
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Crowdbrush: Interactive Authoring of Real-time Crowd
Scenes

Branislav Ulicny, Pablo de Heras Ciechomski and Daniel Thalmann

Virtual Reality Lab, EPFL, CH-1015 Lausanne, Switzerland

Abstract

Recent advances in computer graphics techniques and increasing power of graphics hardware made it possible
to display and animate large crowds in real-time. Most of the research efforts have been directed towards im-
proving rendering or behavior control; the question how to author crowd scenes in an efficient way is usually not
addressed. We introduce a novel approach to create complex scenes involving thousands of animated individuals
in a simple and intuitive way. By employing a brush metaphor, analogous to the tools used in image manipulation
programs, we can distribute, modify and control crowd members in real-time with immediate visual feedback. We
define concepts of operators and instance properties that allow to create and manage variety in populations of
virtual humans. An efficient technique allowing to render up to several thousands of fully three-dimensional polyg-
onal characters with keyframed animations at interactive framerates is presented. The potential of our approach
is demonstrated by authoring a scenario of a virtual audience in a theater and a scenario of a pedestrian crowd
in a city.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image Generation]: Display algorithms
I.3.4 [Graphics Utilities]: Graphics editors I.3.7 [Three-Dimensional Graphics and Realism]: Animation

1. Introduction

With current consumer-grade personal computers it is possi-
ble to display 3D virtual scenes with thousands of animated
individual entities at interactive framerates using different
techniques as animated impostors [TLC02] or point-based
rendering [WS02].

When increasing the number of involved individuals it is
becoming more difficult to create unique and varied content
of scenarios with large numbers of entities. If we want to
create or modify features of every single individual one by
one, it will soon become too laborious. If, on the other hand,
we apply a set of features (either uniform, or patterned) to
many individuals at once, it could create unwanted artefacts
on a larger scale, resulting in an "army-like" appearance with
too uniform, or periodic distributions of individuals or char-
acteristics. Use of random distributions can alleviate such
problems; however, it can be very difficult to capture the de-
sired constraints into a set of mathematical equations, espe-
cially considering integration into common art production
pipelines.

The challenge is how to create complex scenes resembling
a variety-rich look of the real world. Here we understand
complexity analogous to a notion of complexity of patterns
generated by cellular automata as in [Wol02]: not uniform,
not periodical, nor just fully random.

Bottom-up approaches, such as local rule based flocking
[Rey87] can create such complexity, however they are diffi-
cult to control if we want to achieve particular end configu-
rations (how to set local rules to get a global result). In the
recent work Anderson et al. [AMC03] achieved interesting
results for a particular case of constrained flocking anima-
tion. Nevertheless, the algorithm can get very costly when
increasing the number of entities and simulation time.

Major 3D content creation packages used by the media in-
dustry now offer tools to improve working with a large num-
ber of virtual characters [CS04, SIB04]. The most advanced
crowd animation system for non real-time productions is
Massive; used to create battle scenes in the Lord of the Rings
movie trilogy [Mas03]. The production of massively popu-
lated scenes is still in the majority of cases a lengthy and

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

Figure 1: Crowdbrush application.

manual-intervention intensive process, operating mostly in a
non-real-time mode. A main part of the design process gen-
erally uses simple proxy objects that are turned into full char-
acters only in the final stage of production. Manipulations of
scenes and characters usually involve complex sequences of
menu selections. An interesting approach to add sets of ob-
jects (as clouds, trees, flowers, or buildings) to the scene is
used in Maya Paint Effects [MAY04], where a designer can
paint pseudo-3D objects in the scene using 2D brush strokes.
Such objects are not fully integrated into the 3D scene: they
are rendered in a special buffer with separate shading and are
further composited into the final image as a Z-buffer based
postprocess.

Our approach is to give full creative power to design-
ers using metaphors of artistic tools, operating on a two-
dimensional canvas familiar from image manipulation pro-
grams working in WYSIWYG (What You See Is What You
Get) mode, with a real-time view of the authored scene. The
advantages of immediate feedback, intuitive interface and fa-
miliarity allow to better express the artist’s vision and can
also lead to an increase in productivity.

The structure of the paper is as follows: first, we present
the overall design of our system discussing the requirements
needed for interactive authoring, followed by a detailed ac-
count of the concept of brushes. Next, we describe crowd
behavior, rendering and animation engines, and finally we
present the results, where we use a prototype of the crowd
brush application to create a scene of a virtual audience in a

reconstruction of an ancient theatre and a scene of a pedes-
trian crowd in a virtual city.

2. System overview

Our goal is to create a system that would allow authoring of
freely navigable real-time 3D scenes, composed of a large
number of varied animated individuals in a virtual environ-
ment. The authoring should by simple and intuitive, usable
by non-programmers.

We take inspiration from the domain of image and word
processing, where most of the applications use WYSIWYG
approaches with immediate feedback of the resulting ma-
nipulations. In computer graphics such an approach was
used, for example, for direct painting on models [HH90],
[KMM∗02], sketching of 3D models out of 2D drawings
[ZHH96], creating facial expressions [PHL∗98], or to paint
2D images with a virtual brush [XLTP03]. A paint metaphor
was used to design layouts of objects for information visual-
ization [Tob03], and it was shown to be efficient to set values
of toggle switches [Bau98]. Salesin and Barzel [SB93] pre-
sented the adjustable tools metaphor, where each operation
is bundled with its collection of attributes to define a single
tool.

The idea is simple: the designer manipulates virtual tools,
working in a two-dimensional screen space, with a mouse
and a keyboard. These tools then affect the corresponding
objects in a three-dimensional world space (see Figure 1).
Different tools have different visualizations and perform dif-

c© The Eurographics Association 2004.

244



B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

ferent effects on the scene including creation and deletion of
crowd members, changing of their appearances, triggering
of various animations, setting of higher-level behavioral pa-
rameters, setting waypoints for displacement of the crowd,
or sending of events to a behavior subsystem.

We briefly experimented with a fully three-dimensional
interface, where tools existed in a 3D world space. Never-
theless it appeared to be not very practical, at least not when
using standard input devices operating in two dimensions
as a mouse or a trackball. The usability of a 3D interface
could be improved using some truly 3D input devices such
as a spaceball, a 3D mouse, or magnetic sensors. However,
it would limit the number of potential users as such devices
are not common.

In order to create an authoring tool as outlined above, the
system, on which it will operate, should fulfil the following
requirements:

Individuality: The system must allow for each individual
instance to have a set of attributes, and not share them
among many individuals, as they can potentially have
unique values, and can be individually selectable.

Responsiveness: It must be fast enough for real-time edit-
ing to allow for an immediate feedback loop. Therefore, it
must not involve lengthy preprocessing stages (at least for
features that are target for authoring) and also the system’s
responses to changes must be fast.

The requirements are close to those of any interactive ap-
plication. Indeed, boundaries between authoring and inter-
action are getting more and more fuzzy. A recent trend in
game development is to use the same application for part of
the authoring and actual gameplay (or to integrate play-test
ability in authoring tools) [RWS04, GBO04]. The player in-
teraction is, then, the subset of possible interactions for a de-
signer. Such designs came from the necessity of constantly
switching between "play" and "create" modes while devel-
oping the game in order to increase productivity.

Figure 2 shows an overview of the system design. The
user controls the application using a mouse and a keyboard.
The mouse moves the visual representation of the brush tool
(we used an icon of a spray can) on the screen, with the
mouse buttons triggering different actions either on render-
ing or behavior subsystems. The keyboard selects different
brushes, sets their parameters and switches between "navi-
gate" and "paint" modes. In the "navigate" mode, the mouse
controls position and orientation of the camera. In the "paint"
mode, the camera control is suspended and different areas on
screen are selected depending on the pressed mouse button.
The selection areas can be, in principle, any arbitrary 2D
shape; in the current implementation, the selection can be a
single point, a circle, or a rectangle. This area is then further
processed by the brush according to its particular configura-
tion (see next section).

The integration of the interface, behavior, and render-

ing subsystems is done using VHD++, a component based
framework for creating real-time VR systems [PPM∗02].

Figure 2: Overview of the system design.

3. Brushes

Brushes are tools with visual representation on the screen
that affect crowd members in different manners: for exam-
ple, the brush can create new individuals in the scene, or it
can change their appearances or behaviors. We selected vi-
sualizations of the brushes to intuitively hint on function. For
example, the creation brush has an icon of a human, the ori-
entation brush has an icon of a compass, the deletion brush
has an icon of a crossed over human, and so on.

The brush is processed in three stages. First, a selection of
the affected area in the 2D screen space is performed accord-
ing to a triggered mouse button, with subsequent picking of
the entities in the 3D world space. Then, the operator will
modify the manner of execution of the brush in the selected
area. Finally, the brush will change the values of the instance
properties for the affected individuals. In case of the creation
brush, it will create new population members; for the event
brush it will send events to a behavior system and for the
path brush it will add a new waypoint to a current path.

Values of the scalar brush parameters can be controlled
by a keyboard; for example, sizes of waypoints for a path
brush, or speed of walk for an event brush are increased
and decreased by pressing ’+’ and ’-’ keys, affecting a cor-
responding active brush. Vector brush parameters can be set
by direction of the strokes, so that for example, a direction of
movement depends on the temporal order of drawing way-
points.

Selections are defined in screen-space. A selection can be a
single point at the location of a cursor, or an area around
a cursor. If the selection is a single point, picking in the
3D world is performed by computing the intersection of
a line segment with the scene. If the selection is an area,
picking is performed on a random sample of points from
that area, following a "spray" metaphor. The size of the

c© The Eurographics Association 2004.

245



B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

Figure 3: Creation brush with random operator.

Figure 4: Colour brush with uniform operator.

selected area in the world space changes with the level of
zoom into the 3D scene. This provides an intuitive control
of focus: if we want to work on a large part of the crowd,
we zoom out of the 3D view to see a desired part or whole
of the crowd. If we want to focus on a smaller group, or
individual, we zoom in. Thus features that are observable
from a particular zoom level are also editable at this level.

Operators define how selection will be affected. For exam-
ple, a stroke of the creation brush with the random opera-
tor would create a random mix of entities (see Figure 3);
a stroke of the uniform colour brush would set colours of
affected individuals to the same value, as shown in Figure
4; and a stroke of the orientation brush with the gradi-
ent operator would let individuals turn in the direction of
the gradient (see Figure 5). In the current implementation,
the distribution of values for random operator is uniform;
it could be extended to use different distributions, for ex-
ample, by drawing 2D distribution curves in screen space.

Instance properties are non-sharable attributes, giving

Figure 5: Orientation brush with gradient operator (Hugo
model by Laurence Boissieux c©INRIA 2003).

uniqueness to every individual member of the crowd. In-
stance properties encapsulate lower-level features influ-
encing both appearance and animations of virtual humans.
Spatial configuration is qualified by properties of posi-
tion and orientation. Appearance is influenced by prop-
erties of colour, texture, material and scale. Execution of
an animation action is determined by animation selec-
tion, shift, and speed properties. High-level features can
use a combination of several low-level features accessed
through their properties. For example, a particular emo-
tional state would set animations from a predefined set
with some specific speed, or clothing style would select a
set of appropriate textures and colours for different body
parts. The set of values of all instance properties fully de-
fines the configuration of the crowd members, and is used
to save and restore the state of the scenario during and
across the authoring sessions.

4. Behavior

A behavior is not the focus of this article. Nevertheless, as
more complex scenarios require some sort of behavior sim-
ulation [MT01], we implemented a simple spatial displace-
ment of the humans and a rule based behavior engine [UT02]
to handle more autonomous characters. We opted for a sim-
ple reactive rules system as we needed fast execution for up
to several thousands of agents. Behavior rules can react to
both internal and external events to the agents, triggering se-
quences of actions as displacement or animations.

Agents can move around the environment following paths
which are sequences of places with potentially variable
sizes. The list of all places and paths is stored by the en-
vironment manager which responds to queries from a rule
system. Positions of the agents between waypoints are in-
terpolated taking into account their desired speed and actual
simulation update rate. Along the way, agents play looping

c© The Eurographics Association 2004.

246



B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

keyframed animations of different walking styles or running
depending on the displacement speed.

The behavioral rules and the environment database are ed-
itable in run-time using rules and environment editors con-
nected with the behavior engine.

We added also a simple collision avoidance system based
on a force-based model [HM95]. In order to improve effi-
ciency of the collision avoidance, spatial queries need be op-
timized; otherwise collision detection would become a per-
formance bottleneck much sooner than rendering. We used a
simple bin-lattice space subdivision to minimize the number
of collision queries [Rey00].

The brush metaphor is integrated with behavior simula-
tion in a direct mode by sending events to the rule system
and the environment manager. The spray can be then used,
for example, to send events to activate behavior rules which
send an agent to a path, or to add environment objects used
for navigation and behavior control. The brushes can also be
used to control the behaviors in a non-direct mode, where
the desired agents are first tagged by spraying with a tagging
brush. Later, this tagging information is used to selectively
trigger different behavioral rules for different agents, allow-
ing for multiple actions to happen in different parts of the
scene at the same time.

5. Rendering

When designing our rendering system, we set out to achieve
several goals following the requirements introduced in Sec-
tion 2. The first condition was to be able to render and
manage simultaneously at least one thousand humans while
keeping an interactive framerate. Second, we needed a va-
riety of appearance and behavior in the crowd while con-
straining memory usage. We should also be able to render
the humans with lighting. In order to keep the data pipeline
from model to rendering engine smooth, we needed fast and
robust pre-processing of data.

Existing Approaches: We considered several already ex-
isting crowd rendering approaches. Tecchia et al. [TLC02]
used billboards or impostors for crowd rendering. The main
advantage is that impostors are very light-weight to ren-
der once they are in the memory of the graphics card. The
method requires building of all animations from all possi-
ble camera angles, and storing these pictures in a texture.
One such texture can hold one frame of animation in very
low resolution billboards, where every individual sub-frame
is about 16 pixels tall and wide. This can give good visuals
since it is basically an image based rendering approach, so
even pictures of real humans could be incorporated. How-
ever, zooming on these billboards will produce aliasing arti-
facts, due to the fact that the images on the billboards have
to be small to fit in the graphics cards texture memory. This
makes billboarded humans a good approach for far-away hu-
mans that do not need detailed views.

Figure 6: Rendering pipeline.

Another approach which unifies image based and polyg-
onal rendering is found in [WS02]. They create view-
dependant octree representations of every keyframe of ani-
mation, where nodes store information about whether it is
a polygon or a point. These representations are also able
to interpolate linearly from one tree to another so that in-
between frames can be calculated. When the viewer is at a
long distance, the human is rendered using point rendering,
when zoomed in using polygonal techniques and when in
between a mix of the two. It does take large amounts of data
per keyframe and needs long pre-processing times because
of its precise nature, but also gives near perfect interpola-
tion between detail levels without "popping" artifacts which
otherwise occur if one uses discrete detail levels.

The third alternative was to use vertex shaders to deform a
conventional mesh using a skeleton. The disadvantage would
be that the pipeline would be constrained to shaders and ev-
ery interaction such as lighting, shadows and other standard
effects, would then have to be programmed with shaders.

The method of vertex tweening was used in the game
Quake [Qua96] for a smaller number of virtual humans. In
this approach, fully precomputed meshes are exported by the
3D designing software since dynamic skinning was not fea-
sible at the time of game release. The main disadvantage of
this approach is complex and tedious data preparation and
exporting pipeline.

Our main idea is to store complete meshes in OpenGL
display lists and then carefully sorting them taking cache
coherency into account while rendering. This results in a
method which has little or no processing on the CPU be-
cause precomputed meshes are stored on the graphics card.
The only consideration we had to do was to manage the ren-
dering, so that humans that have the same materials, meshes
or animations are rendered at the same time, since graphics
cards need to be kept cache coherent to perform well. Figure
6 shows an overview of our rendering pipeline.

Data Processing: We chose to use skeletal models with
deformed meshes as the basis of our animation system. Our
crowd consists of a large number of individuals that are
cloned from a smaller number of template humans. All in-

c© The Eurographics Association 2004.

247



B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

stances of the same template have the same mesh and skele-
ton.

One of the important considerations we had to take into
account was the ease of data production using already ex-
isting 3D content production tools. We wrote a mesh and
skeleton exporter for 3ds max using MaxScript [3DS04].
The mesh itself consists of vertices and triangles. The ex-
ported triangles have associated information such as texture
coordinates, materials and skeleton bindings. The next step
in the data-production pipeline is exporting a reference mesh
and a reference posture describing the initial animation for
applying skeletal transforms using the Bones Pro 3 plug-in
[BP304]. This allows exporting of any animation for a par-
ticular skeleton. The animation is defined as a list of bones in
the hierarchy with translation and rotation for every sampled
keyframe.

For importing the model into the engine we have to first
unpack it into complete meshes. For every animation we
define a running time in seconds and every second is sam-
pled thirty two times to preserve fluidity of animation. Sam-
pling is done on skeletal keyframes using spherical interpo-
lation on rotation quaternions, and using a linear interpola-
tion for the translations. The sampled skeleton is applied to
the mesh and deforms it using conventional skinning meth-
ods [Lan99]. When the deformed mesh has been computed,
the result is stored into a display list [SWND03]. If a char-
acter has more than one material, which in our case is more
than one texture, the character is divided into several display
lists, each with its own material. This allows us to exchange
textures for different parts of the body in run-time.

Rendering Management: For management of the scene
we use the OpenSceneGraph 3D graphics toolkit [OSG04],
where the crowd renderer is integrated as a custom node us-
ing OpenGL rendering [SWND03].

After all characters have been loaded into memory, they
are kept in a database called the manager. The manager
stores template humans and also keeps record of all exist-
ing instances. A template human consists of a set of anima-
tions, which in turn keep lists of display lists and textures.
An instance keeps hold of the properties for the human giv-
ing uniqueness to every individual (see Section 3). The in-
stance properties are: animation index, time inside anima-
tion, speed of animation, mesh colour, mesh scale, material
settings (if there are many possible, for example, different
textures are possible for the torso, face, and so on) and a
transformation matrix for translation and rotation.

Before the start of rendering, all initial instances of the
template humans are registered and their properties are set.
When the rendering loop starts, the manager is called to
render all instances simultaneously. Rendering is optimized
to minimize state changes by sorting instances by vertex
buffers and textures. The most simple approach is to ren-
der by template, then by material set and finally by instance.

Just before the display list is called, the instance properties
are applied to give the impression of variety.

The approximate data size of unpacked models ready for
rendering is computed in the following manner. Each trian-
gle has three vertices, three normals and three texture coor-
dinates, all together with the size of approximately one hun-
dred bytes. For each frame, the size requirement in bytes is
one hundred times the number of triangles. An average hu-
man that consists of one thousand triangles requires around
one hundred kilobytes per keyframe. Since we sample the
animation at thirty two frames per second, this amounts to
approximately 3.2 megabytes per second.

The benefit of using display lists is that we can take ad-
vantage of the full OpenGL pipeline without any changes
to lighting. The characters look well from all camera direc-
tions and zooms, as opposed to billboards which are usually
low resolution and need pre-processing for all different cam-
era angles. The memory usage is lower than with billboards,
however more polygons need to be rendered. The data stor-
age requirements on disk are very low, since we store only a
basic mesh and animations of the skeleton.

6. Results

We tested usability and responsiveness of the authoring ap-
plication on two very common situations involving a large
number of humans: we created scenarios of a virtual audi-
ence (see Figure 1) and the scenario of a pedestrian crowd
(see Figure 8).

Virtual audience: In the first scenario the tasks are, given
existing models of a theatre and template humans, to fill the
building with an audience and distribute the animations ac-
cording to the desire of the designer. The specific scene has
to be constructed according to a typical distribution of so-
cial classes and behaviors in antique theaters extracted from
the historical literature. We used four different template hu-
mans, all with around one thousand triangles. The theater
model has around fourteen thousand triangles.

In order to facilitate positioning of the humans, we created
a grid of valid positions in the theatre following the distribu-
tion of the seats. The creation brush was then restricted to
operate only on this grid, instead of free picking. Using the
grid we can position the humans without caring about colli-
sions, for example, if two humans happen to materialize very
close to each other. The correct position and orientation of
the audience is automatic, in this way, the same scene will
have a certain expected behavior when you interact with it,
much in the same way as in a paint program, where pixel
positions are placed in a grid.

Besides creation of the scene, we used brushes also for
interaction with the audience. As soon as humans start to
appear in the scene, we could change their behaviors by us-
ing the "emotion" spray that makes the human play differ-
ent kinds of animations from predefined sets, for example,

c© The Eurographics Association 2004.

248



B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

Figure 7: Performance statistics.

Figure 8: Crowd following paths defined by path brush.

happy animations or sad animations. The particular state of
the audience can be saved and then restored (see Section 3),
so that, for example, different reactions to different actors
are prepared and then replayed when needed.

Virtual pedestrians: In the second scenario the tasks are,
given models of a virtual city and template humans, to dis-
tribute pedestrians to desired locations in the city, to set up
network of paths among specified locations and finally to
let selected pedestrians follow these paths. In this scenario
we used eight different template humans with around one
and a half thousand triangles each; the model of the city has
around sixteen thousand triangles.

In comparison with the previous scenario, the placement
of the newly created humans was not restricted to a grid; cre-
ation brush could add pedestrians at any desired location in
the 3D world. The only constraint was that for a drag mo-
tion of the brush, the new human had to be at least at some

minimal distance from the previously created one. Even this
constraint is not completely necessary as force based colli-
sion avoidance will take care of not letting humans overlap.
However, we found that imposing it was giving more aes-
thetically pleasing results.

In addition to creation of humans, we used the brush to
add sequences of places to the environment. Our environ-
ment model allows to have places with different sizes which
allows, for example, to channel a flow of the crowd to wider
or more narrow streets. The paths can be of three types de-
pending on the desired behavior on the boundaries of the
path. At the end of a simple path the agent stops; a cyclic
path lets the agent again move towards the first waypoint;
and a teleport path sets the position of the agent to the first
waypoint. Changes of the place size and designation of paths
from active set of places is in the current implementation
done via keyboard.

Once the paths were defined, we could send events to se-
lected pedestrians by spraying them with the event brush.
The crowd behavior system then responds to received events
and let the agents move following the paths. Furthermore, we
can affect speed of movement of selected agents by spraying
them with the event brush, now sending a different type of
event. Then, the event triggers a rule which changes speed
of locomotion and the associated animation, for example, to
a running motion instead of a walking one.

For both scenarios we kept interactive framerates at all
times, for example, when adding and removing humans from
the scene, or when modifying attributes, such as animation,
colour or orientation. When increasing the number of hu-
mans in the audience, performance was dropping, yet even
with full capacity of the theatre (around 700 places), an ac-
ceptable rate of 27 frames per second with lighting enabled
was maintained. For the pedestrian crowd, the performance
was acceptable for up to around 500 agents simultaneously
on the screen, which is less than in the first scenario due

c© The Eurographics Association 2004.

249



B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

to the higher complexity of models and also because of the
overhead of a behavior simulation. Because of the respon-
siveness of the crowd engine and therefore also of the inter-
face, manipulation of the scene was immediate and intuitive,
since changes appeared on the fly.

Rendering: In order to measure the performance of the
rendering engine, we ran several tests, where we varied the
number of humans and the number of triangles per human.
The performance tests were run on a Pentium4 2.2 GHz
machine with an NVIDIA Quadro4 graphics card. We per-
formed two sets of tests, depending on whether lighting was
enabled or not. As can be seen in Figure 7, the crowd com-
posed of thousand characters with 1134 triangles was ren-
dered at around 33 frames per second without lighting. Us-
ing simpler characters yields a significant increase in the per-
formance: a crowd of two thousand humans with 330 tri-
angles was rendered at 53 frames per second. The lighting
brings overhead of around twenty to eighty percent depend-
ing on the triangle count.

7. Discussion

Our authoring approach can work in conjunction with differ-
ent crowd rendering systems if they fulfil the requirements
defined in Section 2. It would only be necessary, then, to
define an instance properties layer, abstracting implementa-
tion details to interface a particular crowd rendering engine
with brushes. CrowdBrush is also complementary to works
on crowd behavior simulation, where it can be used, for ex-
ample, to distribute or modify attributes and features over
population of crowd agents, to paint relationships among the
crowd members, or to send events to their behavior engines
(see Section 6).

The main limitation of our spatially oriented brush
metaphor is a weak control of time related aspects of sce-
narios. We address this issue by incorporating behavior rules
engine that is complementary to brushes (see Section 4). Fur-
thermore, as the Crowdbrush is integrated into the VHD++
framework, the other authoring methods provided by the
platform as Python scripts can be used in conjunction with
the brush metaphor.

The advantage of our rendering approach is that polygo-
nal models are fully integrated into the triangle processing
pipeline, allowing for lighting (see Figure 9) or even more
complex shading effects. For example, it was straightfor-
ward to allow the crowdbrush application to render a crowd
with specular highlighting (see Figure 10) or cartoon shad-
ing (see Figure 11) effects using an existing library of ef-
fects [OSG04]. As well, our rendering pipeline is using only
standard OpenGL features, thus being independent of any
hardware specific extension.

Furthermore, because all characters are fully animatable
using a skeleton, it would be possible to integrate our crowd
with some more complex motion control methods beyond

simple keyframes. For example, if the scenario would re-
quire it, some particular members of the crowd could be-
come animated by procedural walk generation, inverse kine-
matics, or motion graphs.

Our rendering engine is flexible to go beyond humanoid
characters. We successfuly imported fully skinned and ani-
mated characters and objects from several computer games,
such as four legged animals, insects, helicopters or a forklift.

The main limitation of our rendering approach is a rela-
tively large amount of memory required in case more tem-
plates and more animations are needed to increase the va-
riety of a crowd. However, this problem is common to all
current methods for real-time rendering of large crowds as
impostors or point-based rendering, which have memory re-
quirements several times higher.

Figure 9: Crowd rendered with coloured spotlight.

Figure 10: Crowd rendered with specular highlights shad-
ing.

c© The Eurographics Association 2004.

250



B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

Figure 11: Crowd rendered with cartoon shading.

8. Conclusions and Future Work

We presented a novel technique for authoring real-time
crowd scenes in conjunction with a management of large
real-time rendered crowds.

The benefits of our approach are twofold: an intuitive and
familiar 2D interface (WYSIWYG) for authoring and inter-
acting with crowds of humans in real-time; and the ability
to render a large number of fully skinned and animated 3D
characters in real-time, in a standard way that is easily inte-
grated into an existing triangle processing pipeline such as
OpenGL.

We tested our application on authoring the scenario of a
virtual audience, as seen in Figure 1, and on authoring of a
pedestrian crowd (see Figure 8). We concluded that it was
easy to configure the scenes according to our wishes.

Our initial tests with an artist user confirm benefits of the
intuitive interface: the artist was able to create crowd scenes
using the CrowdBrush after a few minutes instruction, with-
out the need of lengthy tutorial and detailed user manual.
The user was provided only with a one page quick reference
card displaying keyboard shortcuts associated with different
brushes.

There are several directions for future work. We will con-
centrate on extending the possible number of handled enti-
ties and on improving behavior repertoire. Our preliminary
tests with level-of-details show a promising increase in per-
formance, or conversely an increase in number of humans
while keeping interactive framerates. Also a billboarding ap-
proach for far-away humans is being incorporated, similar to
the one in [TLC02] and it will be interesting to see how these
two will work in conjunction.

For the user interface, brush parameters specification can
be improved by having dedicated widgets allowing to mod-
ify the properties of the active brush. For example, the actual

colour used by a colour brush could be selected from a stan-
dard colour palette dialog, or a template for a creation brush
could be selected from a swatch of available virtual humans.

9. Acknowledgements

We are grateful to Mireille Clavien and Rachel de Bondeli
for the design of virtual humans and scenes. This work has
been supported by the Swiss National Research Foundation
and the Federal Office for Education and Science in the
framework of the European project ERATO.

References

[3DS04] 3ds max, 2004.
http://www.discreet.com/3dsmax.

[AMC03] ANDERSON M., MCDANIEL E., CHENNEY

S.: Constrained animation of flocks. In
Proc. ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (SCA’03) (2003),
pp. 286–297.

[Bau98] BAUDISCH P.: Don’t click, paint! Using toggle
maps to manipulate sets of toggle switches. In
Proc. UIST ’98 (1998), pp. 65–66.

[BP304] Bones Pro 3, 2004.
http://www.digimation.com.

[CS04] Character Studio, 2004.
http://www.discreet.com/products/cs.

[GBO04] Gamebryo, game engine, 2004.
http://www.ndl.com.

[HH90] HANRAHAN P., HAEBERLI P. E.: Direct
WYSIWYG painting and texturing on 3D
shapes. In Proc. SIGGRAPH ’90 (1990),
pp. 215–223.

[HM95] HELBING D., MOLNAR P.: Social force model
for pedestrian dynamics. Phys. Rev. E 51
(1995), 4282–4286.

[KMM∗02] KALNINS R. D., MARKOSIAN L., MEIER

B. J., KOWALSKI M. A., LEE J. C., DAVID-
SON P. L., WEBB M., HUGHES J. F., FINKEL-
STEIN A.: WYSIWYG NPR: Drawing strokes
directly on 3D models. In Proc. SIGGRAPH’02
(2002), pp. 755–762.

[Lan99] LANDER J.: Over my dead, polygonal body.
Game Developer Magazine (May 1999), 1–4.

[Mas03] Massive, crowd animation software for visual
effects, 2003.
http://www.massivesoftware.com.

[MAY04] Maya, 2004.
http://www.alias.com/maya.

c© The Eurographics Association 2004.

251



B. Ulicny, P. de Heras Ciechomski & D. Thalmann / Crowdbrush: Interactive Authoring of Real-time Crowd Scenes

[MT01] MUSSE S. R., THALMANN D.: A hierarchi-
cal model for real time simulation of virtual hu-
man crowds. IEEE Transactions on Visualiza-
tion and Computer Graphics 7, 2 (April-June
2001), 152–164.

[OSG04] OpenSceneGraph, 2004.
http://www.openscenegraph.org.

[PHL∗98] PIGHIN F., HECKER J., LISCHINSKI D.,
SZELISKI R., SALESIN D. H.: Synthesizing
realistic facial expressions from photographs.
In Proc. SIGGRAPH ’98 (1998).

[PPM∗02] PONDER M., PAPAGIANNAKIS G., MOLET

T., MAGNENAT-THALMANN N., THALMANN

D.: VHD++ real-time development framework
architecture: Building flexible and extendible
VR/AR systems with reusable components. In
Proc. Computer Graphics International 2002
(2002).

[Qua96] Quake, game homepage, 1996.
http://www.idsoftware.com/games/quake/quake.

[Rey87] REYNOLDS C. W.: Flocks, herds, and schools:
A distributed behavioral model. In Proc. SIG-
GRAPH ’87 (1987), pp. 25–34.

[Rey00] REYNOLDS C. W.: Interaction with groups of
autonomous characters. In Proc. Game Devel-
oppers Conference ’00 (2000), pp. 449–460.

[RWS04] RenderWare Studio, game development plat-
form, 2004.
http://www.renderware.com/renderwarestudio.html.

[SB93] SALESIN D., BARZEL R.: Adjustable tools:
An object-oriented interaction metaphor. ACM
Transactions on Graphics 12, 1 (1993), 103–
107.

[SIB04] Softimage XSI Behavior, 2004.
http://www.softimage.com/products/behavior.

[SWND03] SHREINER D., WOO M., NEIDER J., DAVIS

T.: OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 1.4. Ad-
dison-Wesley, 2003.

[TLC02] TECCHIA F., LOSCOS C., CHRYSANTHOU Y.:
Image-based crowd rendering. IEEE Computer
Graphics and Applications 22, 2 (March-April
2002), 36–43.

[Tob03] TOBITA H.: VelvetPath - layout design system
with sketch and paint manipulations. In Proc.
Eurographics ’03 Short Presentations (2003).

[UT02] ULICNY B., THALMANN D.: Towards interac-
tive real-time crowd behavior simulation. Com-
puter Graphics Forum 21, 4 (Dec. 2002), 767–
775.

[Wol02] WOLFRAM S.: A New Kind of Science. Wol-
fram Media, Inc., 2002.

[WS02] WAND M., STRASSER W.: Multi-resolution
rendering of complex animated scenes. Com-
puter Graphics Forum 21, 3 (2002). (Proc. Eu-
rographics’02).

[XLTP03] XU S., LAU F. C. M., TANG F., PAN Y.:
Advanced design for a realistic virtual brush.
Computer Graphics Forum 22, 3 (2003), 533–
542. (Proc. Eurographics’03).

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES

J. F.: SKETCH: An interface for sketching
3D scenes. In Proc. SIGGRAPH ’96 (1996),
pp. 163–170.

c© The Eurographics Association 2004.

252


