
Eurographics/ACMSIGGRAPH Symposium on Computer Animation (2004)

R. Boulic, D. K. Pai (Editors)

© The Eurographics Association 2004.

Simulation Levels of Detail for Plant Motion

J. Beaudoin and J. Keyser

Texas A&M University

Abstract
In this paper we describe a method for simulating motion of realistically complex plants interactively.
We use a precomputation stage to generate the plant structure, along with a set of simulation levels of
detail. The levels of detail are made by continuously grouping branches starting from the tips of the
branches and working toward the trunk. Grouped branches are simulated as single branches that have
similar simulation characteristics to the original branches. During run-time, we traverse the plant and
determine the allowable error in the simulation of branch motion. This allows us to choose the
appropriate simulation level of detail and we provide smooth transitions from level to level. Our level of
detail approach affects only the simulation parameters, allowing geometry to be handled independently.
Using this method we can significantly improve simulation times for complex trees.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism -- Animation; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling –
Physically based modeling

1 Introduction

Due to their ubiquity in natural environments, plants and
trees are important features in almost all animations of
outdoor scenes. Furthermore, because they are flexible
objects, the motion of these plants in response to wind or
other external forces provides an important, if sometimes
subtle, visual cue for establishing the realism of the scene.
Unfortunately, plants and trees can be quite complex, and
as a result any simulation of the motion is likely to take a
great deal of time. For environments with several trees,
this is particularly the case. If we are to have any hope of
simulating groups of trees for interactive applications, a
level of detail approach will be needed.

There has been a great deal of previous work on the
modeling of plant growth. Less work has focused on the
simulation of plant motion, and less still on methods for
increasing the performance of such simulations. Our
approach is aimed at this final area: increasing the
efficiency of plant motion simulation through the use of
simulation levels of detail. A goal is to be able to apply our
method to an environment composed of many trees, each
defined with realistic complexity (in terms of number of
leaves and branches).

Simulation levels of detail (SLODs) are the animation
analog to geometric levels of detail. With geometric
LODs, simplified geometric representations requiring less
rendering time (but providing less detail) replace the highly
detailed original model, when this replacement will result
in no or minimal visual error. Sim1ilarly, with simulation
LODs, a less complex simulation is used to replace the

This work was supported in part by NSF grant CCR-0220047.

Figure 1. Simplified simulation structures
yield similar motions.

http://www.eg.org
http://diglib.eg.org

J. Beaudoin and J. Keyser / Simulation Levels of Detail for Plant Motion

© The Eurographics Association 2004.

detailed higher-level simulation. With both geometric
LODs and SLODs, smooth transitions between the LODs
are of key importance. When transitions are not smooth,
the “popping” as the LOD changes can be extremely
distracting.

Main Results: We present a method for generating and
using levels of detail in the simulation of plant motion. We
take a plant from its initial representation and automatically
create a simplification hierarchy that, when simulating
plant/wind interaction, behaves the same as the original in
certain key ways. This allows simulation of large groups of
plants because those hidden or far away can be
significantly simplified yet yield visually realistic results.
The simulation is stored as a simple articulated tree
structure (generated, for example, by an L-system). The
simplified simulation LODs are created by combining
either sets of child branches or parent-child branch
combinations. The structure for rendering is constructed
from the original tree and can be simplified separately from
the simulation structure. We also provide for smooth
transitions between the SLODs at run-time.

In comparison to other methods for simulation of plant
motion, the distinguishing features of our method are:

• We provide a method for automatically building
a SLOD hierarchy from the articulated structure.

• We provide an error metric for the simulation
error associated with each LOD.

• We provide a method for smooth transitioning
between LODs, accounting for issues such as
divergent motion among child branches.

• Our method can be applied to portions of a tree or
to separate trees, making it fully extensible to
arbitrarily large simulation environments.

2 Previous Work

Plant Modeling: Modeling of plant shape has been a major
area of research for many years. The most fundamental
work in this area has been the work of Lindenmayer and
Prusinkiewicz (see, e.g. [PL90]). Lindenmayer systems, or
L-systems, form the basis for much of the subsequent plant
modeling work. There is a great deal of published work
relating to plant modeling, including detailed descriptions
of parameters that can be used to define specific trees
[Blo85], parameter classes to describe varieties of trees
[WP95], and how plants behave together in ecosystems
[DHL*98]. This is just a small sampling of the relevant
work in these areas. Most of this work, however, has
focused primarily on the physical description of static
models.

Plant Motion: There has been less work focused on the
description of plant motion. Wind is a primary source of
force driving plant and tree motion, and has been the
subject of study on its own [SF92,WZF*03]. Stam
specifically illustrates such wind motion by application to
tree branches [Sta97]. Weber and Penn discuss simulating
tree motion as a system of oscillators, but do not provide
direct examples [WP95]. Sakaguchi and Ohya provide
what is probably the most physically accurate model of
motion [SO99]. A number of other papers have also dealt
with plant motion, either primarily or as a side issue.
Because simulation of plant motion is clearly a time-
intensive process, several of the papers describing general

plant motion have discussed methods for making that
motion interactive [PC01,DCF01,EMF03]. A comparison
of our method with some of these other methods is
provided in section 7.1.

Simulation LODs: SLODs have come into prominence
only in the last few years [Ber97,CF97]. They have
sometimes taken other names—Endo et al. refer to them as
levels of motion detail, or LOmDs [EMF03]. There have
been a wide variety of applications for SLODs. These
include r igid body dynamics and motion
[CIF99,DO01,CAF01], simple collision detection and
response [CH97,ODG*03], particle systems [OFL01], and
hair [WLL*03]. It is likely that future advances will extend
SLOD principles into a number of other areas, as well.

3 Basics and Overview

We give a brief overview of our plant representation and
method for simulating plant motion. We follow that with a
brief overview of our SLOD method.

Though our implementation is unique, the methods for
describing the plants and simulating motion (without any
SLODs) are fundamentally the same as what is found in
other common implementations. In fact, although we
describe our implemented method here, the contributions of
this paper would also apply equally well for many possible
variations in the form of the model description or the
method for simulating motion. For these reasons, we give
only a brief review of our implemented approaches, and
refer the reader elsewhere for more details of these aspects
[WP95,DCF01,SO99].

3.1 Plant Modeling

We describe our plants using an L-system, following the
traditional methods for representing plants. The specific L-
system grammar we implement is a stochastic turtle
interpretation where several parameters can be randomly
scaled. From this L-system we generate an articulated
plant structure. We also provide a more direct method for
generating the articulated structure, following the method
of Weber and Penn [WP95]. Our plant structure consists of
rigid links connected at joints. Flexible segments are
represented as a series of rigid links. We will use standard
tree definitions to refer to these segments: a parent segment
can have one or more child segments arising from it. A
segment at the edge of the tree (with a leaf attached) will be
called terminal.

The basic information specified in our grammar includes:
• The lengths of branches
• The orientation of child branches relative to the

parent
• The strengths of the joints (equivalent to spring

constants, as described below)
• Whether a branch has a leaf attached to the end,

and the area of that leaf
This is the information used to generate our SLODs.

3.2 Plant Motion

Plant motion is driven through the application of external
forces. Generally, this is specified as a wind field, though
there is no reason specific impulses within the plant could
not also be applied. The joints of our model are treated as

298

J. Beaudoin and J. Keyser / Simulation Levels of Detail for Plant Motion

© The Eurographics Association 2004.

angular springs. Force information is propagated
throughout the plant. This creates an oscillatory motion
governed by the bend strengths defined in our L-system..

Note that we actually specify two springs at each joint.
Assuming the parent segment is oriented along the
direction p, and the child along the direction c, one angular
spring resists rotation on the axis p c, and the other resists
rotation along the axis p. (If p and c are parallel we just use
two orthogonal axes perpendicular to p.) This effectively
allows anisotropic bend strengths, enabling us to model
greater resistance to bending in certain directions relative to
the parent axis. No third axis is specified, as we do not
allow branches to twist about themselves. To be more
precise, we should use axes of p c and c(p c), but this
difference is usually minor. In our discussion below and in
our implementation, we generally assign both bend
strengths to be the same, in order to cut down on the
parameter space.

Generally, external force due to wind is applied at the
leaves, and is assumed directly proportional to the area of
the leaf (and the strength of the wind); direction is also
taken into account. This force, applied at the leaf, is then
propagated to the parent branch. This propagation
continues all the way to the root of the tree. Swaying of the
trunk is thus governed by the combined effects of wind at
the leaves being propagated to the trunk. We can also add
in force due to wind directly hitting branches, but find that
the leaf-only approach is better suited for simplification,
and we assume that in the following discussions.

We use an Euler integration scheme to update positions at
each time step based on the velocity from the previous time
step, and update velocities based on the acceleration
(force). Euler integration provides good results, but more
complex integration schemes could potentially be used.

3.3 Overview of Our Approach

We form a sequence of simulation levels of detail. We
follow an approach of working from the outermost
branches (connected to leaves) inward toward the root.
When we have a parent with a single terminal child, we
combine those two segments into a single new (terminal)
segment. When we have a parent with multiple terminal
children, those children are replaced by a single terminal
child. The key to making these replacements is that the
substituted segment must behave similarly (within certain
error bounds) within the simulation. All of this is done as a

precomputation phase. At run-time, the particular amount
of error to be allowed in a simulation is determined, and
based on this, the precomputed SLOD corresponding to
that error level is used. We also take into account how to
move smoothly from one LOD to another to avoid popping
artifacts in the simulation. Figure 2 demonstrates the
SLOD structure for a simplified tree.

It is important to note that the simplification we make is
to the simulation structure. Geometry can be mapped to
the simulation structure (and at the most basic level, they
are usually assumed to be directly related), but
simplifications in the simulation structure do not change the
geometric representation of the object. Thus, the
simulation could be simplified to a single segment, while
the number of polygons rendered for the plant need not
change.

We note that there is no fundamental reason that we must
simplify from the outermost node inward. We could allow
simplification at any level of the tree, and build up a
simplification hierarchy in this way. However, such an
approach would entail a significantly more complex data
structure than can be achieved by simplifying from the
leaves toward the root.

4 Generating SLODs

For a given plant, described as an articulated tree structure,
we will generate a set of simulation levels of detail.

4.1 Branch Simplification

At the heart of the simulation level of detail process are
the local and global methods of branch simplification. We
use two operators on the simulation structure, similar to
vertex decimation and vertex combinations used for
geometric levels of detail. The first is parent/child
combination. Parent branches with only one terminal child
branch can be combined to form a single simplified branch.
The second operator is child/child combination. Here all
terminal children of a branch are simplified to form one
new (terminal) child branch. The global simplification
scheme requires branches to simplify from the tip to the
root of the tree hence both operators require that all child
branches be terminal. Figure 2 shows an example of the
operators.

Using either of the operators requires that new simplified
branches be created. In parent/child combinations the

Figure 2. An overview of the SLODs Constructed for a simple tree-like structure. The “given”
structure at each stage is shown in solid line, and the simplified structure is shown in dashed line.

299

J. Beaudoin and J. Keyser / Simulation Levels of Detail for Plant Motion

© The Eurographics Association 2004.

process involves creating a single terminating branch with a
leaf area that matches the original. Given the approximate
amplitude and frequency of the parent/child segment, the
lookup table created previously can be used to search for
the best single branch parameters (bend strength, and leaf
area) that match that amplitude and frequency. That is, we
fix the length of the new branch, and determine a new leaf
area and bend strength that will closely match the
frequency and amplitude of the original pair of branches.
Figure 3 (top) illustrates this combination.

Child/child combinations are more difficult. Parameters
cannot be directly acquired from the lookup table. The
simulation parameters of the children are combined to
determine the leaf area, bend strength, and position
(including length) of the simplified branch. Leaf areas and
length/position are averaged. The bend strengths are
determined by a length-weighted average among the
children branches. Note that the error introduced in these
child/child simplifications is often significantly more than
for parent/child combinations (see section 4.3 below).
Figure 3(bottom) illustrates this combination.

The force propagated down from a simplified branch
must also be modified to make it match that of the branches
it replaced. We store a SLOD “propagation factor” (pf) for
each simplified branch separately from the original pf,
which is directly derived from bend strengths. When
branches are combined to form a new simplified branch,
the amount of force passed down to the parents must
remain the same. A simplified branch from a child/child
combination will pass down a force scaled by the original
pf’s, taking into account the number of children it replaced.
This gives a pf equal to the sum of the pf’s of the children,
multiplied by the original pf. A simplified branch from a
parent/child combination has a pf given by the product of
the child’s pf with the parent’s original pf.

4.2 Lookup Table Generation

These simulations are performed one time only (not once
per plant), and the data is stored for all future
simplifications. We thus generate a table, indexed by leaf
area and bend strength, that lets us look up single segments
with similar amplitude/frequency characteristics for a given
pair of segments. This information is used later for
determining simplified branches and errors. Since we
bound our error under maximal wind force conditions, our
error, at least in amplitude, will be even smaller under less
force. Although average frequency might vary under
different wind conditions, this is not as wide a variation,
nor is it as noticeable.

To save time in this process, we first generate lookup
tables based on simulations of varied segments. The
lookup tables allow us to closely match a simplified branch
and leaf to a parent/child branch and leaf. We simulate
each combination of a single segment with a single leaf and
pairs of branches (one parent, one child, with one leaf) with
varying bend strengths and leaf areas. We sample 50
increments of bend strength, and 50 increments of leaf
areas. This yields 2500 simulations for branch/leaf and
125,000 simulations for parent/child/leaf. For each
simulation, we apply a steady wind force that is fixed as the
maximum possible wind force in subsequent simulations.
Such simple segments behave as damped oscillators. For
each simulation, we determine (and store) the maximum
amplitude and the average frequency (period) of the
oscillation.

4.3 Error Measurements

Error calculations are the last step of the pre-computation
stage. Basically, for each simplified LOD, we need to have
a measurement of how much error is incurred in the
simulation by using the simplified structure in place of the

Original Simplifie

Rest Position

Max Amplitude

Error

Figure 4. Error computation for
parent/child combinations as a function

Bend
Strength,
Length

Area

Bend

Strength,
Length,

Area

Figure 3. The parent/child (top) and
child/child (bottom) combinations. At left is
original data, at right is the simplified data.
The thick structures show the geometry, the
black lines the simulation structure.

300

J. Beaudoin and J. Keyser / Simulation Levels of Detail for Plant Motion

© The Eurographics Association 2004.

original. Each of the operators has its own error function.
Note that we must accumulate errors as we move through
multiple SLODs from leaves to root.

The choice of error metric is somewhat dependent on the
goals of the simulation. We have chosen a error involving
world space distance between the tips of their branches and
their maximum amplitudes. A metric including information
such as frequency of oscillation, could also be incorporated.
However, we believe the amplitude error on its own is a
good metric since it is directly related to the screen space
error measured in terms of pixels, which is in turn directly
related to the distance of the viewer from the simulation.
That is, we have a direct relationship between error and
distance, using a simpler and simpler level as we move
farther away. Furthermore, we take frequency into account
when determining which simulation parameters to use for
the simplified branch (otherwise, we could just match
amplitude precisely). Variations in frequency intuitively
seem less important than amplitude variations, however, a
more involved user study involving perceptual issues (e.g.
as in [ODG*03]) would be needed.

Parent/child error is straightforward—we know the
difference in amplitude directly from the lookup tables
(modified by the segment length). Figure 4 illustrates this
process.

Child/child combinations need extra attention. Since one
child branch is replacing several children, the error must
account for the maximum possible deviation between any
two children. Child branches can oscillate out of phase and

in opposite directions from each other. Thus, we set the
error as follows: Let MO be the maximum amplitude of any
of the child branches, MS be the maximum amplitude of
the simplified branch. Then the maximum possible error
(difference in the simplified position of any point from the
original) is 2MO-MS. The error bound thus obtained is an
average over time, but is also very conservative (we are
extremely unlikely to have branches moving in opposite
directions like that). Figure 5 illustrates this further.

Calculating the screen space error at every step for every
branch is costly so we usually specify ahead of time a
maximum error. This error is often one pixel (very
restrictive) though if we desire more rapid progression to
lower levels of detail, more error can be allowed—the
examples presented below allow 7 pixels to better show off
the effects. Given camera parameters, the distance to the
camera at which the error is exactly one pixel is stored in
the simplified branch and can be quickly checked at run-
time. Thus each SLOD links directly to distance from the
camera.

5 Using Simulation LODs

At run-time, the tree is traversed and simplified branches
are substituted into the simulation structure.

5.1 Run-Time Error Bounds

As previously described, the error associated with each
simulation level of detail has already been calculated. It is
stored as the distance to the camera in which it is
acceptable, using the predefined simulation error of one
pixel, to use the simplified branch in place of the original.
Note that it is easy to imagine other means of determining
acceptable error bounds besides distance. For example,
distance outside the view frustum or from a point of focus
might be included. Although we focus on distance to the
camera, this is not a fundamental limitation of the
approach.

Traversing the tree at any branch involves several steps.
If the parent has more than one child, the combined
children simplification branch must be considered first. If
it passes (i.e. the error in that branch is less than the limit)
the rest of the tree is represented by this branch. If it fails,
the individual children nodes must be examined
recursively. If a child is not terminal, the child/parent
combination must be considered. Again, if the simplified
branch passes, then no further work needs to be done,
otherwise you use the parent in the simulation and
recursively examine the child.

5.2 Transitioning between LODs

In order to prevent “popping” a smooth transition must
occur when switching from the original branches to the
simplified ones. The opposite direction is less problematic
– replacing a single branch in the simulation with more
than one branch merely entails initializing the new
branches with the state information (such as current
position/orientation/velocity) from the simplified branch.

To describe the transitions, we will describe an idealized
situation, however other transit ions follow
straightforwardly. Assume that the original tree is at the
highest level of detail at the minimum camera distance, 0.

Rest Position

Max Amplitude

Original Simplified

Figure 5. Error measurement for child/child
combinations. The maximum amplitude
differences for the original and simplified
branches (top) are determined as in the
middle. Note that children branches can vary
independently (bottom).

301

J. Beaudoin and J. Keyser / Simulation Levels of Detail for Plant Motion

© The Eurographics Association 2004.

At some distance D the first simplified branch replaces
some number of branches. We thus want to make a
smooth transition, from the original simulation set at
distance 0, to the first level simplification at distance D. At
the distance D, the original branches must be behaving in
the same way as the simplified branch.

In the case of a parent/child combination we can make
this transition smoothly by interpolating between the key
properties:

Node: Property Value at
distance 0

Value at
distance D

Parent Bend
Strength

Original Bend
Strength

Simplified
Branch Bend
 Strength

Angle
From
Parent

Original Angle
From Parent

Simplified
Branch Angle
From Parent

Child Bend
Strength

Original
Bend Strength

MAX Bend
Strength

Angle
From
Parent

Original Angle
From Parent

0 Angle From
Parent

Leaf Area Original Area Simplified
Leaf Area

At distance D the parent branch and leaf should behave
just as the simplified branch and leaf. The child branch
should have no angle offset and no angular velocity relative
to the parent. At distance D the current position and
velocity of the parent branch are transferred to the
simplified branch.

For the children combination such an interpolation
approach is not possible. Instead, we transition by
beginning early simulation of the simplified branch. At
distance 0, the simplified branch will be simulated but not
processed for rendering. From 0 to D the angle offset of
the child branches will be an interpolation of their natural
offset and the offset of the simplified branch. At the
distance D the simplified branch can now be simulated and
processed for rendering in place of the original branches.

Note that although the inverse transition is less
problematic, we can have a more cohesive implementation
by using this linear interpolation approach in both
directions. Thus, moving from a simplified branch toward
original branches just interpolates in the other direction.

Also note that if there is rapid motion in the program, we
may encounter a problem where we would normally
transition between several LODs within a couple of frames.
Since this could lead to awkward transition effects, we
incorporate hysteresis in the system by forcing transitions
from one LOD to another to take place over several frames.

5.3 Combining Simulation and Geometric LODs

Because our SLOD method affects only the simulation
structure of the plant, the geometric rendering can be
handled as a separate issue. Since the situations where we
desire SLODs are often those where geometric LODs are
also useful, the combination of these two methods is thus of
interest. It would be unfortunate if geometric LODs had to
be tied directly to simulation LODs. Optimal geometric
LODs might be significantly different from the combined

branches in our SLODs. Fortunately, we can treat these two
somewhat independently. Note that our current
implementation does not incorporate geometric LODs – we
present this to highlight the issue.

Usually, the geometric LOD and the simulation LOD are
closely tied together at the most detailed level (usually the
simulation is based on the geometric information). As the
two LOD approaches diverge, however, we need to be able
to map from the simulation structure to the geometric
structure in order to determine what needs to be drawn on
screen. This is relatively easily handled, though at a cost of
greater storage overhead, and some additional run-time
computation.

Basically, each geometric primitive must be able to
update its position from the simulation structure. If we
consider the most detailed geometric level, it is easy to
determine a new position for each point based on any
simplified geometric structure. The unsimplified regions of
the model have a clear correspondence, and the simplified
portions can be derived directly from the orientation
information of the simplified branch (treating the geometry
from that point on as static).

The key, then, is to relate the simplified geometric LOD
to the original geometric mesh. This will likely involve
some additional storage overhead, and some additional run-
time computation, such as averaging between points in the
original mesh. Nevertheless, it offers an opportunity for
the geometric LOD to be dealt with independently.

6 Implementation and Results

The method that we have described here has been
implemented in C, and tested on an AMD Athlon 2700
with 512 MB of RAM and a GeForce Ti 4200 video card.
Our implementation allows for the description of a general
L-system, with parameters allowing us to define both
tree/plant shape and bend strengths. Our system is general,
allowing us to bypass the L-system description if desired;
e.g. we can (and did) adapt the parameters of Weber and
Penn [WP95] to model specific species of trees.

Figures 1, 5 and 6 demonstrate that our approach is an
effective method for achieving faster overall simulation
while minimizing the visible error in simulation. In
addition, the supplemental video demonstrates our
approach in action.

Figure 6. Tree height needed to maintain one
pixel error.

0

50

100

150

200

0 1000 2000 3000 4000 5000

Number of Nodes

T
re

e
 H

e
ig

h
t

302

J. Beaudoin and J. Keyser / Simulation Levels of Detail for Plant Motion

© The Eurographics Association 2004.

As far as timings, we first need to emphasize that
plant/tree motion simulations can vary from the very simple
to the very complex. Regardless of the simulation method
used, it is possible to give enough trees with enough
complexity with the right view to make the simulation run
slower than any given speed (or conversely, to introduce
more error at a fixed speed). Likewise, if simple enough
plants are used, any method will seem fast. For this reason,
we discuss our SLOD method in terms of the relative
reduction in the total amount of simulation required—this
should directly reflect performance improvement,
regardless of the system described.

To give some sense of the timings, and the speedups
obtained through our method, refer to Figure 6. As can be
seen there, the use of SLODs allows significant
improvements in the simulation frame rates achieved.

Using SLODs does entail additional storage cost. In
effect, each branch (or cluster of branches) must store the
parameters for a simplified branch anchored at that
location. The total amount of storage required for the
SLODs, though, is less than the amount of original data –
i.e. an SLOD-enhanced tree uses less than twice the storage
of the original tree. This does not include space for the
lookup tables, which are not associated with any single
plant and are not used at run-time.

7 Conclusion and Future Work

We have presented a method for computing and using
simulation levels of detail in the simulation of plant motion.
Our method allows us to precompute SLODs with
guaranteed error bounds. At run-time, we can create
smooth transitions between LODs to achieve faster
simulation times, with guaranteed bounds on the error.

7.1 Comparison with Other Methods

We briefly compare our method with some of the more
prominent prior methods. Sakaguchi and Ohya provide a
more detailed model of motion than we use, however they
provide no SLOD-like improvements [SO99]. The work of
Perbet and Cani [PC01], while certainly implementing a
SLOD approach, is limited to the motion of simple grass.
Similarly, the level of detail provided in the work of Endo
et al. is geared toward less complex plants, and does not
support very complex LODs [EMS03].

Our work is perhaps most similar to that of Di Giacomo
et al. [DCF01]. Both approaches use a similar physical
motion model, use a blend between LODs, allow for
multiple LODs in the same tree, and use a “branch to root”
simplification method. There are several major differences,
however. We obtain a hierarchical physically-based
simulation, whereas they switch from a single physical
simulation to procedural (and then to static). We maintain
an error measurement for the simplification, giving more
rigorous control of the error introduced. Finally, by
gradually degrading our physical simulation (as opposed to
swapping with a procedural animation) we allow the
simulation state to blend over time more smoothly.

7.2 Future Work

 Our method is actually very modular—we can substitute a
different motion simulator, error metric, or structure

generator without affecting the fundamental idea. This
leaves a number of avenues open for future work.
• The motion model we have implemented assumes

spring-connected rigid bodies. We may be able to
achieve better motion results by modeling branch
segments as oscillating flexible rods.

• Error computation in our method is conservative. It
may be that by considering relationships between
errors, we can achieve greater simplification without
introducing noticeable simulation changes.

• As stated before, we can take wind effects directly on
branches into account in our motion simulator, but
this is not currently incorporated into our
simplification scheme.

• Exploration of different error metrics and methods
for setting error bounds would be interesting.

• We do not incorporate collision detection into our
current approach. On complex trees, this may be too
computationally intensive, but is worth exploring.

• We do not include procedural animation as an option
in our current simulation, however we see no
fundamental reason it could not be included in a
similar manner as Di Giacomo et al. [DCF01].

References

[Ber97] Berka, R.: Reduction of Computations in
Physics-Based Animation Using Level of
Detail. 13th Spring Conference on Computer
Graphics, ed. Wolfgang Strasser (1997).
pp.69-76.

[Blo85] Bertails, F., Kim, T-Y., Cani,, M-P.,
Neumann, U.: Adaptive Wisp Tree: A
Multiresolution Control Structure for
Simulating Dynamic Clustering in Hair
Motion. Proc of the 2003 ACM
SIGGPRAH/Eurographcis Symposium on
Computer Animation (2003). pp. 207-213.

[Blo85] Bloomenthal, J.: Modeling the Mighty
Maple. Proceedings of ACM SIGGRAPH,
(1985).

[CH97] Carlson, D., Hodgins, J.: Simulation Levels
of Detail for Real-Time Animation. Proc. of
Graphics Interface (1997).

[CAF01] Chenney, S., Arikan, O., Forsyth, D.: Proxy
Simulations for Efficient Dynamics. Proc. of
Eurographics 2001, Short Presentations,
(2001).

[CIF99] Chenney, S., Ichnowski, J., Forsyth, D.:
Dynamics Modeling and Culling. IEEE
Computer Graphics and Applications
(March/April 1999), pp. 79-87.

[CF97] Chenney, S., Forsyth, D.: View Dependent
Culling of Dynamic Systems in Virtual
Environments. Proc. of Symposium on
Interactive 3D Graphics. (1997), pp. 55-58.

[DCS*02] Deussen, O., Colditz, C., Stamminger, M.,
Drettakis, G.: Interactive visualization of

303

J. Beaudoin and J. Keyser / Simulation Levels of Detail for Plant Motion

© The Eurographics Association 2004.

Complex Plant Ecosystems. Proc. of
conference on Visualization ’02 (2002) pp.
219-226.

[DHL*98] Deussen, O., Hanrahan, P., Lintermann, B.,
Mech, R. Pharr, M. Prusinkiewicz, P.:
Realistic Modeling and Rendering of Plant
Ecosystems. Proc. of SIGGRAPH ’98 (1998)
pp. 275-286.

[DCF01] Di Giacomo, T., Capo, S., Faure, F.: An
Interactive Forest. Proc. of Eurographics
Workshop on Computer Animation and
Simulation (2001), pp. 65-74.

[DO01] Dingliana, J., O’Sullivan, C.: Levels of detail
in physically based real-time animation.
ERCIM News (special issue on Computer
Graphics and Visualization), No. 44.
(January 2001).

[EMF03] Endo, L., Morimoto, C., Fabris, A.: Real-time
Animation of Underbrush. Proc. of 11th

International Conference in Central Europe
on Computer Graphics, Visualization, and
Computer Vision (2003).

[OFL01] O'Brien, D., Fisher, S., Lin, M.: Automatic
Simplification of Particle System Dynamics.
Proc. of IEEE International Conference on
Computer Animation (2001), pp. 210-219.

[ODG*03] O’Sullivan, C., Dingliana, J., Giang, T.,
Kaiser, M.: Evaluating the Visual Fidelity of
Physically-Based Animations. A C M
Transactions on Graphics (Proceedings of
Siggraph 2003), (August 2003), vol. 22, no.
3, pp.

[Ono97] Ono, H: Practical experience in the physical
animation and destruction of trees.

Eurographics Workshop on Animation and
Simulation (1997), pp. 149-159.

[PC01] Perbet, F., Cani, M.: Animating Praries in
Real-Time. Proc. of ACM Symposium on
Interactive 3D Graphics (2001).

[PL90] Prusinkiewicz, P., Lindenmayer, A.: The
Algorithmic Beauty of Plants. Springer-
Verlag, 1990.

[SO99] Sakaguchi, T., Ohya, J.: Modeling and
Animation of Botanical Trees for Interactive
Virtual Environments. Proc. of Symposium
on Virtual Reality Software and Technology
(1999), pp 139-146.

[SF92] Shinya, M., Fournier, A.: Stochastic Motion
– Motion Under the Influence of Wind. Proc.
of Eurographics (1992), vol. 11, no. 3 pp.
119-128.

[Sta97] Stam, J.: Stochastic Dynamics: Simulating
the Effects of Turbulence on Flexible
Structures. Proc. of Eurographics (1997), vol.
16, no. 3, pp. C159-C164.

[WLL*03] Ward, K., Lin, M., Lee, J., Fisher, S., Macri,
D.: Modeling Hair Using Level-of-Detail
Representations. Proc. Of Computer
Animation and Social Agents (2003).

[WP95] Weber, J., Penn, J.: 1995. Creation and
Rendering of Realistic Trees. Proc. of the
22nd Annual Conference on Computer
Graphics and Interactive Techniques
(SIGGRAPH ’95) (1995), pp. 119-128.

[WZF*03] Wei, X., Zhao, Y., Fan, Z., Li, W. Yoakum-
Stover, S. Kaufman, A.: Blowing in the
Wind. Proc. of Symposium on Computer
Animation (2003). pp. 75-85.

Figure 7. Multiple simulation LODs generated for a tree. The original tree had 77,141 branches and
simulated at 2 fps. The SLODs shown here (left to right): 25,434 branches, 6 fps; 12,761 branches, 10
fps; 5654 branches, 21 fps; 1709 branches, 62 fps; 714 branches, 81 fps, 110 branches, 85 fps.

304

