
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Better with Bubbles: Enhancing the Visual Realism of
Simulated Fluid

S. T. Greenwood and D. H. House

Visualization Laboratory, Texas A&M University, USA

Abstract

We present a method for including the visual effect of bubbles in a computer graphics fluid simulation, thus en-
hancing the illusion of realism for a splashing fluid. Previous fluid simulation methods have not included bubbles.
Bubble creation is integrated into the particle level-set fluid simulation algorithm. Individual bubbles are approx-
imated by spheres, which form more complex shapes where they intersect. The rendering of bubbles and fluid are
integrated to create the appearance of one continuous surface. At the fluid-air boundary, we integrate bubbles
whenever level-set marker particles pass from from the outside to the inside of the fluid. Thus, these particles rep-
resent air that has become trapped within the fluid surface. In addition, we detect empty pockets within the fluid,
that are often formed due to turbulence, and create bubbles within this space. This is an inexpensive way of giving
the impression that the air trapped in air pockets has become bubbles. Photo-realistic images of simulation results
are rendered with a raytracer that has been enhanced to include caustics, and to handle bubble-bubble interfaces.
Comparison of these images with images rendered without bubbles supports our position that the simple addition
of bubbles to a fluid simulation greatly enhances visual realism.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Raytracing, I.6.8 [Simu-
lation and Modeling]: Visual

1. Introduction

Since we experience water in so many ways in our lives, sim-
ulating water for computer graphics is both important and
highly challenging. Recent methods have produced succes-
sively more realistic results but still look somewhat artifi-
cial. Figure 1 illustrates our thesis that the visual appeal of
splashing water can be greatly enhanced by the inclusion of
bubbles.

Our approach is to integrate the automatic production of
bubbles into a fluid simulation, and then to move these bub-
bles with the water volume or its surface. We exploit marker
particles, that are used to maintain detail in the fluid sur-
face level set. Some of these particles escape out of the sur-
face and in previous work have been used to generate splash
droplets. We do the converse. Particles escaping from the
air into the fluid represent air volume that has been trapped
inside the liquid, indicating where bubbles might form. In
addition, we detect trapped air pockets in the fluid, collapse
them, and convert them into bubbles.

Figure 1: Splashing water with bubbles.

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

S. T. Greenwood & D. H. House / Better with Bubbles

2. Previous Work

There has been considerable earlier work on fluid simula-
tion and some on bubbles and foam. The method presented
in this paper synthesizes approaches in these two directions,
providing for the automatic integration of bubbles and foam
into a simulated fluid. The work intentionally avoids sim-
ulating bubble formation using a surface tension model, in
favor of a more computationally tractable approach that is
only first-order physically reasonable, while producing visu-
ally appealing results. Thus the extensive literature (for ex-
ample see [BKZ92, LNS∗94]) related to bubbles and surface
tension is not surveyed.

2.1. Fluid simulation

The use of the Navier-Stokes equations for the simulation
of complex water motion was introduced to the computer
graphics community by Foster and Metaxes [FM96]. They
used the marker and cell method of Harlow and Welch
[HW65] to create 3D animations of water. Marker particles
were distributed throughout the computational grid of the
simulation and then transported by the velocity field of the
fluid. Cells with at least one particle were treated as fluid
cells, with surface cells being the set of all fluid cells ad-
jacent to at least one empty cell. Chen et al. [CJR95] im-
proved this method by placing marker particles only near
the surface of the fluid. Stam [Sta99] introduced a semi-
lagrangian treatment of the advection portion of the Navier-
Stokes equations allowing large timesteps without causing
instability. Foster and Fedkiw [FF01] introduced a hybrid
model that combined a level set with surface marker parti-
cles. The level set is defined implicitly by a function φ of
spatial position, whose magnitude measures distance from
the surface and whose sign is positive outside of the fluid and
negative inside. The level set maintained the overall shape of
the surface, while the particles were used to maintain surface
detail. The markers and level set were advanced in smaller
timesteps than that used for the fluid in order to reduce the
error in the representation of the surface. Most recently, En-
right et al. [EMF02] proposed the use of additional marker
particles outside of the liquid volume in order to maintain
surface detail coming from columns of air formed in the
fluid. This is the method that we use for our fluid simula-
tions.

2.2. Bubbles and foam

Bubbles and foam have been studied extensively by mathe-
maticians, mainly because of their surface minimizing prop-
erties. Analytical solutions for the geometry of bubble clus-
ters up to the size of three bubbles have been found. Glassner
[Gla00] modeled these groups with CSG operations. Numer-
ical methods must be used for larger bubble clusters, since
their liquid films are not spherical. Bolton simulated foams
in two dimensions as a network of curved films [Bol90].

Hong and Kim [HK03] simulated the behavior of individual
bubbles for computer graphics applications by integrating
bouyancy forces to correct the fluid velocity field. However,
they did not treat the interaction of bubbles or the creation
of foams. Durian created a model that uses a group of inter-
acting bubbles to represent foam [Dur95, Dur97]. Differing
from the network based approaches, Durian’s method sim-
plifies the simulation of the foam because it does not have
to deal with changes in topology. Using similar techniques,
Kück et al. simulated and rendered foams in 3 dimensions
[KVG02]. Our method for the simulation and rendering of
bubbles is largely based on their techniques.

3. Creating Bubbles from Escaped Marker Particles

In the real world, bubbles are created whenever air is trapped
inside of a fluid. When these bubbles reach the surface, they
persist because of the surface tension in the film of water
surrounding the bubble acting against the pressure within the
bubble. It is possible to add surface tension effects to fluid
simulations. The air could be simulated as a second fluid,
and bubbles could be simulated along with the level set and
underlying velocities. However, the film of the bubble when
it reaches the surface is too fine to be simulated with the
underlying computational gird typically used for fluid simu-
lation.

In our method, we avoid the need for the fine detail nec-
essary to simulate bubbles by simply creating spherical bub-
ble objects that are moved by the velocities within the fluid
simulation. Our bubbles are passive, and have no effect on
the underlying fluid simulation. Our assumption is that in a
moving liquid, the effects of relatively small bubbles are not
significant enough to cause a noticeable change in the behav-
ior of the fluid. At the surface, a single bubble has miniscule
mass compared to the water itself, so it will not significantly
disturb water that is moving. If the water is still, a single
bubble could cause noticeable ripples, but this is not typi-
cally a problem that we would address with a full Navier
Stokes simulation.

Since a bubble is part of the fluid, when it moves the mo-
tion one sees simply reflects the motion of the surface of the
fluid. Since we represent this detail of the surface with the
bubble object, the bubble object moves instead of the level
set representation of the fluid (which is too coarse to repre-
sent a thin bubble film). Using passive bubbles is simpler and
is more practical than the alternative of allowing the bubbles
to create forces that directly affect fluid velocities. Once the
fluid simulation is run and saved, the bubble simulation can
be tweaked to the needs of the animator. If the bubbles did
affect the motion of the fluid, any change to the bubble con-
figuration would require rerunning the fluid simulation.

c© The Eurographics Association 2004.

288

S. T. Greenwood & D. H. House / Better with Bubbles

3.1. Bubble creation

Our method of bubble creation is integrated into a fluid sim-
ulation based on the method of Enright et al. [EMF02]. We
create bubbles whenever air marker particles cross the fluid-
air interface and get trapped inside the fluid. When a particle
that represents air moves too far across the interface, it is a
good indication of where there might be mixing of air and
water. The bubble simulation created is independent of how
the Navier-Stokes equations are solved, but it depends on
the hybrid particle-level set method for the representation of
a fluid surface, which uses marker particles representing the
outside of the fluid.

Since the air is not simulated in the particle-level set
method, air pockets that form are ignored by the fluid sim-
ulation and are simply engulfed by fluid. If this is notice-
able, it is very undesirable. In reality, the air pockets would
become bubbles and would not lose volume. If we did not
detect air pockets, the air pocket would shrink, as the fluid
velocities flow inward. This would push the marker parti-
cles into tighter and tighter spaces, and when the air pocket
is finally totally empty, a few bubbles would form from the
escaped marker particles. That much volume loss is very un-
realistic, and created a challenge for our method.

Fortunately, it is straightforward to detect these air pock-
ets by looking for cells that do not contain fluid and are not
connected to the air outside of the fluid. This is achieved
by a flood fill algorithm [FvDFH90]. The cells are treated
like pixels. Those with no fluid are “painted” one “color,”
which designates them as air cells. All other cells, includ-
ing wall cells, are “painted” another “color”. The fill algo-
rithm is started from an empty cell that is guaranteed to be
in the atmosphere (such as a cell at the top of the simula-
tion). Thus, all “painted” cells are considered part of the
atmosphere. Empty cells that are not “painted” the atmo-
sphere “color” are considered parts of air pockets. Figure 2
illustrates the only modification needed to the basic seed fill
algorithm. This is that cells diagonally adjacent to an atmo-
sphere cell should be included only if the level set implicit
function value φ between the cells is positive (i.e. outside of
the surface). If φ is positive, the air extends diagonally be-
tween cells, as seen in the left hand diagram. Otherwise, the
diagonal of the cell is blocked off with fluid, as seen in the
right hand diagram.

During simulation, the air pockets are detected before the
level set is reinitialized and after it is moved and corrected.
When an air pocket is detected, we convert the empty cells
to fluid by making the level set implicit function value φ neg-
ative (i.e. inside the fluid). Since the marker particles within
these cells are now far from the interface, they are considered
escaped and become bubbles. This gives the visual appear-
ance that the air pocket changes into bubbles. The velocities
of the cells in the air pockets are initialized to reasonable
values through the extrapolation of surface velocities in the
surface conservation step of the particle-level set method.

Figure 2: Diagonal Inclusion Cases

Atmosphere cells are marked in yellow. The fluid is marked
in blue. Case when diagonal cell should be included with

atmosphere (left) and when it should not (right).

3.2. Avoiding unrealistic bubbles

We found that we needed to avoid creating bubbles from es-
caped marker particles in cases where it would be unlikely
for bubbles to form. One precaution taken is to create a bub-
ble only if the curvature of the surface is negative at the posi-
tion of the particle. Since bubbles are supposed to represent
trapped air, they should not be formed when there is a posi-
tive curvature (i.e convex outward).

In the particle level set method, particles are assigned
radii, and these radii are adjusted in order to keep the sur-
face smooth. It is more probable that particles of the mini-
mum radius will be far enough from the level set so that they
are considered “escaped.” Our experiments showed that, in
many of these situations, it is not appropriate for bubbles to
form, so we use caution when using these small particles to
create bubbles. Since a particle with radius larger than the
minimum represents a larger move of the surface, we always
accept these particles. Bubbles that are created from parti-
cles with the minimum radius are marked. Once all of the
bubbles are created, we check that new bubbles created from
small particles are in contact with those created from larger
particles. If there is no contact, then we remove the small-
particle bubbles.

3.3. Bubble size

In our method, the placement and size of bubbles is initially
based on the position and radius of escaped marker parti-
cles. In the particle-level set method, the radius of a particle
is always between 0.1 and 0.5 of the cell width. Thus, chos-
ing bubble radius directly from particle radius would create
extremely tiny bubbles for fine grids. Additionally, if the es-
caped particle’s radius were simply scaled up by a constant
value, there would not be enough variation in bubble size.

Bubble radii could simply be generated randomly, but
there is valid information in the marker particle radii. For
common splashing and sloshing, a good proportion of the es-
caped marker particles are small. For bubbles created from
air pockets, a significant proportion of the escaped marker

c© The Eurographics Association 2004.

289

S. T. Greenwood & D. H. House / Better with Bubbles

particles have a radius of the maximum size. It makes sense
for large air pockets to create larger bubbles, so bubbles cre-
ated from marker particles with the maximum radius should
have a larger radius on average than bubbles created from
marker particles with the minimum radius.

Our method generates bubble radii based on a gaussian
distribution with mean and standard deviation determined
by the radius of the marker particle. Particles with the max-
imum radius create bubbles with one mean and standard de-
viation. Particles with the minimum radius create bubbles
with smaller mean and standard deviation. We interpolate
between these extremes based on particle radius. Random
values that are too large or small are recalculated until they
are an appropriate size (as determined by user defined pa-
rameters). It is important that bubbles with sizes that are too
small to be sampled effectively by normal raytracing should
be avoided (unless there is a special case for rendering these
bubbles). This method effectively creates bubbles of varied
sizes related to the radius of the marker particle. As shown
in Figure 3, this method is independent of the cell width and
grid size, so that similar bubbles will be created for different
grid resolutions.

Figure 3: Bubbles created in different grid resolutions

30x30 grid (left) and 60x60 grid (right), note that bubble
sizes are similar.

3.4. Bubble merging and popping

It should be noted that the radii of adjacent marker parti-
cles can overlap. Further, if the bubbles are larger than the
original marker particles, then there can be significant over-
lap in the created bubbles. During bubble creation, it might
make sense to merge heavily overlapping bubbles into larger
bubbles. Also, bubbles that meet in the interior of the fluid
might merge into larger bubbles. We chose to ignore these
situations. Since we model bubbles with spheres, larger bub-
bles are visually undesirable (as will be discussed in the last
section). We do remove bubbles that are completely encom-
passed by other bubbles.

A real bubble pops when one of its surface films drains
too much, becomes thin and breaks. This can be modeled
by removing bubbles randomly. The larger the surface area,
the more likely it is that a bubble is going to pop, so larger
bubbles pop sooner than smaller bubbles. When a bubble is
adjacent to an obstacle, there is less surface area of film and

thus less area to break. We let the lifetime of a bubble be

L =

{
0, rb ≤ rs

α (rb−rs)
(rl−rs)

, rb > rs
, (1)

where rb is the bubble’s radius, rs is the minimum radius, rl
the maximum radius, and α is a tunable scale factor. Then at
each timestep in the simulation, the probabality that a bubble
is removed is

min(
(1+L)h

T
,1.0),

where T is the bubble’s current lifetime and h the simula-
tion timestep. Bubbles in contact with obstacles tend to last
longer, so we use a different lifetime parameter α for bubbles
in contact with walls. Since it is not possible for bubbles to
“pop” while inside the fluid, only bubbles that have reached
the surface are candidates for removal.

3.5. Particle density and creation of bubbles

Since there are different densities of marker particles per vol-
ume, we decided to make the number of bubbles formed de-
pendent on volume and not on grid resolution. A similar fluid
simulation with twice the resolution in all dimensions has
eight times as many maker particles per unit volume for the
same number of marker particles per cell. This is a problem
as the finer grid would tend to create more bubbles than the
coarser grid. For rapid testing, it is especially useful to work
with coarser grid sizes, so consistency across resolutions is
important. A marker/volume density is chosen in which all
escaped particles are considered to create bubbles. In the step
where bubbles are created, the ratio between the desired and
the actual marker/volume densities determines the probabil-
ity of bubble creation. This assures that for a simulation with
eight times the desired marker particle density, we only use
one on average eighth of the escaped marker particles to cre-
ate bubbles.

4. Bubble Simulation

4.1. Simulation of foams

We based our foam simulation on the methods outlined by
Kück et al. [KVG02]. This subsection outlines their ap-
proach. The exact geometry of foam films is not simulated.
Instead, bubbles are simulated by spheres of fixed radii and
are moved according to a set of simulated forces.

As shown in Figure 4, when bubbles are in contact, attrac-
tive and repelling spring forces are created to cause them to
overlap and appear to be part of a foam structure. The at-
tractive and repelling forces are set so that they cancel each
other out when the bubbles overlap by the desired amount.
Similar attractive and repelling forces are applied between
bubbles and obstacles.

When two bubbles are in contact, the repelling force of

c© The Eurographics Association 2004.

290

S. T. Greenwood & D. H. House / Better with Bubbles

Figure 4: Attractive forces acting on touching bubbles.

bubble i on bubble j is

Fr
i j = kr(

1
||pi − p j|| −

1
li j

)(pi − p j), (2)

where kr is a user defined strength coefficient, pi and p j are
the positions of bubbles i and j, and li j = ri + r j is the rest
distance between the bubbles.

The attractive force

Fa
i j = −kacncd(pi − p j)/||pi − p j||, (3)

between bubble i and bubble j depends on how many other
bubbles a bubble is in contact with. If Ni is the set of bubbles
overlapping sphere i, the coefficient

cn =
1/|Ni|+1/|Nj|

2
.

This makes the attraction force smaller for bubbles in large
clusters. Also, the coefficient

cd =
||pi − p j||−max(ri,r j)

min(ri,r j)
.

makes the attractive force a nonlinear function of distance. It
is zero when the center of a smaller bubble rests on the edge
of a larger bubble, and increases when the distance is larger.
It becomes negative when the larger bubble encompasses the
center of the smaller bubble, changing the attraction force to
a repelling force that prevents bubbles from overlapping too
much.

The viscous force on bubble i from other bubbles is

Fv
i = kv(v̄i − vi), (4)

where kv is an adjustable parameter, vi is the velocity of bub-
ble i and v̄i is the average velocity of bubbles in contact with
bubble i. The friction force between bubble and a barrier ob-
ject is defined similarly. Gravity is a constant force Fg acting
on all bubbles. Air damping is

Fd
i = −kdvi, (5)

where kd is a user-defined parameter.

It is assumed that the bubbles are massless, which means
that the sum of all forces must be zero, and allows a direct
solution for velocity. From Equations 2 through 5 we get the
explicit solution

vi =
kvv̄i + kov̄o

i +Fs +Fg

kv
, (6)

where Fs is the sum of all attracting and repelling "spring"
forces.

4.2. Coupling bubble and fluid simulations

In order to incorporate the bubble simulation model of Kück
et al. [KVG02] into the fluid simulation, we have to add
forces from the fluid on the bubbles.

Bubbles within the fluid are subject to a force due to fluid
pressure. Foster and Metaxes [FM96] modeled buoyant ob-
jects that were subject to a force related to the negative gradi-
ent of the pressure times the volume. In our model the pres-
sure force on bubble i is

F p
i = −Kp∇piVi, (7)

where pi is the pressure at the position of the bubble, Vi is
the bubble’s volume, and Kp is a user defined parameter that
adjusts the contribution of pressure on the bubble’s motion.
Since our forces are modeled linearly, for large bubbles, ve-
locities can get unrealistically large. For the calculation we
clip the volume Vi to a user defined limit to keep bubbles
from moving unrealistically fast.

The other fluid force on bubbles is due to the viscosity of
the fluid. The viscous force on bubble i is

Fv
i = Kv(ui − vi), (8)

where ui is the velocity of the fluid at the position of the
bubble, and Kv is a user-defined coefficient of viscosity.

4.3. Bubble forces in different areas

Depending on a bubble’s location with respect to the fluid’s
surface, different forces will be acting. Figure 5 shows the
four distinct regions that we consider: below, adjacent below,
adjacent above, and above the surface.

Figure 5: Bubble regions.

Above the surface (left), adjacent above (middle left),
adjacent below (middle right), and below the surface

(right). Fluid surface interface is marked in red.

A bubble is considered to be in the below surface region
when the level set implict function value φ at the position
of the bubble is below a negative multiplier of the bubble’s
radius. This means that the bubble must be a smaller distance
than its own radius from the surface to be considered at the
surface. The multiplier must be between 0 and -1. We used

c© The Eurographics Association 2004.

291

S. T. Greenwood & D. H. House / Better with Bubbles

-0.1 which seemed to work well. If the bubble’s negative
radius were used as the threshold value of φ, a bubble below
the surface that is adjacent to an obstacle would incorrectly
be considered to be at the surface, as in the rightmost bubble
in Figure 5. Below the surface of the fluid there is only a
repulsion force between bubbles [KVG02]. In addition, there
is no friction force between bubbles or objects, and gravity
will not have significant impact. Thus, below the surface, the
solution for velocity is

vi =
1

Kv
(Kvui +Fs

i +F p
i), (9)

where Fs omits all attractive forces.

If the value of φ at a bubble’s position is below zero but
greater than the negative of the bubble’s radius, then that
bubble is in the adjacent below the surface region. When
bubbles are at the surface, there is an attraction force be-
tween bubbles that are in contact, and their friction is no
longer negligible. Viscous interactions with other bubbles
cause a bubble’s velocity to be dependent on the previous
velocities of its neighboring bubbles. This dependency on
previous states is undesirable with the massless assumption.
Instead, we use the current velocities of the fluid at the po-
sition of the adjacent bubbles instead of the velocity of the
adjacent bubbles from the previous timestep. Thus, the fric-
tion force is

F f
i = Kf (ūi − vi) (10)

where ūi is the average of the fluid velocities at bubbles in-
tersecting bubble i. Averaging the fluid velocities rather than
the bubble velocities is reasonable at the surface, since there
a bubble’s velocity is most influenced by viscous interaction
with the fluid at that point. Here, pressure simply pushes the
bubble up to the surface. Thus, bubble velocity adjacent be-
low the surface is

vi =
Kvui +Kf ūi +Fs

i +F p
i

Kv +Kf
. (11)

If the bubble’s position is between zero and the bubble’s
radius, then that bubble is in the adjacent above the surface
region. The calculation of velocity is the same as in the adja-
cent below region except that Fg (gravity) is substituted for
F p (pressure) in Equation 11.

Once the value of φ at a bubble position is greater than that
bubble’s radius, the bubble is no longer in contact with the
fluid. These bubbles may be “popped” because water bub-
bles cannot persist away from the water’s surface.

4.4. Simulation scheme

The particle-level set surface is updated on a sub-cycle of
the timestep used to advance the Navier-Stokes equations,
and the bubble simulation is a sub-cycle of the timestep used
to update the fluid surface. This means that the timestep
used while simulating the bubbles may be smaller than the

timestep used to move forward the level set and marker par-
ticles. The timestep h that we use is regulated by the CFL
condition

h < rmin/vmax, (12)

where rmin is the smallest bubble radius, and vmax is the
largest bubble velocity. For simulating our bubbles we used
an Euler timestep 100 times smaller than this CFL condition.
Since the simulation of the bubbles is much faster than the
fluid simulation, it did not significantly increase run times,
and this guarantees that bubbles cannot miss contact with
each other. The bubble simulation step comes after the re-
initialization of the level set. At this point, all of the new bub-
bles for this timestep have been created. When the level set is
advanced, we save the old level set. This allows us to know
the current value of the level set implicit function φ at any
point in the bubble subcycle by interpolating between pre-
vious and past values. The more accurately we know where
the surface of the fluid is during a timestep the better, as
the forces applied to a bubble vary drastically in relation to
its position relative to the fluid surface. This is because the
transition of a bubble between different regions is treated as
a discrete event.

5. Bubble Rendering

5.1. Rendering in Kück et al.

Kück et al. [KVG02] render a contiguous foam structure
from an arbitrary configuration of spherical bubbles as
shown in Figure 6. This subsection explains their method.
The foam is ray traced and calculations are made at each
intersection of a ray with the spheres. With time saving ap-
proximations, they succeeded in rendering foams on the or-
der of several thousand bubbles, as seen from a medium dis-
tance, in reasonable time.

Figure 6: Making spheres appear to be foam.

Sphere representation (left) and corresponding foam
structure (right).

No refraction is calculated at a bubble film. The assump-
tion is that the film is too thin to noticeably change the di-
rection of a light ray. They use an approximation for fresnel
reflections to shade the bubble’s film. The Fresnel term is
the ratio of reflected to refracted non-polarized light from
a dielectric (non-conducting surface) [FvDFH90]. This ap-
proximation to the fresnel term is

f = 1−N · I, (13)

where N and I are unit vectors in the direction of the surface

c© The Eurographics Association 2004.

292

S. T. Greenwood & D. H. House / Better with Bubbles

normal and the incident light. Figure 7 demonstrates that this
creates a smooth transition from totally reflective to totally
refractive behavior.

Figure 7: Bubble shader using approximated Fresnel term.

When two or more bubbles overlap, their goal is to create
the appearance of a contiguous foam structure. When a ray
passes through two overlapping spheres, the film between
the them is approximated. The approximated film’s position
is taken to be the average of the two hit points on the spheres,
and the normal is the average of the normals at the hit points.

No shading calculations are done at the actual surfaces of
the spheres where they overlap. This appears correct because
with the higher curvature of the smaller bubble, the averaged
normals give the impression of the surface curved toward the
larger bubble. This approximation is inexpensive and works
for most viewing angles. As can be seen in Figure 8, these
methods are effective at creating the appearance of two bub-
bles joined together.

Figure 8: Two-bubble cluster.

Where three bubbles overlap, Kück et al. define a plateau
border, and render this region using an ambient term to rep-
resent the light that would be heavily scattered in this re-
gion, as well as a term that represents refracted light on the
plateau border. In this method, the ray stops once it reaches
the plateau border. This works since they were interested in

dense foams that heavily scatter light and were not interested
in smaller bubble clusters.

5.2. Rendering bubbles with fluid

Our simulation of bubbles in fluid differs from the simula-
tion of foam because foams consist of thousands of bubbles.
We deal with only hundreds, and they are viewed at closer
range (i.e. they are bigger) than in foam simulations. Also,
our bubbles are sloshed around vigorously.

For the integration of approximated films between two
bubbles and transparent objects, a special case needs to be
addressed. For the case shown in Figure 9, the approximated
film is partially inside of an object. We detect this case and
do not render it.

Figure 9: Two-bubble case inside of object.

For two overlaping bubbles, it must be checked whether the
approximated film is behind the surface of an object.

For our purposes, dealing with small bubble clusters, the
use of an ambient term when three bubbles overlap is unde-
sirable because it results in a noticable visual artifact in close
or mid-distance views. We wanted to use the approximated
films approach that we used with two bubbles so that they
met somewhere in the three bubble overlap region. Unfortu-
nately, since the films between two bubbles are not explicitly
defined, there is no easy way to do this.

Instead we treated the three bubble overlapping case sim-
ilarly to the two bubble overlapping case. As seen in Fig-
ure 10b, once a ray enters an area where the bubbles over-
lap, no shading is calculated until the ray exits into a single
bubble. Then the normal is set to the average between this
hit point, and the original hit point when the ray entered the
second bubble. The reflection ray leaves the same point as
the refraction ray, because there is no simple way of know-
ing which bubbles the average of the hit points is inside. (In
the two bubble case, the average point is inside of the two
bubbles so we can send the reflection ray from that point).

The original hit point was used for approximating further
film intersections around the three bubble region (as the red
reflection ray may create in Figure 10). While this method is

c© The Eurographics Association 2004.

293

S. T. Greenwood & D. H. House / Better with Bubbles

Figure 10: Modified method for shading where three bub-
bles overlap.

Reflection ray (red) is sent from the final hit point because it
is unknown which bubbles the averaged point (x) is inside.

simply a heuristic, it allows the ray to continue past the three-
bubble region and does not draw attention to itself. Figure 11
shows the visual quality obtained when using this approxi-
mation.

Figure 11: Three-bubble cluster.

The amount of light that is reflected from a water surface
is determined by the angle of the incident ray, and the index
of refraction. This means that light is reflected differently
depending on whether a ray is hitting from outside or inside
of the water’s surface. For water surfaces, we use standard
Fresnel term [FvDFH90] for calculating the reflection ratio
rather than the approximated Fresnel term for bubble films.
As seen in Figure 12, light reflects differently whether hitting
a fluid surface from inside or outside, or hitting a bubble
film. After calculating the Fresnel term, we render specular
highlights as the actual reflections of lights. For the inside
of refractive surfaces, approximating the specular highlights
with Phong or Blinn shaders for indirect specular highlights
is incorrect, as there is no direct pathway for light that is
being refracted to a surface point.

While a level set is very powerful at defining numerous
shapes, there is little possibility that a level set could be de-
fined so that it sits exactly flush up against an object in the
simulation (unless that object is a plane). If the level set is

Figure 12: Refracting water surface.

From left to right: water sphere, half submerged bubble
showing simulated Fresnel reflections on left half, and

totally submerged bubble.

not allowed to overlap objects, there will be a small amount
of space between the zero level set (the surface of the fluid)
and an object that is in contact with the fluid. Unless this is
taken into account, the raytracer will detect two hits, one be-
tween the fluid and the empth space and another between the
empty space and the object. To avoid this complication, we
set up our scene so that the level set overlaps the object when
the surface of the fluid is supposed to be against the object.

Thus, the renderer only has to worry about rendering the
boundaries of the object contained in the fluid, not the sur-
face of the fluid that is contained in the object. Bubbles are
treated in a similar fashion, as the boundaries of the level set
are not rendered when inside of a bubble, but the boundaries
of the bubble are rendered when inside of the fluid.

This leads to a hierarchy of objects. Nonfluid/nonbubble
objects in the scene get the highest priority. The next priority
is bubbles, and the last priority is the fluid. This hierarchy
can be seen in Figure 12 and Figure 13. The boundary be-
tween a bubble and the surface of the fluid is rendered as the
fluid surface. The boundary between a bubble and the air is
rendered as a fluid film (approximated Fresnel).

6. Results and Summary

6.1. Issues and concerns

Several assumptions and approximations used in this work
lead to certain limitations that we discuss below.

Simulating bubbles that are based on perfect spheres
works reasonably well, but there are problems with this ap-
proach. In reality, larger bubbles flatten out at the surface so
that they resemble domes. Since we can only simulate and
render spheres, we avoid creating large bubbles. A similar
problem occurs when viewing the bubbles up close, so our
method works best for rendering bubbles at a medium dis-
tance.

c© The Eurographics Association 2004.

294

S. T. Greenwood & D. H. House / Better with Bubbles

Figure 13: Hierarchy of surfaces.

Water (left), glass (right), and bubble (top).

Marker particles may escape occasionally when it is un-
realistic for a bubble to form. While we take steps to pre-
vent this, we cannot guarantee that unwanted bubbles will
not form. This may not be an issue, because in a production
environment, an animator would need the control to add and
remove bubbles anyway. In animation software, the fluid sur-
face, velocity and pressure fields, and escaped marker parti-
cles could be stored in one pass. Once the desired water mo-
tion is obtained, the animator could move on to animating
the bubbles, combining our technique with standard particle
tools to enhance bubble motion.

Just making the sign of the level set implicit function φ
negative is not enough to turn all of the air pocket cells into
fluid immediately. Adjacent to the air pocket there are near-
zero-negative or zero values of φ (that are not changed be-
cause they are not air). In these regions there may be positive
(air) marker particles that have not escaped. These particles
may prevent the air pockets from turning entirely into fluid.
Since the values of are not negative enough to make these
marker particles escape, they persist and continue to con-
tribute to the air pocket.

In our simulation, these particles are removed, but the
level set still resists changing to fluid. The equations that
reinitialize the level set to a signed distance function avoid
changing the values of φ as they approach zero. This causes
portions of the air pocket to remain air; however, these parts
of the level set are continuously moved by the velocity fields
and do not persist for more than a few frames. As seen in
Figure 14, these residual pieces of air pockets are very tiny.
Further, they are obscured by the bubbles that are created by
the air pocket and are not noticeable in an animation.

6.2. More realistic fluid?

Our experiments demonstrate that adding bubbles to a fluid
simulation can enhance the overall realism of a splashing
fluid. In the presence of air, bubbles naturally form in splash-
ing water. Thus, the inclusion of bubbles is both convincing

Figure 14: Small residual pieces of air pocket may persist
for a few frames.

and aesthetically pleasing. Also, our treatment of trapped air
pockets gives the more natural appearance of the trapped air
turning into bubbles rather than the trapped air suddenly dis-
appearing. Our methods provide an inexpensive way of deal-
ing with air pockets without simulating the air.

Figures 15a and 15b demonstrate that our method effec-
tively removes air pockets. The air pocket disappears more
abruptly than it would if we did not adjust the value of φ
within the pocket, and the fluid simulation were simply al-
lowed to engulf it. However, the end effect is the same, as the
disappearance of air into the fluid looks unrealistic. The cre-
ation of bubbles hides the disintegration of air pockets and
creates more true to life animations as seen in Figure 15c.

Our experience has been that by creating and rendering
bubbles, the added detail distracts from other problems that
might otherwise be apparent with the fluid’s appearance.
Overall, these methods are a good way of creating realistic
bubbles if viewed from a medium distance. Figure 16 affirms
this observation, showing frames taken from our animations
of splashing and sloshing fluids.

References

[BKZ92] BRACKBILL J., KOTHE D., ZEMACH C.: A
continuum method for modelling surface ten-
sion. Journal of Computational Physics 100
(1992), 335–354. 2

[Bol90] BOLTON F.: A computer program for
the simulation of two-dimensional foam.
www.tcd.ie/Physics/Foams/plat.html (1990). 2

[CJR95] CHEN S., JOHNSON D., RAAD P.: Veloc-
ity boundary conditions for the simulation of
free surface fluid flow. J. of Comput. Phys. 25
(1995), 749–778. 2

[Dur95] DURIAN D.: Foam mechanics at the bub-
ble scale. Physical Review Letters 75 (1995),
4780–4783. 2

c© The Eurographics Association 2004.

295

S. T. Greenwood & D. H. House / Better with Bubbles

[Dur97] DURIAN D.: Bubble-scale model of foam
mechanics: Melting, nonlinear behaviour and
avalanches. Physical Review E 55 (1997),
1739–1751. 2

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.:
Animation and rendering of complex water
surfaces. ACM Trans. on Graphics (Proc. SIG-
GRAPH ’02) 21, 3 (2002), 736–744. 2, 3

[FF01] FOSTER N., FEDKIW R.: Practical animation
of liquids. In Proc. SIGGRAPH ’01 (2001),
pp. 23–30. 2

[FM96] FOSTER N., METAXES D.: Realistic anima-
tion of liquids. Graphical Models and Image
Processing 58 (1996). 2, 5

[FvDFH90] FOLEY J. D., VAN DAM A., FEINER S. K.,
HUGHES J. F.: Computer Graphics Princi-
ples and Practice. Addison-Wesley, Reading,
Mass, 1990. 3, 6, 8

[Gla00] GLASSNER A.: Andrew glassner’s notebook:
Soap bubbles, part 2. IEEE Computer Graph-
ics and Applications 20, 6 (2000), 99–109. 2

[HK03] HONG J., KIM C.: Animation of bubbles in
liquid. In Proc. Eurographics ’03 (2003). 2

[HW65] HARLOW F., WELCH J.: Numerical calcula-
tion of time-dependent viscous incompressible
flow of fluid with a free surface. The Physics
of Fluids 8 (1965), 2182–2189. 2

[KVG02] KÜCK H., VOGELGSANG C., GREINER G.:
Simulation and rendering of liquid foams. In
Proc. Graphics Interface ’02 (2002), pp. 81–
88. 2, 4, 5, 6

[LNS∗94] LAFAURIE B., NARDONE C., SCARDOVELLI

R., ZALESKI S., ZANETTI G.: Mod-
elling merging and fragmentation in multi-
phase flows with surfer. Journal of Compua-
tional Physics 113 (1994), 134–147. 2

[Sta99] STAM J.: Stable fluids. In Proc. SIGGRAPH
’99 (1999), pp. 121–128. 2

(a) air pocket before removal

(b) air pocket after removal

(c) air pocket after removal with bubbles

Figure 15: Animation frame with air pocket

c© The Eurographics Association 2004.

296

