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Abstract

We present an algorithm for the finite element simulation of elastoplastic solids which is capable of robustly and
efficiently handling arbitrarily large deformation. In fact, our model remains valid even when large parts of the
mesh are inverted. The algorithm is straightforward to implement and can be used with any material constitutive
model, and for both volumetric solids and thin shells such as cloth. We also provide a mechanism for controlling
plastic deformation, which allows a deformable object to be guided towards a desired final shape without sacri-
ficing realistic behavior. Finally, we present an improved method for rigid body collision handling in the context
of mixed explicit/implicit time-stepping.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Significant effort has been placed into making finite element
simulation robust in the regime of large deformations, in-
cluding the arbitrary Lagrangian-Eulerian (ALE) formula-
tions pioneered by [HAC74], continuous remeshing (see e.g.
[CO97, EZE98] and the references therein), etc. However,
as noted in [BBTL03], these approaches are often computa-
tionally intensive and difficult to implement, which has pri-
marily limited their use to two spatial dimensions. Moreover,
[BBTL03] points out that these difficulties often lead authors
to less optimal techniques such as element deletion. This not
only degrades the accuracy of the simulation, but is unsuit-
able for graphics applications where disappearing tetrahedra
cause visual artifacts.

Since constitutive models for real materials are meaning-
ful only for uninverted material, standard finite element sim-
ulation algorithms fail as soon as a single tetrahedron inverts.
For this reason, various authors have proposed techniques
for untangling inverted meshes. For example, [VGS04] used
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feasible set methods and optimization to untangle two-
dimensional meshes, [ERM∗03] extended various tetrahe-
dron quality metrics intended for mesh smoothing to the case
of inverted tetrahedra allowing untangling to occur simulta-
neously with optimization, etc. However, none of these tech-
niques are guaranteed to work, and fail quite often in prac-
tice especially if the boundary of the mesh is also tangled.
And the failure to untangle a single tetrahedron forces the
simulation to fail for most real world constitutive models.

As pointed out by [EZE98], element inversion can occur
even if the vertex position of the mesh are identical to their
true continuum values. A common case of this is illustrated
in Figure 1 where a triangle with three nodes on the bound-
ary is forced to invert during a collision with another ob-
ject. Even if an object as a whole deforms by only a small
amount, say 10%, an individual tetrahedron may undergo se-
vere deformation due to errors in the discrete representation
of the continuous material. In fact, large deformation and in-
version can arise even when simulating incompressible ma-
terial, since one typically cannot conserve volume for each
individual tetrahedron. Given that it is difficult or impossi-
ble to prevent inversion in all cases, we propose a simpler
approach that allows elements to invert gracefully and re-
cover.
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If the particular material behavior and underlying physics
is unimportant, there are several techniques for treating in-
version. For mass-spring systems, altitude springs work sur-
prisingly well [MBTF03]. In fact, one can even add altitude
springs to finite element models, but this changes the under-
lying partial differential equations and thus the behavior of
the material (losing one of the key benefits of the finite el-
ement method as compared to mass-spring systems). More-
over, one cannot use constitutive models that lose meaning
for inverting elements (which is most of them). Of course,
one could switch from finite element methods to mass-spring
methods for flat, degenerate, and inverted elements but this
leads to force discontinuities (detrimental to implicit meth-
ods), visual artifacts such as popping, etc. Various authors
have proposed methods similar in spirit to altitude springs.
[THMG04] changes the underlying partial differential equa-
tion by adding a volume preservation term to penalize in-
version. [MG04] first computes and removes the rotation
from material to spatial coordinates, and then applies a lin-
ear model in the unrotated space. Although the linear model
works well for inverted elements, it is severely limited in the
types of materials it can approximate. In fact, we stress that
a spring is the most common linear model that correctly ac-
counts for rotation.

In this paper, we take a different approach motivated by
the desire to continuously (or even smoothly) extend the fi-
nite element method so that it behaves gracefully for both
degenerate and inverted elements, even for arbitrary consti-
tutive models. This is especially important as a number of
recent graphics publications have advocated the use of more
advanced constitutive models to capture more realistic phys-
ical behavior. Moreover, many materials found in nature ex-
hibit complex nonlinearities under large deformation, such
as the biphasic nature of biological tissue and the anisotropic
behavior of muscle. Our approach begins by computing a
diagonalization of the deformation mapping in order to de-
termine the “direction” along which a given tetrahedron is
inverted. We then extend the constitutive model to the in-
verted regime using C0, C1 or higher continuity around the
flat state, resulting in smooth behavior even in extreme situ-
ations. The resulting forces always act to restore the tetrahe-
dron to its original shape, allowing objects to recover cleanly
from flat or inverted configurations, as shown in Figure 2.
We illustrate the generality and robustness of our approach
with a number of simulations of objects undergoing large de-
formations, including nonlinear and anisotropic constitutive
models, plasticity with and without control, both volumetric
objects and thin shells, and fracture.

2. Related Work

[TPBF87, TF88b, TF88a] pioneered deformable models in
computer graphics including early work on plasticity and
fracture. Finite element simulations have been used to model
a hand grasping a ball [GMTT89], to simulate muscles

Figure 1: A highly curved region of an object is pushed
inwards during a collision with a grey object (left), and a
triangle used to represent this deformation is forced to invert
(right).

[CZ92], for virtual surgery [PDA01], and to simulate data
from the NIH visible human data set [ZCK98, HFS∗01].
[OH99] and [OBH02] simulated brittle and ductile frac-
ture respectively, while [YOH00] coupled this work to ex-
plosions. Finite elements were also used for fracture in
[MMDJ01]. Other work includes the adaptive framework
of [DDCB01], the rotation based approach in [MDM∗02]
and [MG04], the hybrid finite element free form deforma-
tion approaches in [CGC∗02a, CGC∗02b], and the finite vol-
ume muscle models of [TSBNF03]. Other interesting ap-
proaches to the simulation of deformable objects include
[JP02, JF03].

Many authors have worked to improve the robustness of
mass-spring systems. [Pal94] used a pseudopressure term
in addition to edge springs, [BC00] used springs emanating
from the barycenter of each tetrahedron to preserve volume,
and [CM97] introduced altitude springs to prevent triangles
from collapsing. [MBTF03] later improved this model and
applied it in three spatial dimensions to the case of tetrahe-
dral mesh generation. If altitude springs are used correctly,
not only is inversion not a problem, but the elements will
work to un-invert. Unfortunately, spring systems do not al-
low the modeling of arbitrary constitutive models.

We also show examples of our method at work for the
in-plane deformations of lower dimensional manifolds such
as cloth and shells. Here, since triangles cannot invert in
three spatial dimensions, our method is similar to the work
of [EKS03], except that they do not consider degenerate ele-
ments. For out-of-plane forces, we use the bending model
of [BMF03] (see also [GHDS03]), and for self-collisions
we use the method of [BFA02]. Moreover, for volumetric
collisions we also use the method in [BFA02] simply ap-
plied to the triangulated boundary surface of the tetrahedron
mesh. Other interesting work on cloth and shells includes
the implicit time stepping of [BW98], the bending model of
[CK02], the adaptive simulation work of [GKS02], and the
self-collision untangling strategy of [BWK03].
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3. Measuring deformation

A deformable object is characterized by a time dependent
map φ from material coordinates X to world coordinates x.
The stress at a given point X in the material depends only
on the deformation gradient F(X) = ∂x/∂X of this mapping.
Since we are using a purely Lagrangian framework, all map-
pings are based in material space. We restrict ourselves to
constant strain tetrahedral elements, and therefore work with
a fixed tetrahedron mesh in material space. In this case, φ be-
comes a piecewise linear map completely determined by its
values at the vertices of the mesh, and F is a constant 3× 3
matrix in each tetrahedron.

Since [TSBNF03] proved that their constant strain tetra-
hedra finite volume method was exactly the finite element
method for this case (see also [TBC03]), we adopt their ge-
ometrically intuitive notation. For simplicity, consider two
spatial dimensions where each element is a triangle. We
define edge vectors for each triangle as dm1 = X1 − X0,
dm2 = X2 −X0, ds1 = x1 −x0, ds2 = x2 −x0, and construct
2× 2 matrices Dm with columns dm1 and dm2 , and Ds with
columns ds1 and ds2 . Then we have F = DsD−1

m within this
triangle. In three dimensions, Dm and Ds become 3×3 ma-
trices, and F = DsD−1

m still holds. Since the tetrahedron mesh
is fixed in material coordinates, D−1

m is constant and can
be precomputed for efficiency. More importantly, as long
as the initial tetrahedron mesh is reasonable, Dm is well-
conditioned, and therefore F = DsD−1

m is well-defined and
finite regardless of the current state of the object. Further-
more, F contains all the information about the deformation
of each tetrahedron, since we can recover Ds via Ds = FDm.
In particular, we can use F to detect whether elements are
inverted by checking the sign of detF.

If the material is isotropic, we can save storage space by
performing a QR-decomposition of Dm and storing only the
upper triangular part, as noted in [MMDJ01]. This corre-
sponds to rotating material space, and therefore has no effect
on an isotropic material. This optimization can be performed
for an anisotropic model by rotating the anisotropic terms via
the rotation from the QR-decomposition.

The next step is usually to define the Green strain G =
1/2(FT F− I), and compute stress and forces based on G.
We do not do this, however, since G is invariant with respect
to all orthogonal transformations, including reflection, and is
therefore incapable of detecting element inversion. Further-
more, G is already nonlinear in the deformation, and it is
therefore more difficult to interpret the large deformation be-
havior of a constitutive model based on G than one based on
F, which is linearly related to deformation. Thus, for the re-
mainder of this paper, we make the (nonrestrictive) assump-
tion that the constitutive model is written explicitly in terms
of F.

4. Force computation

Suppose the constitutive model is given as a first Piola-
Kirchhoff stress P, i.e. a mapping from area-weighted nor-
mals in material space to traction vectors in world space.
The force on a node i due to a single tetrahedron incident
to it is gi = −P(A1N1 +A2N2 +A3N3)/3, where A jN j are
the area weighted normals (in material coordinates) of the
faces of the tetrahedron incident to node i. Since these do
not change during the simulation, we can precompute a vec-
tor bi such that gi = Pbi. We optimize the computation by
calculating g0 as g0 = −(g1 + g2 + g3), and compactly ex-
press the other gi as G = PBm, where G = (g1,g2,g3) and
Bm = (b1,b2,b3). Note that since Bm is constant, the nodal
forces are linearly related to P. Therefore, the key to obtain-
ing robust forces in face of large deformation is an accurate
calculation of P.

If a constitutive model is given in terms of a Cauchy stress
σ or second Piola-Kirchhoff stress S, we can easily con-
vert to a first Piola-Kirchhoff stress via the formulas P = FS
and P = JσF−T where J = detF. Alternatively, one could
rewrite the force formula G = PBm directly in terms of the
other stresses as G = σBs or G = FSBm. Unlike the first
Piola-Kirchhoff case where obtaining a valid P is sufficient
to obtain robust forces, computing a valid σ or S is not
enough. For example, if the tetrahedron is a single point, F
and thus G = FSBm are identically zero. Moreover, Bs (the
analogue to Bm in world or spatial coordinates) depends on
the area weighted normals of the deformed, possibly degen-
erate tetrahedra. And thus Bs and G = σBs are identically
zero as well. That is, there are no restorative forces in ei-
ther instance. Therefore, we write all constitutive models in
terms of P before force computation.

5. Diagonalization

Since rigid body rotations do not change the physics of a de-
formable object, the stress P satisfies P(UF) = UP(F) for
any rotation U. (Here P(F) denotes function application.)
Furthermore, if we temporarily assume an isotropic consti-
tutive model, P is invariant under rotations of material space,
i.e. P(FVT ) = P(F)VT . Therefore, if we diagonalize F via
rotations U and V to obtain F = UF̂VT , P becomes

P = P(F) = UP(F̂)VT = UP̂VT (1)

where a hat superscript denotes the corresponding rotated
quantity. Since the elastic energy of an isotropic material is
invariant under world and material rotations, it can depend
only on the invariants of F, or equivalently on the entries of
the diagonalization F̂ (see e.g. [BW97]). Therefore, the gra-
dient of the energy, σ̂, will also be diagonal. Moreover, since
the three stresses are related via σ̂ = (1/J)P̂F̂T and P̂ = F̂Ŝ,
the diagonalization of F actually results in the simultaneous
diagonalization of all three stresses. In particular, P̂ in equa-
tion 1 is diagonal for an isotropic constitutive model. For an
anisotropic constitutive model, a diagonal F̂ does not result
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in a diagonal P̂. However, this is not restrictive, and we show
examples of anisotropic constitutive models in section 6.1.

The diagonalization of F is not unique, however. While
the ordering of the entries of the diagonal matrix F̂ is unim-
portant, the signs of the entries determine whether the tetra-
hedron is inverted in a particular direction. The standard
SVD convention of choosing all nonnegative entries works
only when detF≥ 0. When detF < 0, the signs of the entries
must be chosen carefully in order to guarantee that the forces
act to uninvert the tetrahedron. In this case, F̂ has either one
or three negative entries. We heuristically assume that each
tetrahedron is as uninverted as possible, and thus we assume
that only one entry (not three) is negative. Moreover, the en-
try with the smallest magnitude is chosen to be negative.
This is motivated by the geometric fact that an inverted tetra-
hedron can be uninverted by moving any one node across the
plane of the opposite face, and it is most efficient to choose
the node that is closest to the opposite face.

We compute the correct diagonalization by finding any di-
agonalization and correcting the signs. When doing this, we
must be careful to ensure that the final U and V are pure rota-
tions, i.e., detU = detV = 1. This is because deformable ob-
jects are not invariant under reflections of material or world
space, and equation 1 does not hold if either U or V is a
reflection. We compute the SVD of F = UF̂VT as follows.
First we form the normal equations FT F = VF̂UT UF̂VT =
VF̂2VT . Then we rearrange to obtain an eigenproblem,
FT FV = VF̂2 for the symmetric positive semidefinite FT F.
Here, V is an orthogonal matrix of eigenvectors and F̂2 is a
diagonal matrix with nonnegative entries. Robust computa-
tion of eigensystems for 3× 3 matrices (even with repeated
or zero eigenvalues) is a solved problem. And since it is rel-
evant to rigid body simulations, it has received a lot of at-
tention. Note that if V is a reflection with detV = −1 we
can simply multiply a column of V by −1 to make V a ro-
tation with detV = 1. The entries of F̂ are then determined
by taking the square root of the diagonal elements of F̂2, and
U can be found via U = FVF̂−1 for well shaped elements.
However, if a diagonal entry of F̂ is near zero, which is the
case for flat tetrahedra, we do not use this formula for the
corresponding column of U, but instead take it to be orthog-
onal to the other columns. For example, in the extreme case
where the tetrahedron is a single point and F = 0, we choose
U = I. Finally, for inverted tetrahedra with detF < 0, we have
detU = −1 implying that U is a reflection. This is removed
by negating the minimal element of F̂ and the corresponding
column of U. Figure 2 illustrates degeneracy and inversion
handling for a torus mesh. Moreover, we have tested our ap-
proach for a variety of degenerate configurations, such as
when a tetrahedron collapses to a single point or line, and
the method always leads to robust recovery from inversion.

Figure 2: A torus with zero strength collapses into a puddle.
When the strength is increased, the torus recovers.

5.1. Other Rotations

Typically, authors use a polar decomposition to remove the
world rotation of a tetrahedron producing a symmetric Fs
with F = QFs. To recover from inversion, one must be care-
ful to control the signs of the eigenvalues of Fs as in the di-
agonalization case. However, we know of no way to do this
without first computing the full diagonalization F = UF̂VT ,
and forming the polar decomposition via Q = UVT , Fs =
VF̂VT . Polar decomposition was used by [EKS03] for cloth
simulation and [MG04] for volumetric solids, but neither
showed how to correctly handle inverting elements. Since
inversion does not occur for triangles in three spatial dimen-
sions, this is only a difficulty in the volumetric case.

Alternatively, one could attempt to remove the world ro-
tation with a QR-decomposition, i.e. F = QFr with Fr an
upper triangular matrix. However, any stress which depends
linearly on Fr will be anisotropic in a mesh dependent way,
since it is not invariant under rotations of material space. To
see this, it suffices to note that if V is a rotation of material
space, then FVT = QFrVT , and FrVT is not upper trian-
gular. Therefore, QR-decomposition is inadvisable even if
physical accuracy is not a requirement. Moreover, this is a
problem with any method for removing rotations, such as
[MDM∗02], that does not use Q = UVT for the world rota-
tion.

Note that our approach departs from the typical goal of
determining (or approximating) the rotation from material
space to world space, i.e. Q from the polar decomposition.
Instead, we look for two rotations U and V such that UT and
VT rotate the world and material spaces, respectively, to a
space where the deformation gradient is a diagonal matrix.
This is preferable to the space obtained using Q in which the
deformation gradient is a more complex symmetric matrix.
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6. Constitutive Models

Once we have carefully diagonalized F, we can extend our
constitutive models to behave reasonably under inversion.
The diagonal setting makes this quite simple.

If St. Venant-Kirchhoff material is compressed beyond a
certain point, it gets weaker and weaker as the compres-
sion increases, and the stress drops to zero as the object
becomes flat. Moreover, if an element inverts, the forces
act to keep the element inverted. See Figure 3 (upper left).
As noted in [BW97], this makes the St. Venant-Kirchhoff
model completely useless for modeling large deformations.
[OH99] noted these difficulties, but dismissed them since
they were simulating rigid materials. However, as discussed
previously, stiff or incompressible objects may still have in-
verted tetrahedra due to discretization error, especially on the
coarse grids common in the computer graphics community.

In order to alleviate the problems with the St. Venant-
Kirchhoff model, various authors (e.g. [PDA01]) have pro-
posed adding a pseudo-pressure term to prevent element
inversion. In fact, the classical neo-Hookean constitutive
model already does this as shown in Figure 3 (upper right).
The singularity at the origin means that infinite energy is
required to completely flatten a tetrahedron, and as long as
the equations for this constitutive model are accurately simu-
lated, inversion is prevented. However, preventing inversion
also prevents the handling of situations where inversion is
the desired, correct response, as in Figure 1. Moreover, since
the forces become arbitrarily large, the system can become
arbitrarily stiff and difficult to integrate, making it difficult to
handle situations such as that shown in Figure 6 where a vol-
umetric Buddha model is pulled through rigid, interlocking
gears.

To avoid the unnecessary stiffness associated with the
neo-Hookean constitutive model, we modify the constitutive
model near the origin to remove the singularity by either lin-
earizing at a given compression limit or simply clamping the
stress at some maximum value. Moreover, as shown in Fig-
ure 3 (lower right), we extend the model past the origin into
the inverted regime in order to obtain valid forces for in-
verted elements. These forces act to uninvert the element.
Note that since we have removed both spatial and material
rotations by diagonalizing, the modified model is automati-
cally rotation invariant and isotropic.

The major strength of the diagonal setting is that these
modifications can be applied to arbitrary constitutive mod-
els. This is quite natural, since the diagonal setting is also
commonly used in the experimental determination of mate-
rial parameters. The resulting model is identical to the phys-
ical model most of the time, and allows the simulation to
continue if a few tetrahedrons invert. Furthermore, our ex-
tensions provide C0 or C1 continuity around the flat case,
which avoids sudden jumps or oscillations which might ef-
fect neighboring elements.

Figure 3: The relationship between the first Piola-Kirchhoff
stress P̂ and the deformation gradient F̂ for various consti-
tutive models.

While it may seem nonphysical to modify a constitutive
model for inversion handling, most constitutive models lose
accuracy long before inversion occurs. It is exceedingly dif-
ficult to measure material response in situations of extreme
compression, so constitutive models are often measured for
moderate deformation and continued heuristically down to
the flat cases. Given that some accuracy loss is unavoidable
when tetrahedrons are nearly flat, it is preferable to provide
smooth, consistent handling of inversion in order to avoid
unnecessary corruption of the more meaningful parts of the
simulation.

If a specific qualitative material behavior is desired but the
exact quantitative model is less important, we can use the di-
agonal setting to construct a suitable constitutive model. For
example, most biological material is soft under small defor-
mation, but becomes stiffer as the deformation increases. A
simple model capturing this behavior is given by choosing
threshold values for compression and elongation, specifying
the slope of the stress curve outside these threshold values
and at the undeformed state, and using a cubic spline to in-
terpolate between them. This model, equipped with a lin-
ear pressure component, was used for the simulations of the
volumetric Buddha model shown in Figures 5 and 6. Note
that any isotropic constitutive model expressed in diagonal
form will automatically preserve angular momentum, since
if P̂ is diagonal, Ŝ = F̂−1P̂ is symmetric (see e.g. [BW97]).
For the torus puddle and plastic sphere simulations (see Fig-
ures 2 and 7), where the focus is on degeneracy and plas-
ticity, respectively, we used the simple rotated linear model
P̂ = 2µ(F̂− I)+λtr(F̂− I) depicted in Figure 3 (lower left).
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Figure 4: A simulation of muscles driven by a key-framed skeleton. The muscle is represented with a transversely isotropic
constitutive model, and the strength along the fiber direction in the muscle is based on activation levels.

Once we have computed the diagonalized stress P̂, the
force computation becomes

G = UP̂VT Bm = UP̂B̂m (2)

where B̂m = VT Bm can be computed and stored if the ro-
tation is fixed for multiple force computations, as in some
versions of Newmark time integration (see section 9).

6.1. Anisotropy

If the constitutive model includes anisotropic components,
it is no longer invariant under rotations of material space.
However, we can continue to fully diagonalize F, and rotate
the anisotropic terms using V. Since we still work with a
diagonal F̂, the large deformation behavior of the constitu-
tive model is still apparent and easy to modify to handle in-
version. For example, if the material is stronger in a certain
material direction a, we diagonalize F and use VT a in the
computation of P̂. P̂ is no longer a diagonal matrix, but we
can still compute forces using equation 2. When construct-
ing anisotropic constitutive models that allow inversion, we
write P̂ as a diagonal matrix plus F̂ times a symmetric ma-
trix for the anisotropic terms. Then Ŝ = F̂−1P̂ is symmetric
(preserving angular momentum) as required.

We illustrate this with an example simulation of skeletal
muscle in the upper limb (see Figure 4). We use a nonlin-
ear transversely-isotropic quasi-incompressible constitutive
model. See [TSBNTH∗04] for more details. This is an in-
tricate region of the body articulated with complex joints in
the shoulder, elbow and wrist. Inaccuracy in the joint mod-
els and motion data leads to skeletal configurations that are
incompatible with the musculature creating boundary condi-
tions that degenerately deform muscles and tendons leading
to spurious element inversion. However, these configurations
often only occur in limited regions of the mesh and only for
brief moments during a given motion. Our algorithm allows
simulations to progress past these temporary problems by
letting elements invert and then later recover.

6.2. Damping

Damping forces can be implemented by rotating the veloc-
ity gradient Ḟ by the same U and V used to diagonalize F,
computing the damping stress P̂ in the rotated frame, and

computing the force exactly as for the elastic case. Note that
the rotated velocity gradient will in general not be diagonal.

As in the case of anisotropic elastic forces, a damping
model will only preserve angular momentum if P̂ can be ex-
pressed as F̂Ŝ, with Ŝ symmetric. This was not a problem for
anisotropy since the anisotropic terms are usually not im-
portant for flat or inverted elements. However, in order to
prevent visually unpleasant oscillations, we do not want the
damping forces to disappear for flat tetrahedra. For exam-
ple, the analogous damping model to the rotated linear con-
stitutive model, P̂ = β( ˆ̇F + ˆ̇FT )+ αtr( ˆ̇F), does not preserve
angular momentum unless F̂ is a uniform scaling. However,
since the angular momentum errors are small around the un-
deformed state, and highly deformed tetrahedra are usually
interacting with other objects, we have not found this lack of
conservation to be visually noticeable. In simulations where
more physical accuracy is desired, we use a correct damp-
ing model for moderate deformations and a more robust but
nonphysical model for the few flat or inverted tetrahedra.

6.3. Plasticity

We represent plastic deformation with a multiplicative de-
composition of the deformation F = FeFp, where Fp repre-
sents the permanent plastic deformation and Fe the elastic
deformation, see e.g. [BW97] or [AL03]. The multiplicative
formulation allows a complete separation between plastic
flow and elastic forces, and makes constraints such as vol-
ume preservation simple to enforce. In contrast, the additive
plasticity formulation of [OBH02] does not support true in-
compressibility, though this might not be a significant prob-
lem for graphics applications. Note that if the elastic consti-
tutive model is isotropic, the rotational part of Fp is arbitrary,
e.g. we can choose Fp to be symmetric.

We restrict ourselves to rate-independent plasticity mod-
els, and use the return mapping algorithm to transfer defor-
mation from the elastic part Fe to the plastic part Fp when-
ever a yield criterion on Fe is exceeded. The details of the
computation of plastic flow are as follows. Compute the trial
elastic deformation Fe,trial = FF−1

p , and find the diagonal-
ization Fe,trial = UF̂e,trialVT . If a yield criterion on F̂e,trial
is exceeded, project back onto the yield surface producing
a new diagonal matrix F̂e,pro j. Compute the trial plastic de-
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formation Fp,trial = F̂−1
e,pro jU

T F (dropping V since rotations
of Fp are unimportant). If Fp,trial exceeds a separate limit
criterion, project it back onto the limit surface producing the
final Fp. Compute and store F−1

p for future use.

This structure supports an arbitrary plastic yield criterion
while still ensuring that the plastic deformation does not be-
come too extreme. This is important, since the time step re-
quired for stability depends on the conditioning of Fp. In
particular, Fp should never invert. This can be implemented
in the diagonal framework by ensuring that the projection
of F̂e always results in an F̂e,pro j with positive entries. The
final limiting of Fp,trial can then be adjusted to ensure a well-
conditioned Fp. Figure 9 shows a simulation of ductile frac-
ture using this technique. See [MBF04] for more details.

7. Controlling Plasticity

Various authors, such as [FM97, PSE∗00, TMPS03], have
considered controlling physics based simulations. The abil-
ity to control a simulation alleviates the need for laborious
parameter tuning to achieve a desired effect, and makes pos-
sible animations which could not be achieved through phys-
ical accuracy alone. In the context of plasticity, we can use
the plastic limiting projection step to control the plastic de-
formation toward any desired state without sacrificing real-
ism. To do this, we compute a goal deformation Fp,goal at the
beginning of the simulation. In the plastic projection step,
we are given a tentative plastic flow from the old deforma-
tion Fp to the trial deformation Fp,trial . In order to always
move towards Fp,goal , we choose the final plastic deforma-
tion to be the point on the segment from Fp to Fp,trial which
is closest to Fp,goal . This computation is actually performed
on the logarithms of each Fp after removing the world ro-
tation. Since the mapping from rest to goal state will rarely
preserve volume locally, volume preservation should not be
used during the elastic projection step.

Allowing some flexibility in the plastic flow allows the
deformation to pick up additional fine detail not present in
the goal state. For example, Figure 7 shows a plastic sphere
pulled through interlocking gears. The sphere is controlled
towards the flattened disk shape. In particular, the goal state
does not include the teeth marks present in the final state
of the sphere. A more obvious example of control is shown
in Figure 7. Both of these examples used the simple yield
criterion ‖ logFe‖ ≤ γ.

8. Thin Shells and Cloth

The diagonalized framework is readily extended to handle
the in-plane behavior of thin shells and cloth (see Figure 5).
Here, F is a 3× 2 matrix decomposed as F = UF̂VT where
U is a 3× 2 matrix with orthonormal columns, F̂ is a 2× 2
diagonal matrix, and V is a 2×2 rotation matrix. Everything
else follows in a straightforward manner.

Inversion does not occur for freely moving thin shells and

cloth, since an “inverted” triangle is indistinguishable from
a triangle that has been rotated 180◦ out of plane. However,
when triangles degenerate to lines or points special care is
needed. Moreover, when a shell approximates a two dimen-
sional surface such as during surface mesh generation (see
e.g. [MBTF03]), “inversion” can occur. That is, a triangle
can be tested for inversion by considering the sign of the dot
product between its face normal and a known approximation
to the surface normal at the center of the triangle. If this sign
is negative, the triangle can be considered inverted, and the
signs of the entries of F̂ can be corrected as before. Thus, the
triangle acts to uninvert by flipping the direction of its face
normal.

For bending forces, we use the formulation of [BMF03],
which is similar to that of [GHDS03]. The bending model
is independent of the in-plane model, and in-plane plasticity
is analogous to the three dimensional case. To allow plastic
bending, we apply the plastic flow algorithm to the rest an-
gles between each pair of adjacent triangles. An example of
a shell simulation showing both in-plane and bending plas-
ticity is shown in Figure 8.

9. Time-Stepping and Collision Handling

We use the Newmark time-stepping scheme of [BMF03]
with explicit integration for the elastic forces and implicit
integration for the damping forces. Treating only the damp-
ing forces implicitly removes the strict quadratic time step
restriction required by fully explicit schemes without intro-
ducing the extra artificial damping characteristic of fully im-
plicit schemes. As most damping models are linear in the
velocities with a positive definite, symmetric Jacobian, the
implicit integration can be implemented using a fast conju-
gate gradient solver.

We modify [BMF03]’s scheme slightly to improve the
handling of rigid body collisions. Specifically, we use the
velocity from the last implicit update as input to the rigid
body collision algorithm, and use constraints in the veloc-
ity update to prevent motion in the direction normal to the
rigid body for points experiencing a collision. The resulting
algorithm to move from step n to n+1 is as follows:

• ṽn+1/2 = vn + ∆t
2 a(tn,xn, ṽn+1/2)

• x̃n+1 = xn +∆tṽn+1/2

• Process rigid body collisions using x̃n+1 and vn, pro-
ducing final positions xn+1 and modified velocities
ṽn.

• vn+1 = ṽn +∆t
(
a(tn,xn, ṽn)+a(tn+1,xn+1,vn+1)

)
/2

Note that the last line is exactly the trapezoidal rule applied
to the velocities. This algorithm supports a variable time step
with second order accuracy and monotone behavior. Since
the positions change only in lines 2 and 3 of the algorithm,
we can compute F and its diagonalization only once per time
step after step 3. Plastic flow is also computed at this time.
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With this optimization, the cost of diagonalization becomes
negligible compared to the cost of the implicit velocity up-
dates.

The rigid body collision processing is based on the algo-
rithm of [BMF03]. We represent rigid bodies as implicit sur-
faces, which simplifies collision detection. Each such node
is projected to the surface of the object, and its normal ve-
locity is set to that of the object if it is not already moving
away from it. We incorporate friction by changing the rela-
tive tangential velocity vT,rel to

vnew
T,rel = max

(
0,1−µ

∆vN +∆xN/∆t
|vT,rel |

)
vT,rel

where ∆xN and ∆vN are the changes in position and normal
velocity from the projection step. The ∆xN/∆t term ensures
that the particle will experience the correct friction for the
change in position imparted by the object. This term was not
considered in [BMF03].

Any node involved in a collision is flagged, and its nor-
mal velocity is held fixed during the final trapezoidal rule
step. Enforcing normal velocities of colliding particles via
constraints during the velocity update further increases the
stability of the collision scheme, since it allows a nonlocal
response to collision. This strategy is similar to that proposed
in [BW98], who implemented rigid body collisions in their
fully implicit scheme via constraints in the conjugate gradi-
ent solver.

Since projecting points to the surface of an object tends to
crush tetrahedra, the ability to handle flat or inverted tetra-
hedra is essential to enable the use of reasonable time steps.
Also, since the rigid body collision algorithm is applied to
vertices only, not triangles, it is useful to apply the algorithm
to the interior points as well as the surface points, to prevent
small rigid bodies from slipping between surface points into
the interior of the object. The importance of this increases
for very soft objects, as very soft surface triangles can easily
expand and pass around even moderately sized obstacles.

For self-collisions we extract the boundary surface and
apply the cloth collision algorithm of [BFA02]. This algo-
rithm is applied “outside” of the time-stepping algorithm
outlined above. Although a surface-only collision algorithm
does not prevent the interior of the object from extending
outside its boundary, our method has no difficulty with this
inversion and only the surface is needed for rendering.

10. Examples

We used the algorithm of [MBTF03] to generate the meshes
used in this paper. Even without preconditioning in the CG
solver, computation times were generally under 20 minutes
per frame for the largest meshes. Of course, coarser meshes
can be simulated in just a few minutes a frame. For exam-
ple, the torus simulation in Figure 2 ran at around 10 to
20 seconds per frame with the 115K element mesh, and .5

to 1 second per frame with an 11K element mesh. All the
simulations involved large numbers of inverted elements: a
typical frame from the Buddha simulation in Figure 6 had
about 29K inverted tetrahedrons out of a total of 357K tetra-
hedrons, or about 8% of the mesh.

The Buddha with cape example in Figure 5 was simulated
in two layers, with one-way coupling from the Buddha to the
cloth using the collision processing algorithm from section
9. We used the exact triangulated surface geometry of the
Buddha in order for the cloth to resolve the many features
of the Buddha mesh. To evaluate the Buddha as an implicit
surface at a cloth vertex v, we find the closest point p to v
on the Buddha surface (which may lie on a vertex, edge, or
face) and define the “normal” at v to be in the direction from
v to p or p to v, whichever points outwards.

11. Conclusions

We have presented a new method for modifying an elas-
tic constitutive model to behave robustly for inverted ele-
ments, which works by carefully diagonalizing the defor-
mation mapping prior to computing forces. Examples were
presented to demonstrate that this algorithm works well for
volumetric and thin shell simulations involving degeneracy,
complex geometries, anisotropic constitutive models, plas-
ticity with and without control, ductile fracture, and coupling
between different types of deformable objects.
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