eurographics Association 2004.

316

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

Figure 3: From 2D to 3D: the Slice Method. The left pictures
show two of the slices used to build the wave on the right;
on the right side we show their respective position in the 3D
wave, given by the green vertical cross-sections.

obtained by solving a 2D Navier-Stokes equation.By further
extending the height field model, [OH95] introduced a par-
ticle system that helped simulating splashing. [MP89] used
a system of springs between particles to simulate viscosity
effects and [TPF95] simulated melting using molecular dy-
namics in a deformable shape setup.

The advantage of using the full 3D Navier-Stokes became
clear after Foster and Metaxas [FM96] modified the clas-
sic marker and cell (MAC) method [HW65] to obtain real-
istic fluids behavior for a decent computational price. They
extended their method later [FM97] to include simple con-
trol mechanisms at the level of physical parameters. Stam
[Sta99] departed from the finite-difference scheme used by
Foster and Metaxas and introduced the “stable” semiLa-
grangian methods for computing the advection part of the
Navier-Stokes equations. Foster and Fedkiw introduced in
[FF01] a hybrid liquid model, combining implicit surfaces
and particles, while Enright et al. [EFFM02] improved the
hybrid model devising the particle level set method, which is
presently one of the methods of choice for obtaining very re-
alistic animations of complex water surfaces. Level set based
solvers like the aforementioned one (level sets were intro-
duced in [OS88]) are en-vogue lately due to their capabil-
ities for capturing and rendering the interface as a smooth
implicit surface and also for the theoretical ease with which
they can deal with topology changes. The classical level set
method cannot be used just by itself for fluid simulations
due to poor mass conservation properties. While the par-
ticle level set method does a good job regarding keeping
the mass constant for tests where there are no topological
changes, the method does not explicitly enforce mass con-
servation and may lose mass for complex flows with lots of
topological changes. Sussman [SP00, Sus03] addressed the

loss of mass of the level set method by combining it with a
volume of fluid method - and this is the numerical method
used in the present work as well. Takahashi et al. [TFK∗03]
presented nice and fast simulations of water effects (includ-
ing lots of splashes) and interaction with objects as a direct
application of the CIP method (a semiLagrangian method
which uses gradient information for better advection prop-
erties) discovered by Yabe (for a good review see [Yab97]).
Their work integrates particle systems with the CIP Eulerian
framework and, while the results for the spray simulation are
a good step towards realism, the ones for foam simulation re-
quire improvement and probably the use of a better physical
model. Our paper complements their work, in the sense that
they were not specifically concerned with generating ocean
breaking waves or controlling them.

2.3. Control of Fluids

We can classify control techniques for fluids into (1) control
of physical parameters and (2) control of geometric parame-
ters.

The first type allows a user to control physical parameters
such as density, viscosity and surface tension, or dynamic
variables, such as velocity, pressure and temperature, and
modify them to satisfy various animation goals. This type
of control was initiated by Foster and Metaxas [FM97] who
used for example variable viscosity to control the CFL con-
dition and variable surface tension to control the dynamics
of a fountain. [FF01] controlled the motion of water flow by
prescribing exact values for the velocity field at specific loca-
tions while [EMF02] used variable surface tension to speed-
up the settling of water poured in a glass.

The second type of control is closer to the keyframing
procedure familiar to animators. Essentially, one tries to ob-
tain a simulation such that the fluid shape matches one or
more predefined keyframes. The first successful simulation
of this type was done by [TMPS03] for smoke control. Con-
currently with our work, [MTPS04] demonstrate for the first
time a type of geometric control simulation applied to liq-
uids. However, their method cannot be applied to a natural
phenomenon like breaking waves for two reasons: first, the
wave breaking phenomenon has an intrinsic natural dynam-
ics that would require, besides geometric tuning, the use of
physics-based velocities; second, it would be extremely te-
dious to obtain the 3D breaking wave keyframes that would
be needed for such an animation.

Our paper offers a possible solution to the two challenges
mentioned above. In the following we present our animation
and control methodology for breaking waves.

3. Simulation and Control

Using an Eulerian framework, all our simulations are based
on a rectangular grid implementation of the Navier-Stokes

c© The Eurographics Association 2004.

317

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

Figure 4: Various waves from the library. From left to right
and top to bottom, the control parameters(A,d,ω) (see
section 3.2) are:(.5, .3,3), (.5, .3,3.5), (.5, .4,3), (.6, .3,2),
(.7, .3,1), (.7, .3,2)

equations. As we have mentioned in the introduction, the
starting point in building the breaking wave simulations is
the generation of a libraryof 2D breaking waves. This en-
ables the animator in the next step togenerate the 3D shape
by using the 2D library to choose the desired slice geome-
try (fig. 3). The 2D wave library comes with a very useful
piece of information, that is the velocity vector field. Either
by reading directly the slice vector field or, if necessary, by
linearly interpolating it between slices, one obtains the 3D
velocity vector field, necessary for starting the three dimen-
sional Navier-Stokes simulation.

3.1. The Fluid Solver

When we simulate fluids there are two ingredients we need
to take care of: (1) fluid surface detection, where one either
tracks or captures the liquid surface, and (2) Navier-Stokes
solver, where one solves the momentum equations governing
the fluid dynamics.

3.1.1. Fluid surface detection

Fluid detection at any time step is done by tracking or captur-
ing the fluid surface. Tracking the surface is an example of
the Lagrangian approach, and consists of advecting a set of
markers that approximate the surface at any time step. In 3D
one needs to perform rather complicated surgery to handle

the splitting or merging of the surface, hence the preference
of some researchers for Eulerian methods. In an Eulerian
method one uses a grid to localize the surface; one can use
massless markers to track the surface as in the MAC method
used by Foster and Metaxas or one can “capture” the surface,
in the sense that, instead of explicitly tracking it, one updates
a scalar field on the Eulerian grid which defines (captures)
the surface. For example, the volume of fluid (VOF) method
uses a “color” function, equal to one if a computational cell
contains only liquid, and equal to zero if a computational cell
contains no liquid. The level set method defines the surface
as the zero level set of a scalar field, which is, say, posi-
tive inside the liquid, and negative outside it. The surface is
reconstructed at any time by means of an implicit surface
reconstruction algorithm like marching cubes, for example.
We should note that merging or splitting of the surface is
“built-in” for such methods and one doesn’t need to do any-
thing fancy in order to deal with them. The main advantage
of the volume of fluid method is the explicit enforcement
of conservation of volume, while the level set method offers
simplicity of implementation and ensures surface smooth-
ness. The combined level set and volume of fluid (CLSVOF)
method inherits the advantages of both these methods. Due
to our specific coupling of the volume fraction function with
the level set function, the presence of spurious volumes that
mars the classical VOF method is not observed.

We give now a brief overview of the CLSVOF method.
For a more detailed description please refer to [Sus03] and
[SP00]. The position of the free surface (the wave surface in
our case) is updated using the level set equation

φt +u ·∇φ = 0 (1)

whereu is the velocity of the liquid andφ is the level set
function which is positive in the liquid and negative in the
air. Along with the level set equation we also solve the vol-
ume fraction advection equation:

ft +u ·∇ f = 0 (2)

where the volume fraction is initialized in each computa-
tional cellΩ at t = 0 as:

fΩ =
1

vol(Ω)

∫

Ω
H(φ(x,0))dx (3)

whereH is the Heaviside function:

H(φ) =

{

1, φ ≥ 0;
0, otherwise.

(4)

The essential coupling of the level set functionφ and the
volume of fluid functionf is the following:

• the level set function is used to truncate the volume frac-
tions, thus removing the “flotsam” usually associated with
VOF methods; the truncation is done by removing any
volume fractions outside a cell-width wide narrow band
about the zero level-set.

• the volume fraction function is used to construct the level
set as a volume-preserving distance function

c© The Eurographics Association 2004.

318

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

The discrete volume fraction and level set function are de-
fined on a staggered grid (MAC) and are located at the cell
centers. They are advected using a “coupled” second order
conservative operator split advection scheme. The velocity
vector fieldu used to updateφ and f in (1) and (2) is obtained
from the momentum equations which we describe below.

3.1.2. Momentum equations

The Navier-Stokes equations for incompressible flow are:

ρ Du
Dt

= −∇p+ν∆u+ f (5)

∇·u = 0 (6)

The first equation is the fluid equivalent of Newton’s law
(Du

Dt is the acceleration, here written as the “material deriva-
tive” of the velocity, i.e.Du

Dt = ut +u ·∇u) while the second
one enforces mass conservation. The fluid has constant den-
sity ρ, has velocity given by the vector fieldu, p is the pres-
sure inside the body of fluid,ν is its dynamic viscosity co-
efficient (we usedν = 0 in our computations) and any other
forces acting on it are denoted byf (in our casef was due
to gravity and body forces). These equations must be sup-
plemented by appropriate boundary conditions, for example
u = 0 on solid walls at rest.

Equation (5) states essentially that the force acting on a
fluid particle is the combined effect of convection forces (at-
tempting to carry it along with the rest of the fluid), pressure
gradient forces directed towards lower pressure regions (see
the minus sign), dampening forces which scale along with
the viscosity coefficient and other (external) forces, for ex-
ample surface tension, gravity or body forces.

The numerical scheme that we use to compute solutions to
(5) and (6) is based on the projection approach [BCG87] and
is described in detail in [Sus03]. The second order Runge-
Kutta method is used to advance the solution in time. A sec-
ond order, slope limited, upwind finite difference scheme is
used to discretize the nonlinear advective terms.

3.2. 2D Wave Generation

The generation of our 2D wave library consists of two
pieces: (1) we prescribe initial conditions derived from lin-
ear wave theory for our 2D fluid solver and (2) we advance
the prescribed initial conditions using the 2D Navier-Stokes
solver in order to construct 2D wave slices ranging from sim-
ple geometries to 2D breaking wave profiles. The waves in
the 2D wave library are henceforth used to prescribe initial
conditions for the 3D Navier-Stokes solver (usually right be-
fore the 3D wave breaks).

For prescribing initial conditions for the 2D Navier-
Stokes solver, we characterize waves by their period, T,
wavelength,λ, and amplitude, A. The wavelengthλ mea-
sures the distance between any two points of the same phase.

Figure 5: Snapshots of the time sequence of a plunging
breaking wave (at times 1.2, 3.6, 4.7, 5.6) . Camera moving
with the wave speed (more details in the text). Such waves
form the 2D wave library.

If we denotek = 2π
λ andω = 2π

T , the surface displacement
for a wave is given by

η(x, t) = Acos(kx−ωt) (7)

and, if we consider any fluid particle, its velocity compo-
nents are given by

u(x, t) = Aωe−kzcos(kx−ωt) (8)

v(x, t) = Aωe−kzsin(kx−ωt) (9)

wherez is the depth of the particle with respect to the mean
surface level. Note that the velocity decreases exponentially
with depth. In fluid mechanics literature it is agreed that
wave breaking may occur due to direct wind forcing, wave-
wave interaction or wave instability. We have concentrated
on the last option and used a steep Stokes wave of third order
of high slopeε = kA= 2πA/λ (as in [CKZL99]) which led
to breaking due to instability. The initial - let’s call it “stan-
dard” - 2D profile was (one can view it as a superposition of
waves of type (7)):

η(x,0) = d+
1
2π

(εcos(2πx)+
1
2

ε2 cos(4πx)+
3
8

ε3 cos(6πx))

(d denotes the water depth) and the velocity was obtained
from the corresponding superposition using (8) and (9). We
present in fig. 5 some results obtained forε = 0.55, g = 0.1,
ω = 3, density equal to 1 and viscosity equal to 0. Our re-
sults are quite similar to the ones obtained by [CKZL99].
The computational domain has size 128×128 and the phys-
ical domain is[0 1]× [0 1].

In order to generate the library we modified the following
parameters: two geometric parameters, the amplitudeA and
the depthd and the kinematic parameterω. Other parameters
which one may potentially vary were kept constant in order

c© The Eurographics Association 2004.

319

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

to keep the dimension of the parameter space small enough
(specifically, we always usedν = 0, g = 0.1 andk = 2π).
For example, the slopeε = kA for a plunging breaker varied
between 0.5 and 0.7, values below 0.5 generating just the so-
called “spilling breakers” which don’t feature any plunging
phenomenon while for even smaller values we obtained sim-
ple progressive-waves. The kinematic parameterω was kept
between 2 and 4, again with the lower values correspond-
ing to progressive-waves and spilling breakers and the larger
values to plunging breakers. Each run was limited to about 7
seconds of physical time, which ensured that breaking took
place. One important issue was that, more often than not,
one needs to move the camera along with the wave, in order
to keep the slices “aligned”. We implemented the camera
movement by simply adding a horizontal component to the
velocity usually equal to−0.1 (we are allowed to do this as
our computations are periodic in thex-direction). A run sim-
ilar to the “standard” one takes 3-4 minutes for a 128× 64
grid. To build the wave library one could then simply sample
the cube[0.5/2π 0.7/2π]× [0.25 0.35]× [2 4] in the space
(A,d,ω) (the parameters are based on our experiments).

3.3. 3D Wave Generation and User Control. The Slice
Method.

The three-dimensional wave generation starts traditionally
from a very early stage of the water surface given as a height
field, for example as a sinusoidal ruled-surface. We are not
constrained by this though: the Slice Method allows us to
start at a later moment and, most importantly, the geometry
of the surface does not need to be a height field, it does not
even need to have genus zero! In fig. 2 we show a picture of a
real wave with non-zero genus and a similar wave generated
with the Slice Method. One can appreciate the level of ge-
ometric control that the method offers, allowing us to build
3D surf waves which would otherwise not be obtainable with
standard methods.

The slices used in building this particular 3D geometry
were obtained from the 2D simulation described in the pre-
vious section, varying between slice-time 2.6 and 5.0. This
was the initial configuration used to start the Navier-Stokes
solver that generated the results in the surf wave sequence
from fig. 10. In fig. 6 we indicate that the animator can eas-
ily build the desired initial shape: axisymmetric, starting at
an earlier (a) or later stage (b), or variable geometry (c and
d). In particular, the geometry in (a) was used to start the
axisymmetric wave in fig. 7, while the geometry in (c) was
used to generate the waves in fig. 2 and 10 and the one in
(d) the wave in fig. 8. The process of building the 3D geom-
etry is the following (we will refer to figures 5 and 6): the
initial 3D configuration is an axisymmetric wave, usually a
few moments before the overturning (for example the first
image in fig. 6). Arguably the most important geometric fea-
tures belong to the moment of breaking (third frame in fig.
5), and usually we build this region first. The user previews

(a) (b)

(c) (d)

Figure 6: One can easily build variable initial geometries.
(a) Axisymmetric wave, early stage type, (b) intermediate
stage type, (c) and (d) are surf wave type with variable ge-
ometries

in real-time the evolution of the 2D wave. If the user is not
satisfied with that specific breaking dynamics or geometry
he or she can switch to previewing another 2D evolution by
changing the available geometric and kinematic parameters
(A, d or ω). Accordingly, the program would then switch to
another library item, such as the ones in fig. 4. If even more
flexibility is needed, one may choose to start a new 2D run
to build a new library item. Once satisfied with the slice ge-
ometry the user “accepts” this slice and the program updates
the 3D level set to reflect the change by simply rewriting the
level set values in the vertical plane of the slice. We imple-
mented a “hard update” which changes the level set values
for the 3D position of that slice only and also a more viewer-
friendly “soft update”, which updates along with the chosen
slice all the neighboring slices so that no two neighboring
slices are more than one time step apart; indeed, for most of
the domain, this provides the right “look”. The general user
control algorithm can be written as:

for each 3D slice
if (!satisfactory)

browse library and choose another 2D dynamics
if (!satisfactory)

run new 2D simulation
update the 3D level set by rewriting slice level set
run marching cubes

After one slice is chosen one proceeds to modifying an-
other one and so on. Using the “soft update” (which essen-
tially updates several slices at a time) one can efficiently
build the 3D geometry. For example, the geometries in fig. 6,
c and d, were built in about 5 minutes each, with lots of the
time spent performing marching cubes on the 128×128×64
grid. One can imagine other methods of improving the user

c© The Eurographics Association 2004.

320

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

control, for example applying a smoothing filter to the 3D
level set after building the 3D breaking wave. One can also
implement a free horizontal translation of a 2D breaking
wave sequence by resampling the level set (as our waves are
periodic in thex direction) - this could help in aligning the
2D waves in the library to a standard model. Such exten-
sions would be easy to implement and definitely useful in a
production setting.

A few remarks are in order:

• from the 3D configuration obtained one can naturally flow
backwards in time by uniformly decreasing the slice-time

• the Slice Method is applicable in general to any phe-
nomenon which exhibits some type of weak-symmetry. In
our case one can think of such a symmetry being provided
by the group of translations along the horizontal axis nor-
mal to the direction of the wave propagation, modulo time
evolution of each slice. For the simulation of a nuclear ex-
plosion, for example, like the one in [RNGF03], the group
of symmetry is, of course, the group of rotations about the
vertical axis.

• one could think of using only the two-dimensional library
instead of solving the 3D Navier-Stokes for the simu-
lation subsequent to the moment of control, in a simi-
lar way it was done in [RNGF03]. While we are cur-
rently investigating this option we should point out that
there are several problems with it: mass won’t necessar-
ily be conserved, and this is bound to create visual ar-
tifacts in a simulation of liquids - while when simulat-
ing smoke/fire/explosions this is not a problem. Also, one
won’t be able to handle easily the interaction with objects
- unless they are shape-invariant to the group of symme-
try mentioned above. Moreover, using a fully 3D Navier-
Stokes solver is preferable as, if needed, it allows the user
to use the standard physical parameter control methods
(as discussed in section 2.3). Finally, the 3D simulation
yields the necessary and rich longitudinal instability that
would be absent from a 2D simulation (but is visible in
fig. 7, for example).

4. Animations

All the three-dimensional results are based on the two-
dimensional wave library generated as explained previously.
The elements of the library include a full range of profiles
situated between progressive-waves and plunging breakers
(like the one in fig. 5). The physical parameters (density, vis-
cosity, etc.) for each 3D simulation were the same ones used
in the 2D simulation that was used to define the slices.

The simplest 3D geometry is that of an axisymmetric
wave, for which all the vertical slices are at the same time
(fig. 7). For this particular one we worked on a 96×96×48
grid and started the simulation at time t=1.0 seconds, when
the wave is still a height field (much like in the standard
CFD simulations). One can observe a few important effects

Plastic shader

+ Transparency

+ Bump mapping

Figure 7: Rendering methods applied to an axisymmetric
breaker

in this simulation, namely the formation of the air tube under
the wave front, immediately after break-up, together with the
formation of the secondary jet. Also notice the fingering of
this secondary jet (that would be absent from a 2D simula-
tion), due to performing a full 3D Navier-Stokes simulation.

Perhaps the most impressive examples are given by the
surf waves like the ones in figures 8 or 10 (the grid size was
128×128×64 and the slice time varied between 3.2 and 6.0
seconds). Immediately after the breakup one can notice a lot
of turbulence - which is one of the main factors influencing
foam and spray generation. The motion tames down after-
wards, as expected. Here is a good place to point out again
that in the traditional CFD simulations of 3D breaking waves
(and of most of the other standard types of simulation) one
has to start in the early stage of a symmetric configuration
(like the early stage of the axisymmetric wave). Obtaining
surf waves with controlled geometry like the ones we present
here is simply out of bounds for the traditional methods.

As an example of a 3D interaction with objects we present
in fig. 9 a “Milky Wave” crashing against a rocky structure
(the grid size was 96× 96× 48 and the slice times varied
between 3.2 and 4.8 seconds). By using the Slice Method
we acquired control on the shape of the breaker right before
breaking.

c© The Eurographics Association 2004.

321

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

Figure 8: Under a surf wave

The animations took about 10-12 min/frame to generate
for a resolution of 128×128×64 on a Pentium 3, 2.6 GHz
machine with 2 Gb of RAM. The rendering has been mainly
done in Vue d’Esprit [Vue 4] at the cost of about 4-6 min for
a 640× 480 picture. The water ripples are generated using
three dimensional bump mapping (Perlin fractal noise), sim-
ilarly to [Per85]. The illusion of ripples moving on the sur-
face of the wave is due to the movement of the wave through
the fixed 3D bump map. This is a non-physically based ap-
proach, which requires further investigation, and we do in-
tend to implement the spectral control used in [TDG00] to
make it physically-based; nevertheless, we believe that the
good looking results fully justify reporting it. The wave in
fig. 2 was texture-mapped and ray-traced in Vue d’Esprit.

5. Conclusions and Future Work

In this paper we presented a method for generating two and
three dimensional breaking wave simulations and also for
exerting control on the shape and behavior of 3D break-
ing waves at a certain (desired) moment in time. The Slice
Method enables us to obtain results that cannot be ob-
tained using standard computational fluid dynamics simula-
tion techniques. We believe this work is a good starting point
that opens several avenues of research, such as creating user-
friendly software for the generation of breaking waves and
the application of the Slice Method to controlling other types
of fluid simulations.

6. Acknowledgements

The first author would like to thank Prof. Norman Zabuski
for offering useful insight into various fluid dynamics related
issues, and also Dr. Sukmoon Chang and Dr. Kyung-Ha Min
for their help and advice.

References

[BCG87] BELL J. B., COLELLA P., GLAZ H. M.: A
second-order projection method for the incom-

Figure 9: The “Milky Wave”: interaction with fixed objects

pressible Navier-Stokes equations.Journal of
Computational Physics 85(1987), 257–283.

[CKZL99] CHEN G., KHARIF C., ZALESKI S., LI J.:
Two-dimensional Navier-Stokes simulation of
breaking waves.Physics of Fluids 11, 1 (1999),
121–133.

[CL94] CHEN J., LOBO N.: Toward interactive-rate
simulation of fluids with moving obstacles using
the Navier-Stokes equations.Computer Graph-
ics and Imagage Processing 57(1994), 107–
116.

[Vue 4] www.e-onsoftware.com.

[EFFM02] ENRIGHT D., FEDKIW R., FERZIGER J.,
MITCHELL I.: A hybrid particle level set
method for improved interface capturing.J. of
Computational Physics 183(2002), 83–116.

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.:
Animation and rendering of complex water sur-
faces.ACM TOG 21, 3 (2002), 736–744.

[FF01] FOSTERN., FEDKIW R.: Practical animation of
liquids. Proceedings of SIGGRAPH 2001, 23–
30 (2001).

[FM96] FOSTERN., METAXAS D.: Realistic animation
of liquids. Graphical Models and Image Pro-
cessing 58(1996), 471–483.

[FM97] FOSTER N., METAXAS D.: Controlling fluid
animation. Computer Graphics International
(1997), 178–188.

[FR86] FOURNIER A., REEVESW. T.: A simple model
of ocean waves.ACM SIGGRAPH 1986(1986),
75–84.

[HW65] HARLOW F. H., WELCH J. E.: Numerical cal-
culation of time-dependent viscous incompress-

c© The Eurographics Association 2004.

322

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

ible flow of fluid with a free surface.Physics of
Fluids 8(1965), 212–218.

[KM90] K ASS M., MILLER G.: Rapid, stable fluid
dynamics for computer graphics.ACM SIG-
GRAPH 1990(1990), 49–57.

[MP89] MILLER G., PEARCE A.: Globular dynamics: a
connected particle system for animating viscous
fluids. Computers and Graphics 13, 3 (1989),
305–309.

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIC Z.,
STAM J.: Fluid control using the adjoint
method. ACM Transactions on Graphics 23, 3
(2004).

[MWM87] M ASTIN G. A., WATTERGER P. A., MAREDA

J. F.: Fourier synthesis of ocean scenes.IEEE
Computer Graphics and Applications 3(1987),
16–23.

[OH95] O’BRIEN J., HODGINS J.: Dynamic simula-
tion of splashing fluids. Computer Animation
95 (1995), 198–205.

[OS88] OSHER S., SETHIAN J. A.: Fronts propagat-
ing with curvature dependent speed: algorithms
based on Hamilton-Jacobi formulations.Jour-
nal of Computational Physics 79(1988), 12–49.

[Pea86] PEACHY D.: Modeling waves and surf.ACM
SIGGRAPH 1986(1986), 65–74.

[Per85] PERLIN K.: An image synthesizer.Computer
Graphics 3, 19 (1985), 287–296.

[RNGF03] RASMUSSEN N., NGUYEN D., GEIGER W.,
FEDKIW R.: Smoke simulation for large scale
phenomena. Siggraph 2003, ACM TOG 22
(2003), 703–707.

[Sch80] SCHACHTER B.: Long crested wave models.
Computer Graphics and Imagage Processing 12
(1980), 187–201.

[SP00] SUSSMAN M., PUCKETT E. G.: A coupled
level set and volume of fluid method for comput-
ing 3D and axisymmetric incompressible two-
phase flows.Journal of Computational Physics
162(2000), 301–337.

[Sta99] STAM J.: Stable fluids.ACM SIGGRAPH 1999
(1999), 121–128.

[Sus03] SUSSMAN M.: A second order coupled level
set and volume-of-fluid method for computing
growth and collapse of vapor bubbles.Journal
of Computational Physics 187(2003), 110–136.

[TB87] TS’ O P. Y., BARSKY B. A.: Modeling and ren-
dering waves: wave tracing using beta-splines
and reflective and refractive texture mapping.

ACM Transactions on Graphics 6, 3 (1987),
191–214.

[TDG00] THON S., DISCHLER J. M., GHAZANFAR-
POUR D.: Ocean waves synthesis using a
spectrum-based turbulence function.Computer
Graphics International Proceedings(2000).

[Tes99] TESSENDORFJ.: Simulating ocean water.Sig-
graph Course Notes(1999).

[TFK∗03] TAKAHASHI T., FUJII H., KUNIMATSU A.,
HIWADA K., SAITO T., TANAKA K., UEKI

H.: Realistic animation of fluid with splash and
foam. Eurographics(2003).

[TMPS03] TREUILLE A., MCNAMARA A., POPOVIC Z.,
STAM J.: Keyframe control of smoke simu-
lations. ACM Transactions on Graphics 22, 3
(2003), 716–723.

[TPF95] TERZOPOULOSD., PLATT J., FLEISCHE K.:
Heating and melting deformable models (from
goop to glop). Graphics Interface 89(1995),
219–226.

[Yab97] YABE T.: Universal solver CIP for solid, liquid
and gas.CFD Review(1997).

c© The Eurographics Association 2004.

323

V. Mihalef & D. Metaxas & M. Sussman / Animation and Control of Breaking Waves

Figure 10: Surf wave sequence

c© The Eurographics Association 2004.

324

