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Abstract
We investigate techniques for modeling contact between quasi-rigid objects – solids that undergo modest deforma-
tion in the vicinity of a contact, while the overall object still preserves its basic shape. The quasi-rigid model com-
bines the benefits of rigid body models for dynamic simulation and the benefits of deformable models for resolving
contacts and producing visible deformations. We argue that point cloud surface representations are advantageous
for modeling rapidly varying, wide area contacts. Using multi-level computations based on point primitives, we
obtain a scalable system that efficiently handles complex contact configurations, even for high-resolution mod-
els obtained from laser range scans. Our method computes consistent and realistic contact surfacesand traction
distributions, which are useful in many applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling: Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism: Animation

1. Introduction

Contact is ubiquitous in real world interactions and is one
of the most difficult problems in 3D computer animation.
Physical models used to address contact fall into two broad
categories: Rigid body models and deformable body models.

Rigid body models are the most widely used today, de-
spite the fact that they cannot reproduce visible deforma-
tions and surface tractions. This is due to their apparent effi-
ciency and relative simplicity: A rigid body’s configuration
is characterized by only six variables, its velocity requires
an additional six variables, leading to a small system of dif-
ferential equations to integrate, if the forces on the body are
known. We review this work in Section 2. This happy story
changes dramatically when contact is involved, and some
serious problems must be addressed by the “simple” rigid
body model. Objects make contact at multiple points, and the
rigid body model implies that these contacts are very sensi-
tive to small changes in object state. The contact state, i.e.,
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Figure 1: A romance of two computer graphics classics. (a)
the Igea and Max Planck models in contact, (b) the inter-
section volume, (c) sampling pattern with active nodes, (d)
normal tractions on the deformed model

which contacts are active and which break, has to be deter-
mined very carefully since the resulting wrench (i.e., force
and torque) on the object depends on it. Even though it is
now well understood how to determine the contact state us-
ing LCP formulations (see Section 2), the fundamental sen-
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sitivity of the contact state remains as it is part of the phys-
ical model. This sensitivity problem becomes much worse
when trying to simulate contact with complex scanned ob-
jects such as those we use in this paper – the contact state
can wobble over the large number of surface points, like a
stool with hundreds of legs.

To address this problem while retaining the advantages
of rigid bodies, two alternatives have been explored: The
first is to use impulse-based methods that treat even con-
tinuous contact as a type of impact and use a coefficient of
restitution to determine the post-impact velocity of the ob-
ject [Hah88, MW88, MC95, GBF03]. This approach is eas-
ier to formulate, but could require a large number of steps to
resolve the resulting impact sequences. It has its own prob-
lems when trying to simulate resting contact with complex
models and the wobbling problem remains. More fundamen-
tally, the coefficient of restitution is physically meaningful
only for particles, and it has been difficult to define a suit-
able quantity for rigid bodies [MC95]. Even for something
as simple as a metal rod, the measured coefficient of resti-
tution can vary over most of the feasible range [SH96]. The
other alternative is to introduce virtual springs and dampers
at the contact points (e.g., [GPS94]), to remove the contact
state sensitivity. Optimization-based animation [MS01] has
similar advantages. However, without an underlying model
of elasticity, it is difficult to assign physically meaningful
spring constants (or objective functions), and the effective
compliance of the contact is again sensitive to the contact
state. Rigid body contact turns out to be rather complex af-
ter all. This is not surprising, since the assumption of rigidity
makes the contact problem highly singular, requiring discon-
tinuous jumps in contact forces for small changes in posi-
tion. In reality, all objects are deformable to a certain ex-
tent, and contact produces stresses that lead to deformations
which may be small but significant.

This may suggest that the solution lies in using fully de-
formable models; such models have a long history in com-
puter graphics (which we briefly review in Section 2). How-
ever, fully deformable models (including mass-spring parti-
cle systems) can be expensive, since the size of the system
state is large all the time, even when the body is not under-
going visible deformations. This is unfortunate, since many
real world objects appear to be rigid except at high stress re-
gions near the contact, and the distribution of mass changes
very little. Multiresolution and adaptive methods can ad-
dress this problem to some extent [CGC∗02, GKS02, JP03],
but require meshes with good connectivity and relatively
complex data structures. More subtly, deformable models
in computer graphics have been used primarily to produce
visual deformations, and not to solve contact problems.
Contact has been treated by using user-specified bound-
ary conditions (e.g., [JP99]) or by using penalty forces
(e.g., [HFS∗01]). True contact problems are much more dif-
ficult [KO88] because we do not know in advance whether
a possible contact point on the surface will actually be in

contact or break free from the surface; its contact state de-
pends on the boundary conditions at all other possible con-
tact points and we must determine all the boundary condi-
tions simultaneously. Dynamically deformable objects such
as mass-spring systems could, in principle, determine the
contact boundary conditions by time stepping, but this re-
quires sufficient temporal resolution to resolve the pressure
waves traveling in the solid at the speed of sound.

Our Contributions

With the above motivation, we have developed a new type
of model that we call quasi-rigid, which can combine the
benefits of rigid body models for dynamic simulation and
the benefits of deformable models for resolving contacts and
producing visible deformations. By quasi-rigid we mean ob-
jects whose surfaces can undergo modest deformations in the
vicinity of a contact, while the overall object still preserves
its basic shape. There are a lot of objects that could be mod-
eled in this way, including biological manipulators such as
our hands and feet and everyday objects that appear rigid
visually. We have developed a new set of representations
and algorithms for modeling the geometry and physics of
contacts between quasi-rigid objects. Our method is specifi-
cally designed to handle contact between complex geometric
shapes obtained from laser scans, using sample-based sur-
face representations to add detail to the deformable contact
patch as needed. It can resolve the contact hierarchically to
satisfy performance requirements.

More generally, by explicitly computing the contact sur-
face and distributed contact tractions, we open up new ar-
eas for physically-based computer graphics. Understanding
the exact extent of the contact areas, the traction distribu-
tions over them, and their evolution over time is interest-
ing and significant in many applications, ranging from dy-
namic simulations and computer animation to engineering
and biomedicine.

2. Prior Work

2.1. Physical Models

Rigid body dynamics is widely used in computer graph-
ics [Hah88, MW88, MC95, MS01, GBF03]. Baraff
was the first to systematically treat contact prob-
lems [Bar89, Bar91, Bar94].

A fundamental feature of contact (and friction) is that it
leads naturally to an inequality constrained problem. This
can be formulated as a minimization of a quadratic func-
tional subject to inequality constraints (e.g., [Bar89]). The
necessary condition for optimality is a Linear Complemen-
tarity Problem (LCP) [Mur88, CPS92], and it is often sim-
pler to solve it directly [Lot82, Bar89, Bar94]. Coulomb
friction adds two complications. First, the classical friction
cone leads to a quadratic constraint, but we can recover an
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LCP by approximating the friction cone with a polyhedral
cone [Lot82]. The second, more serious, complication is that
the dynamic LCP formulated using acceleration and forces
as the unknowns is not guaranteed to have a solution, or
can have multiple solutions. This is a problem with the rigid
body model itself [Pai95] and determining whether a solu-
tion exists is NP-complete [Bar91]. However, it was soon
realized that by changing the problem to allow impulses (or
equivalently, using forces and accelerations integrated over a
time step) one can obtain solutions [Bar91, ST96]. We note
that in Section 4.2 we formulate our contact problem as an
LCP too, but ours is an elastic LCP which is always solvable.

Physically based deformable models for computer
graphics were pioneered by [TPBF87], and this area
has been active ever since. Early work is surveyed
in [GM97]. The recent focus has been on interactive simula-
tion [JP99, DSB99, DDCB01], and specialized methods for
important cases such as cloth, biological tissues, and frac-
ture [BW98, HFS∗01, OBH02, BFA02]. Contact is treated
in most of the papers cited above but, as we mentioned ear-
lier, it is usually done by assuming contact boundary condi-
tions. Contact problems have been addressed more carefully
in engineering [Joh85, KO88], but their focus has been on
obtaining accurate solutions for very simple and idealized
geometries.

There have been a few methods suggested for combining
the benefits of rigid bodies and deformable bodies. [TW88]
considered how non-linearities in large displacement elas-
ticity problems could be approximated by a rigid displace-
ment plus a linear elastic model, but did not address the
general contact problem. Cani (Gascuel) [GVP91, Gas93]
— see also [SP95] — addressed contact and volume preser-
vation, but used a simple elasticity model based on a scalar
potential field. The model fits well with the implicit surface
representation used, but is difficult to relate to the physics of
3D elastic deformation and to material properties. Contact
surfaces were computed but did not account for the impor-
tant coupling between deformations at different locations in
a contact patch, as we do. In robotics, a model based on a
rigid core with elastic deformation lumped at the contact
point was introduced by Kumar and colleagues [WK94],
and generalized to distributed contact in [SK03] using an
LCP formulation similar to ours. However the local con-
tact patch was represented differently, as a grid of lumped
spring-dampers and was limited to simple surfaces. Baraff
and Witkin [BW92] proposed a model also aimed at com-
bining the advantages of rigid and deformable models, but
based on global deformations; our work proceeds in the op-
posite direction, focusing on adding local deformation to a
rigid body in the contact region.

2.2. Surface Models

The modeling of the geometry of contact surfaces does not
easily fit into existing geometric modeling techniques. Con-

sider triangle meshes, for example. Most commonly such
meshes have irregular connectivity and thus it is difficult
to get them to conform exactly in the contact area, as the
two sides have incompatible connectivity graphs. One can
try to compute a single contact mesh which is a common
refinement of both sides of the contact, but as this process
is repeated across deformation time steps, the elements in
the contact area will become unreasonably small through the
successive refinements. Even with resampled surfaces where
the meshes can be made mostly regular, it may be difficult to
get the nodes from the two sides to line up without causing
excessive distortion to the triangles.

To overcome these problems we use a purely sample-
based approach. Surfaces are represented by unstructured
point clouds, i.e., sets of point primitives that sample the po-
sition and normal of the underlying surface. We use the mov-
ing least squares (MLS) surface model to define a smooth
continuous surface from a set of point samples (see [Lev03]
or [ABCO∗01] for details). Given an unstructured point
cloud P as input, the corresponding MLS surface S is de-
fined as the stationary set of a projection operator ΨP(x),
i.e., S = {x ∈ IR

3|ΨP(x) = x}. The projection ΨP(x) is eval-
uated by first fitting a local least squares plane that serves as
a local parametrization domain. A second least squares op-
timization then yields a bivariate polynomial g(u,v) that lo-
cally approximates the surface. The projection of x onto S is
given as ΨP(x) = q+g(0,0) ·n, where q is the origin and n
the normal of the reference plane. Both least squares fits use
a positive, monotonically decreasing weight function, typi-
cally a Gaussian or low degree polynomial, that adjusts the
influence of the sample points according to the distance to
q. We use the linear approximation of the MLS method pre-
sented in [PGK02] that dynamically adapts the radius of the
weight function to the local sample spacing and thus allows
robust reconstruction for irregular point clouds with varying
sampling density.

The main advantage of the MLS method for our purposes
is that it is meshless. By avoiding global structural informa-
tion such as an explicit connectivity graph or a parameter-
ization, highly dynamic contact events can be modeled ef-
ficiently and a unique consistent contact surface can be de-
fined without the need for re-triangulation or zippering (see
also Section 4.4)

3. Modeling Quasi-Rigid Objects

Our goal is to model contact, possibly over a wide area, be-
tween quasi-rigid solids. Figure 2 shows a conceptual model
of such an object. A point force acting on a quasi-rigid solids
leads to a deformation that is restricted to a small, local area
(active region) around the point of contact, while keeping the
overall shape intact. This motivates the use of local, analyt-
ical models for linear elastic materials (Section 3.1). Since
we are mainly interested in the contact region, we choose
to work with boundary-based elasticity formulations. The
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resulting system response functions (Green’s functions) are
discretized using a collocation scheme. We will show in Sec-
tion 3.2 how this approach can be integrated nicely with sur-
faces represented by point clouds, leading to an efficient im-
plementation.

local deformation

(a)

sample points

(d)(b)

point force
active region

superposition

(c)

Figure 2: Conceptual model of quasi-rigid objects. (a) point
force acting on quasi-rigid body, (b) local deformation, (c)
deformable layer, (d) point-based surface representation.

3.1. Physical Model

Since we anticipate deformations to be small, our system is
based on the physics of static linear elasticity. Our focus is
on contacts between quasi-rigid objects, so we need to find
the displacements and tractions that act on the surfaces of
the objects. This could be done by solving a global bound-
ary value problem to compute Green’s functions as in [JP99],
but here we seek a suitable approximation that can be effi-
ciently evaluated locally. To keep the exposition simple, we
only consider tractions p and displacements u that act nor-
mal to the surface. We will come back to the corresponding
tangential quantities in Section 5.1, where we consider fric-
tion effects.

A widely used method in contact mechanics is the Boussi-
nesq approximation, which models the surface around a
point of contact as an elastic half-space [Joh85]. Suppose
a normal traction p(x) is applied at a point x on the surface.
We define a local coordinate frame with x as the origin, the
z-axis given by the surface normal n at x and x- and y-axes
defined by two arbitrary (but fixed) vectors perpendicular to
n and to each other. According to the Boussinesq formula,
the displacement u(y,x) at a point y on the surface in the
normal direction due to a point load p(x) is given as

u(y,x) =
1−ν
2πG

p(x)

‖ y−x ‖
, (1)

where ν is Poisson’s ratio and G is the shear modulus. Since
we assume linear elasticity, the total displacement u(y) due
to a distribution of pressure on the whole surface S can be
found by superposition:

u(y) =
1−ν
2πG

∫
S

p(x)

‖ y−x ‖
dx. (2)

Figure 3 (a) shows the system response function f (r) =
1−ν
2πG

1
r of the Boussinesq approximation for a single point

load, which exhibits a rapid fall-off with increasing distance
r =‖ y−x ‖.

r r

f(r) f(r)

(a) (b)

Figure 3: System response functions. (a) Boussinesq approx-
imation, (b) an empirical model that preserves volume.

3.1.1. Volume Preservation

Since the Boussinesq model is based on the assumption of
an infinite elastic half-space, it does not guarantee preserva-
tion of volume. However, many real-world materials, such
as human tissue, are almost incompressible and thus effects
due to a finite volume need to be considered for a realis-
tic simulation. This can be achieved by ensuring that the
deformation due to a point load does not lead to a change
of volume, i.e., that

∫
S u(y,x)dy = 0. Then, due to linearity,

volume preservation is ensured for any pressure distribution
acting on the surface. Using integration in polar coordinates,
volume preservation can be formulated as the following con-
straint on the response function f (r):

∫ ∞

0
f (r)rdr = 0. (3)

Of course, not all response functions obeying this condition
are physically valid. A plausible analytical function can be
obtained by shifting the Boussinesq function in the posi-
tive z-direction and modulating it with a Gaussian as shown
in Figure 3 (b). More realistic response functions could ei-
ther be obtained through physical measurements or through
off-line simulations using high-resolution finite element or
mass-spring systems. Figure 4 illustrates volume preserva-
tion for quasi-rigid objects on a simple example of a ball
in contact with a plane, using the transfer function of Fig-
ure 3 (b).

(a)
(c)

(b) (d)

Figure 4: Volume preservation. (a) original configuration
prior to contact resolution, (b) plane deformable, sphere
rigid, (c) sphere deformable, plane rigid, (d) both models
deformable.
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3.2. Discretization

In a discrete setting, we need to find relations between the
displacement ui that node qi experiences due to the tractions
p j acting on all other nodes. This can be expressed in matrix
form as

u = Rp, (4)

where u = [u1 . . .uN ]T is the vector of displacements, p =
[p1 . . . pN ]T describes the corresponding tractions, and R is
the system response matrix. To determine the entries of R we
discretize the tractions using scattered data approximation as

p(x) ≈
N

∑
j=1

p jΦ j(x), (5)

where Φ j is the shape function

Φ j(x) =
ω j(‖ x−q j ‖)

∑N
k=1 ωk(‖ x−qk ‖)

, (6)

for certain kernel functions ωk. Then ui can be expressed as

ui =
1−ν
2πG

∫
S
∑

j

p jΦ j(x)

‖ qi −x ‖
dx =

1−ν
2πG ∑

j
p j

∫
S

Φ j(x)

‖ qi −x ‖
dx

(7)
and it follows that

Ri j =
1−ν
2πG

∫
S

Φ j(x)

‖ qi −x ‖
dx. (8)

As kernel functions ωk we use truncated Gaussians. Their ra-
dius is chosen so that kernel functions of neighboring points
overlap to achieve a hole-free coverage of the surface, simi-
lar to rendering algorithms that use Gaussian reconstruction
kernels for surface splatting [ZPvG01]. Note that the singu-
lar integrals in Rii are bounded [Joh85] and that all entries of
R can be pre-computed for fixed sampling distributions. Due
to the locality of the response function, the response matrix
R will generally be sparse, contrary to global methods for
general deformable objects that require transformations and
thresholding to expose the sparsity [JP03].

4. Contact Resolution

Given the model for quasi-rigid objects defined above, our
goal is to determine the contact surface S of two solids A and
B and compute the forces that act on this surface. The bodies
A and B are represented by two point clouds PA and PB that
define two corresponding MLS surfaces SA and SB. During
a simulation, the two bodies might collide and interpenetrate
as illustrated in Figure 7. To resolve this collision we need to
find a local deformation on each body, such that both objects
touch without interpenetration. We determine this deforma-
tion and the resulting contact surface as follows: First we
check if the two bodies intersect. If a collision is detected,
we compute two sets of active nodes QA and QB, i.e., those
surface points of each model that potentially experience a
displacement due to the deformation that resolves the inter-
penetration (see Section 4.1). For the sets of active nodes we

assemble the system response matrices as described in Sec-
tion 3.2. Then we set up linear complementarity constraints
that define the contact surface and solve for the tractions that
act on this surface. From these tractions we compute the cor-
responding displacements and the total wrench that acts on
the quasi-rigid bodies (see Section 4.2).

4.1. Collision Detection

To determine the set of active nodes QA (analogously for
QB) we first find all points of PA that are inside the volume
bounded by SB. For this purpose we use the inside/outside
classification algorithm presented in [PKKG03], which ap-
proximates the signed distance function induced by a point-
sampled surface. To classify a point rA ∈ PA with respect
to the surface SB, we find the projected point xB of rA
on SB. The approximate signed distance is then given as
d(rA,SB) = (rA −xB) ·nB, where nB is the outward pointing
normal at xB. If d(rA,SB) < 0 we classify rA as intersecting.

The set of intersecting points is not sufficient to define the
active nodes for contact resolution, since tractions on these
points can lead to displacements outside of the intersect-
ing region. To determine the required additional points we
make use of the fact that the system response function drops
quickly with increasing distance (see Section 3.1). Contrary
to fully deformable objects where all points potentially ex-
perience a significant displacement, we can thus confine the
active region to a local neighborhood around the penetrat-
ing samples. The additional points can then be found with a
simple range query†.

As described in [PKKG03], finding the point xB ∈ SB for
inside/outside classification requires a costly MLS projec-
tion. We can speed up these computations significantly by
observing that we are not required to compute the intersec-
tion region precisely. As long as we get a conservative es-
timate (that might include some points that are not pene-
trating, but close to the intersection region), we are guar-
anteed to find all points that potentially experience a dis-
placement. Thus for classification we search for the closest
point rB ∈ PB instead of xB ∈ SB. This amounts to a piece-
wise linear approximation of the signed distance function
of SB, requiring only a closest point query instead of a full
MLS projection. To further improve performance, we use a
bounding sphere hierarchy for fast intersection culling. This
spatial data structure is built using the clustering method de-
scribed in [PGK02]. The point set PA is divided into disjoint
clusters and for each of these clusters a tightly fitting bound-
ing sphere is computed. A nested hierarchy can be obtained
by repeating this process recursively.

† When using a volume preserving response function a slightly
different approach needs to be applied (see the discussion in Sec-
tion 6.1).
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4.2. Linear Complementarity Formulation

Given the sets of active nodes QA and QB, we need to find
tractions on these points such that the corresponding dis-
placements lead to deformed surfaces S′A and S′B that are in
contact, but do not interpenetrate. Let S = S′A ∩S′B be the (as
yet unknown) contact surface between the deformed models.
If the two surfaces touch at a point x ∈ S, the corresponding
normal tractions at this point on each of the two surfaces are
equal, i.e., pA(x) = pB(x) (we are only considering the equi-
librium state). Note that we use the convention that normal
tractions are pointing inwards, i.e., pA(x) and pB(x) are de-
fined with respect to different local coordinate systems. Let

S'A

S'B

A

B

A

B

SA

SB

- ---- --+ +

SA'

SB'

+
+

0 0000
0 0

SA

SB qA

qB
~

~

Figure 5: Contact resolution in 2D. The top image shows the
active nodes prior to displacement, where the signs indicate
the initial separation of corresponding points. After contact
resolution, all separations are non-negative and points on
the contact surface experience non-zero tractions, indicated
by two opposing arrows.

qA ∈ QA be an active node of model A and assume for now
that after deformation this point will end up on the final con-
tact surface. Then there exists a corresponding point xB ∈ SB
such that its position in the final configuration coincides
with the deformed position of qA and the normal tractions at
both points are equal. Let Q′

B be the set of all corresponding
points of the active nodes of model A and let Q′

A be defined
analogously. Furthermore let Q̃A = QA ∪Q′

A = {q̃1
A, . . . , q̃N

A}
and Q̃B = QB ∪Q′

B = {q̃1
B, . . . , q̃N

B} be two sets that are or-
dered such that q̃i

A and q̃i
B are a pair of corresponding points

for all i, where N = |Q̃A| = |Q̃B|.

In the following all quantities that are defined for model A
have their analog for model B. We define a vector of tractions
on Q̃A as pA = [p1

A . . . pN
A ]T , such that pi

A is the normal trac-
tion at node q̃i

A. These tractions will cause displacements,
which will be denoted as uA = [u1

A . . .uN
A ]T . Using the system

response matrix RA for Q̃A as defined in Section 3.2, the dis-
placements uA are related to the tractions pA by uA = RApA.

Our goal is to describe the deformed surfaces in contact
without interpenetration (this is called the Signorini Prob-
lem [KO88]). It follows immediately that pA = pB. Addi-
tionally, we can formulate conditions on the displacements.
We define the separation of two corresponding nodes q̃i

A and

q̃i
B as

ui
A +ui

B +σi ‖ q̃i
A − q̃i

B ‖, (9)

where σi = −1, if qi
A intersects the volume bounded by SB,

and σi = 1, if no interpenetration occurs. Note also that ui
A

and ui
B are defined with respect to opposing normals. Non-

penetration implies si ≥ 0. If we assume that the objects
can only push and not pull on each other, then the traction
pi = pi

A = pi
B has to satisfy pi ≥ 0 (this is commonly known

as the “no velcro” assumption). Finally, we observe that the
separation si and the traction pi are complementary – at each
point, at least one of them is zero; to be able to have non-zero
traction, we must have zero separation, and to have non-zero
separation, we must have zero traction. Therefore, we can
combine these complementarity conditions to obtain

s = Rp+q

s ≥ 0

p ≥ 0

sT p = 0,

(10)

where s = [s1
. . .sN ]T , R = RA +RB, and q = [σ1 ‖ q̃1

A− q̃1
B ‖

. . .σN ‖ q̃N
A − q̃N

B ‖]T (see Figure 5). This is a linear comple-
mentarity problem (LCP) and techniques for solving such
problems have been extensively studied [Mur88, CPS92]. In
general, an LCP may not have a solution or its solution may
not be unique. However, in our case, because the matrix R
is co-positive (in the Boussinesq case it is easy to see that
it is positive), a solution can always be found by Lemke’s
method.

Note that the point correspondences are used both for
computing the initial separation ‖ qi

A −qi
B ‖ and for assem-

bling the system response matrix R. The crucial question
is how can we actually find the corresponding points, since
this seems to require knowledge of the unknown final con-
tact surface. We found that, instead of trying to solve Equa-
tion 10 directly, we can drastically simplify the computations
by splitting the combined LCP into two LCPs, each defined
separately on the active nodes of each object alone. Thus
we only need to assemble a response matrix for each of the
sets of active nodes QA and QB instead of for the extended
sets Q̃A and Q̃B. The underlying assumption is that the dis-
tance metrics on both models in the active region are sim-
ilar and thus the separate response matrices will describe a
similar physical behavior. To estimate the initial separation
we compute the minimum distance of an active node of A
to the surface of B (and vice versa). Thus we avoid having
to find explicit point correspondences altogether. However,
with these simplifications we are not guaranteed to resolve
the interpenetration completely. The displacements will con-
sistently be too small, since we use a lower bound on the
initial separation. To find the correct solution of Equation 10
we iterate the above scheme until the penetration is resolved
(up to some epsilon separation). We found that for all prac-
tical purposes, three iterations were sufficient. The fast con-
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vergence can be explained by the fact that the closer the two
surfaces get the more accurate will both the approximation
of the system response matrices and the estimate for the ini-
tial separation be. So instead of solving a single LCP of size
|QA|+ |QB|, we iteratively solve two LCPs of size |QA| and
|QB|. Since Lemke’s method has at least quadratic complex-
ity [Mur88], this iterative scheme can even be faster than
solving the single larger system.

4.3. Hierarchical Representation

Even with the above optimizations, the cost of computing the
contact surface and corresponding normal tractions can be
significant for densely sampled models or large contact ar-
eas, as it depends critically on the number of active nodes. To
improve performance and obtain a scalable algorithm suit-
able for interactive applications, we extend the single-level
computations described above to a multi-level scheme based
on a spatial clustering hierarchy. Each level of this hierar-
chy represents the model surface at a different resolution,
similar to mesh-based multi-resolution representations used
in surface editing, e.g., [ZSS97]. To build the hierarchy of
surface approximations we use the same spatial data struc-
ture we described for accelerating the collision queries (see
Section 4.1). For each cluster at a certain level, we choose
the center of the bounding sphere of the cluster’s sample
points as a representative sample (see also Figure 1). The
radius of the bounding sphere determines the radius of the
kernel function used to compute the system response matrix
(Section 3.2). The computations of Section 4.2 are then per-
formed at the coarsest level first and the resulting tractions
are propagated to the next finer level using interpolation.
As soon as the desired accuracy is obtained this recursive
scheme is terminated, allowing us to trade off speed versus
accuracy, which is particularly important in realtime appli-
cations.

4.4. Contact Surface Model

As described above, the active region comprises all surface
points that experience a displacement due to the contact res-
olution forces. The parts of the active region that are actually
in contact are specified by all active nodes that have zero
final separation (or, due to complementarity, non-zero trac-
tion). The fact that we have point-wise compliance does not
guarantee that both surfaces conform exactly in the region of
contact, however. Assume, for example, that both surfaces
were represented as triangle meshes. Even though the dis-
tance between both meshes might be zero at all the mesh
vertices, there could still be intersections or gaps between
the two surfaces (the same holds for two separate MLS sur-
faces). To obtain a single conforming contact surface, i.e., to
ensure that the surfaces of both models agree exactly in the
region of contact, we make use of the meshless, implicit sur-
face definition of the MLS projection. At any time instance,
the surface of model A is represented by its original points

PA plus all active nodes of B that lie on the contact surface
(analogously for model B) as shown in Figure 6. In the in-
terior of the contact region both surfaces will thus coincide
exactly, since the same points are used in the MLS optimiza-
tion, as indicated by the neighborhood region N2. Closer to
the boundary of the contact area these neighborhoods will be
different (indicated by N1 in Figure 6) and hence the surfaces
will diverge. Even though we have no formal proof at this
time, extensive experimentation confirms that no interpen-
etrations occur in these regions between the MLS surfaces.
Note that the increased sampling density in the contact re-
gion is easily handled by the adaptive MLS approximation
that dynamically chooses the neighborhood radius according
to the local sample spacing (see Section 2.2).

A

B

A

B
N1 N1N1

N2 N2 N2

Figure 6: Contact surface model. Both objects share active
nodes that have zero separation.

5. Simulation Framework

To test our contact resolution method in a dynamic simula-
tion, we have implemented a prototype of a quasi-rigid body
simulator as illustrated in Figure 7. Our method replaces
the contact handling code of standard rigid body simulators,
where dynamic contacts are typically resolved by applying
a finite impulse at the moment of impact. The quasi-rigid
scheme avoids such singularities by integrating the forces
that act on the contact surface. Whenever a collision between
two objects is detected, we retrace the simulation to the time
instance of first contact and proceed with a smaller time step.
Note that the first contact time does not have to be isolated as
precisely as with rigid body contact, due to the compliance
that is built into the model. Even though we used explicit
integration in our experiments, implicit integration can be
done efficiently with quasi-rigid bodies since the Jacobian
of the force function needed for implicit integration [BW98]
is nothing but the stiffness matrix of the contact, and can be
computed directly from the response matrix R restricted to
the nodes in contact.

In each step, we resolve the interpenetration, compute the
forces acting on the contact surface and update the total
wrenches, i.e., the forces and torques, acting on the bodies.
During this dynamic simulation we make extensive use of
the multi-level approach of Section 4.3. Since we are mostly
interested in the total wrench, we can solve for the contact
forces on a coarse scale. We found that for a typical config-
uration, e.g., the one shown in Figure 11, 40 to 100 active
nodes per model were sufficient.
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Note that, in accordance with the quasi-rigid model, we
do not have to take the dynamic effects of body deforma-
tions into account, e.g., we use a fixed inertia tensor for each
body during the whole simulation. Since the deformations
are generally small this does not lead to any perceivable ar-
tifacts. Also, we assume that bodies resume their original,
undeformed shape after breaking contact.

A

B

rigid body simulation

A

B

contact resolutioncollision detection

A

B

A

B

rigid body simulation

Figure 7: Contact resolution in quasi-rigid body simulation.

5.1. Friction

A major benefit of explicitly modeling the contact surface
is that we can accurately simulate effects that are primarily
dictated by contact, such as friction. So far we have only
considered tractions that act normal to the surface, i.e., the
frictionless case. Friction could be added to the elastic LCP
(Eq. 10) in essentially the same way as it is added to dy-
namic LCPs [ST96], using a polyhedral approximation to
the friction cone. But this increases the size of the LCP sig-
nificantly by adding m+1 pairs of complementary variables
at each contact point, where m is the number of facets of the
friction cone. However, if we make the simplifying assump-
tion that tangential tractions do not cause significant defor-
mations, we can decouple tangential and normal quantities
during contact resolution. This greatly simplifies the com-
putations. As a proof of concept, we implemented a simple
dynamic Coulomb friction model, where the tangential fric-
tion force at a point of contact is proportional to the normal
traction that acts at this point [Bar91]. Our experiments show
that this assumption is reasonable, yet a more quantitative
analysis remains to be done. Figure 8 shows how angular
momentum of a spinning ball is transformed into linear mo-
tion due to friction.

6. Results

We tested our contact resolution method both for dynamic
and static contacts on a variety of models of different com-
plexity. All computations were performed on an Intel Pen-
tium IV with 2.8 GHz and 1 Gb main memory.

Figure 9 shows an example of a large contact between
a rigid ground plane and a quasi-rigid foot. The latter is a
laser-range scan of a human foot, consisting of 55,061 sam-
ple points of which 11,317 experience a displacement due to
the contact resolution. The contact computations take 952ms
using a three level hierarchy. Observe the bulging due to vol-
ume preservation (Section 3.1.1). Also note that this point
cloud is unprocessed scanner data, still containing holes and

Figure 8: A spinning ball is dropped onto an inclined plane.
The dotted line shows the trajectory of the ball, the curved
arcs illustrate the angular velocity. Both objects are quasi-
rigid and for illustration purposes the deformations of the
plane are maintained.

a fair amount of measurement noise. This example demon-
strates that our method can be applied to a wide range of
input models and is not limited to synthetic or highly pre-
processed data. We also tried to validate our model by com-
paring the computed tractions with physical measurements
of the real foot as shown in (e) and (f). Measurements were
performed using the X2 FootSensor System (manufactured
by XSensor Corp.) with a resolution of 37 by 13 measure-
ment points, with 1.94 sensors/cm2. Even though our model
does not account for non-linearities in human tissue and the
articulation of toes and bones in the foot, we still get very
plausible results.

An illustration for a medical application is given in Fig-
ure 10. The femur ball joint (44,513 points) is brought into
contact with a hip bone (141,221 points), which leads to a
complex conforming contact surface, illustrating the robust-
ness of our method in difficult contact configurations. This
type of analysis is useful in the design of artificial joints or
material parts, where the distribution of tractions can be used
to predict material wear.

Figure 11 shows three frames of a dynamic sequence sim-
ulated with our quasi-rigid body simulator. The head of Max
Planck (52,809 points) moves around in a cubic room and
frequently comes into contact with the non-planar walls.
Both models deform on impact and the resulting forces cause
the head model to bounce off the walls. Total contact reso-
lution time varies between 20 and 200ms depending on the
configuration. This includes collision detection using a four
level hierarchy and typically involves 40 to 100 active nodes.
Even though the timings are not yet suitable for realtime sim-
ulations, we strongly believe that further optimizations will
greatly improve the performance of our method (see Sec-
tion 6.1).
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(a)

(b)

(c) (d)

(e) (f)

Figure 9: Contact of a deformable human foot with a rigid
ground plane. (a) sampling patterns of the hierarchical rep-
resentation used for collision detection and multi-level com-
putations, (b) original, undeformed configuration, (c) final
deformed surface, (d) normal tractions on foot, (e) normal
tractions on ground plane, (f) measured tractions. Blue de-
notes zero traction and red maximum traction.

6.1. Discussion

When using system response functions that guarantee vol-
ume preservation (see Section 3.2), the size of the resulting
contact surface can be significantly bigger than the actual
interpenetration region (see illustration).

A

B

A

B

In such cases our
collision detection
method (Section 4.1)
will fail to produce
sufficiently large sets
of active nodes. How-
ever, we can easily detect such a situation by checking
for nodes on the boundary of the active region that have
zero separation after contact resolution, i.e., lie on the
contact surface. In this case we can successively enlarge
the active region until the boundary points experience zero
displacement.

Crucial to achieving high performance during dynamic
simulation is temporal coherence. So far we only exploit
temporal coherence during collision detection and compu-
tation of the active nodes. It has been previously observed,
however, that significant performance gains can be achieved
in the LCP algorithm (Lemke’s method) itself [Bar93]. Since
this part dominates the computational overhead, we expect

(a)

(c)(b)

Figure 10: Complex conforming contact. (a) original config-
uration, (b) tractions on balljoint, (c) tractions on hip bone.

Figure 11: Max Headroom. The top shows the maximum dis-
placements on the walls, the bottom the corresponding trac-
tions.

substantial speedups by reusing parts of the computations
over multiple time steps.

We were surprised about the robustness of our method for
complex conforming contacts such as the example of Fig-
ure 10. However, regions of extreme curvature such as spikes
are difficult to handle with our method. The reason is that we
assume that interpenetrations can be resolved by normal dis-
placements only. To avoid self-intersections the deformable
layer must be very thin in regions of high curvature, which
in the limit reduces such areas to completely rigid bodies.
To address this problem and make the system more widely
applicable we propose to combine our surface-based method
with a coarse volumetric representation such as a low resolu-
tion FEM mesh. This allows us to support large scale defor-
mations at low cost, while still preserving a highly detailed
surface representation for accurate contact modeling.
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The geometry and physics at contact surfaces can have a
profound influence on how a simulation evolves and signif-
icantly affect other visible parts of the overall behavior. For
example, an uneven distribution of frictional tractions over a
contact area can create a torque that can cause an object to
flip around – a common cause of highway accidents.

Determining the traction distributions over the contact
area can be important in computer animation of walking and
running [HWBO95] and biomedical visualization. We be-
lieve that understanding the exact extent and temporal evo-
lution of contact areas and the forces acting on them is an
interesting and significant aspect of many simulation and an-
imation applications.

7. Conclusions and Future Work

We have introduced a new model of quasi-rigid bodies and
presented an efficient method for handling contacts between
such objects, bridging the gap between rigid body models
and fully deformable FEM or mass-spring models. Using hi-
erarchical representations and multi-level computations our
method is both applicable in complex, high resolution con-
tact configurations as well as dynamic quasi-rigid body sim-
ulations. We found that point primitives can be used effec-
tively to represent wide-area conforming contact surfaces.
This allows an efficient analysis of the evolution of contact
surfaces over time.

We believe that our work opens up many possible direc-
tions for future research. More advanced physical models
could replace the Boussinesq approximation, e.g., physically
acquired system responses can easily be integrated into our
system. Many aspects of dynamic simulations, such as rest-
ing contact vs. dynamic contact or advanced friction models,
can now be analyzed and improved using our contact res-
olution method as a framework. The evaluation of contact
forces could also improve haptic feedback during interactive
applications such as surgery simulation.
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