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Abstract
Realistic and directable humanlike characters are an ongoing goal in animation. Motion graph data structures
hold much promise for achieving this goal. However, the quality of the results obtained from a motion graph
may not be easy to predict from the input motion segments. This paper introduces the idea of assessing a data
structure such as a motion graph for its utility in a particular application. We focus on navigation tasks and define
metrics for evaluating expected path quality and coverage for a given environment. One key to evaluating a motion
graph for navigation tasks is to first embed it into the environment in a way that captures all possible paths that
might result from “playing back” the motion graph within that environment. This paper describes an algorithm
for accomplishing this embedding that preserves the flexibility of the original motion graph. We use the metrics
defined in this paper to compare motion datasets and to highlight areas where these datasets could be improved.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism:Animation

1. Introduction

One of our goals is to make realistic animation of human mo-
tion accessible to a broad range of users. Motion graphs have
a particular appeal—the ideal vision is that a user can load a
set of motion clips, automatically generate a graph structure,
and instantly begin to direct the character using intuitive in-
terfaces such as mouse gestures, full body demonstration, or
specification of a set of constraints that should be satisfied.

However, the reality is often very different, and results de-
pend on many parameters, such as the specific motion clips
selected and thresholds chosen for transitions between mo-
tion segments. One open question is how much motion data
should be included in a motion graph. Insufficient data is
especially problematic, because it can result in a character
with limited capabilities. For example, as Figure 1 illus-
trates, there may be paths through an environment that are
difficult for the character to follow.

Much of the focus in constructing motion graphs to date
has been on the local quality of the motion—creation of
good blends and transitions and elimination of common ar-
tifacts such as footskating. These local quality metrics are
critical for smoothly joining disparate motion segments to
produce believable motion. However, more global metrics

Figure 1: A task that cannot be accomplished in a natural
way using our test motion graph. The red (dark) path is the
desired path. The green (pale) path is the shortest path avail-
able using this motion graph.

such as ability to effectively follow paths are also important
for producing believable character performance.

This paper introduces the problem of evaluating more
global properties of a motion graph data structure. The ap-
propriate metrics for evaluation depend on the task, and this
paper focuses on navigation, where the goal is to create
a character that can travel through the environment while
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maintaining natural looking motion. For navigation, quality
of paths traveled through the environment and coverage—
the ability to reach any position and orientation—are impor-
tant and we suggest evaluation metrics related to these goals.
Using these evaluation metrics, we compare several varia-
tions on a small motion dataset and highlight problems with
this dataset in the context of a given environment.

To tie the motion to the environment and allow coverage
to be evaluated, we introduce a new algorithm for embedding
the motion graph into a particular environment. This algo-
rithm places the motion graph into a global reference frame
and reveals the extent to which the character will be capa-
ble of avoiding obstacles and achieving task goals within
this particular environment. Our embedding algorithm has
the advantage over previous work (e.g., [LCR∗02][CLS03])
of embedding an entire motion graph into a given environ-
ment. Our goal is to capture the full range of motion varia-
tions that can be displayed by the character. The embedded
graph may be useful for planning and real-time character an-
imation as well as for the evaluation applications described
in the current paper.

2. Background

Relatively little work has been done on evaluation of char-
acter capabilities. A number of researchers have explored
user perception of animated human motion (e.g., [HOT98]
[OHJ00] [RP03] [WB03] [HRv04]). In contrast, our goal is
to evaluate more global properties of a character’s behavior,
such as the ability to perform a suite of tasks.

Interpolation approaches to motion generation (e.g.,
[WH97] [RCB98] [SRC01] [RSC01] [ZH02] [DJM04]
[KG04]) ensure that motion can be generated for any point
in a parameter space. However, interpolation may perform
poorly for certain motions, such as those containing a flight
phase [RP03].

Motion graph approaches to motion generation provide
complementary benefits to interpolation. In particular, they
encode natural transitions between behaviors and can gener-
ate motion with good local quality by constraining the mo-
tion to be very close to captured examples (e.g., [MTH00]
[LCR∗02] [KGP02] [AF02] [LWS02] [KPS03] [AFO03]).
We use motion graph data structures for our experiments and
focus on good global quality metrics, such as the ability of
a character to follow paths through an environment when it
is constrained to the collection of motion segments within a
motion graph.

It can be advantageous to embed a motion graph into a
particular environment (e.g., see Figure 2). Work in this area
has been pioneered by Lee and his colleagues [LCR∗02]
[CLS03]. In one approach, the motion graph is constructed
using a coordinate frame fixed to the environment. This ap-
proach can capture character interaction with objects within
the constrained capture area [LCR∗02]. However, it does not
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Figure 2: (Left) A motion graph may be constructed using a
reference frame local to the character to preserve flexibility
in the character’s motion. (Right) Using this motion graph to
drive the character through an environment with obstacles
can result in dead ends, however, which may thwart a local
planner. Because obstacle information is not available in the
local reference frame (left), extracting a strongly connected
component (SCC) from the original motion graph does not
guarantee that the character can wander through a given
environment indefinitely.

allow motion clips to be reused in different parts of the envi-
ronment. In a second approach, Choi, Lee, and Shin [CLS03]
show how a motion graph can be embedded into the envi-
ronment by unrolling it onto a roadmap [KL98] constructed
in that environment. This algorithm embeds a portion of the
original graph into the environment, fixing it to the roadmap.
We contribute to this previous work a novel embedding al-
gorithm that maintains the advantages of both of these tech-
niques; we embed an entire motion graph into a given en-
vironment in a way that (1) allows the same motion clip to
be reused in different parts of the environment, and (2) al-
lows us to choose among all available motion clips (i.e., we
are not constrained to a roadmap). We note that while the
algorithm of Choi et al. [CLS03] is elegant and efficient for
path planning, we need a more complete representation of
the motions available to the character to evaluate character
capabilities in an equitable manner.

To make our embedding algorithm tractable, we use a
grid-based approach, inspired by grid-based algorithms used
in robot path planning (e.g., [LPO91] [Lat91] [DXCR93]).
However, these algorithms cannot be adapted in a straight-
forward way to our problem, because they are designed to
achieve a different objective: find a single good path for the
robot to move from start to goal. In contrast, our embedding
algorithm represents all possible paths through the environ-
ment for the purpose of evaluating character capabilities.

Finally, we mention the work of Gleicher and his
colleagues to develop tools for editing motion graphs
[GSKJ03]. Our work shares their goal of improving graph
utility, for example to create poses that are “hubs,” having a
large branching factor. Our algorithms could assist the user
in evaluating the utility of adding new motions to increase
character capabilities or the utility of rearranging the graph
by making different hub choices, for example.
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3. Overview

The primary contributions of the paper are

• A statement of the problem of evaluating global prop-
erties of motion generation algorithms. We propose that
it should be possible to quantitatively evaluate a charac-
ter’s ability to perform a suite of tasks and to use these
results to compare motion graphs or other algorithms for
motion generation.

• A concrete scheme for evaluating motion graphs for
navigation applications (Section 4). In particular, we
suggest metrics to capture expected path quality and abil-
ity of a character to cover an environment.

• Benchmarking results for variations on a typical walk-
ing dataset downloaded from the web. We show that
good control of walking behavior is easy to achieve, but
additional behaviors such as stepping over obstacles must
be introduced with some care (Section 7).

• A new algorithm to embed a motion graph into a given
environment. In contrast with previous research, our al-
gorithm embeds the entire graph into the environment,
capturing the variability inherent in the character’s motion
(Section 5).

The paragraphs below review our evaluation metrics (Sec-
tion 4), embedding algorithm (Section 5), and results (Sec-
tions 6 and 7).

4. Evaluation Metrics

The appropriate metric for evaluating character capabilities
depends on the task. For reaching or punching, the task may
be to contact a target with an appropriate velocity profile;
for some dance forms, the task may be to string together dif-
ferent dance moves while navigating within the constrained
space of a dance floor. This paper focuses on navigation (pri-
marily walking), and proposes two different metrics for eval-
uation: (1) expected quality of paths traveled through that en-
vironment and (2) coverage, or ability to reach any collision-
free position and orientation in that environment.

4.1. Path Quality

The path quality metric is designed to capture the ability of
the character to move through the environment efficiently.
To estimate expected path quality, we must make an assump-
tion about how paths for the character will be specified. In
this paper, we consider the problem of point to point naviga-
tion. In point to point navigation, a start and end position are
specified, and a path must be found for the character to travel
between these two points. In the ideal case, near-minimal-
length paths would exist for all start and end positions. The
metric for relative path length in point to point navigation is
expressed as follows:

EP =
pathLength

minPathLength
(1)

where pathLength is the result of integrating the change
in position of the projection of the character root onto the
ground plane from start to goal, and minPathLength is the
minimum length path that would avoid collisions between
the character and objects in the environment.

For benchmarking, we work with the embedded motion
graph described in Section 5. Working with the embed-
ded graph has two advantages: it improves the efficiency of
shortest path calculations, and it also ensures that only paths
that do not lead to dead ends are considered.

Given this embedded graph, we use Monte Carlo sam-
pling to estimate the expected value of relative path length
EP. Start and goal positions are selected randomly from the
set of collision-free positions in a given environment. Pa-
rameter pathLength, the shortest path length available to the
character, is computed using Dijkstra’s algorithm [CLRS01]
on the embedded graph. Parameter minPathLength is found
using breadth-first search through a grid placed over the
ground plane. Path length metric Ep is then computed as in
Equation 1.

4.2. Environment Coverage

The environment coverage metric is designed to capture
the ability of the character to reach every portion of its
workspace. For navigation, the workspace will typically be
three-dimensional, and a point in this space will represent
the position of the character root on the ground plane (x,z)
and the yaw angle or facing direction (θ).

To evaluate coverage, we must first embed the motion
graph into the environment, as described in Section 5. With-
out such an embedding, it would be difficult to identify cov-
erage holes. Once the motion graph has been embedded into
the environment, each frame of motion in the embedding can
be associated with a 3D data point (x,z,θ). To measure cov-
erage, we regularly sample (x,z,θ) space and compute for
each sample the distance to the nearest data point.

From this distance information, coverage is estimated as
follows:

C =
∑i covered(i)

∑i collisionFree(i)
(2)

Where the numerator contains a count of all samples for
which there is at least one data point within a given dis-
tance ε, and the denominator contains a count of all samples
where the character would not collide with obstacles in the
environment. In other words, coverage C is an estimate of
the fraction of the collision-free (x,z,θ) workspace through
which the character can pass.

To help the user diagnose potential problems in a dataset,
we use a brushfire algorithm (e.g., [LRDG90]) to identify
local maxima in terms of distance to the nearest data point
in (x,z,θ) space.
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Figure 3: Example of forming links for an embedding. The
grid lies in a 4D space, indexed by 3D workspace configura-
tion (x,z,θ) and by incoming motion clip (A, B, or C). Links
from cell [7,1,θ1,A] are formed by looping over all segments
that follow from A and finding the destinations that can re-
sult from small modifications of the original motion.

Example path quality and coverage measurements are pre-
sented in Section 7.

5. Embedding into the Environment

To answer the question of where the character can travel
within a given environment, we must “unroll” the original
motion graph into that environment. The primary challenge
in performing this unrolling, or embedding, is to form a com-
pact description of the space of feasible character trajecto-
ries.

To achieve this goal, we approximate the environment us-
ing a regular grid of cells. The original motion graph is then
embedded into the environment by unrolling it from all cell
centers. Unrolling from cell centers is not by itself sufficient
to represent character capabilities well, however. Without
further processing, the result is a collection of disconnected
trees. To link these trees, we force motion segment endpoints
onto cell centers; each motion segment must originate and
terminate at a cell center. Section 5.1 describes an efficient
one-step embedding process that follows from these assump-
tions.

Generating clips that originate and terminate at cell cen-
ters requires some editing of the original motion segments.
If no editing is permitted, the embedded graph will be quite
sparse, because motion segments would rarely end exactly
at a cell center. In many applications, however, some amount
of editing is acceptable, and introducing this flexibility when
creating the embedded graph provides a more practical esti-
mate of character capabilities. We assume that motion can be
edited in proportion to distance traveled. As a result, longer
clips may gain the ability to terminate at a collection of cell
centers, all of which fall within the allowed “edit region.”
Section 5.2 describes in more detail the very simple motion
editing model assumed in this paper.

Obstacle and other constraints are handled efficiently as
part of the embedding process (Section 5.3). Section 5.4 dis-
cusses the correctness of the embedding algorithm.

5.1. One-step Unrolling into a Finite Space

When motion clips must originate and terminate at grid cen-
ters, embedding an entire motion graph into a task domain
can be accomplished using a one-step unrolling process.
First, a discretized 4D state space is defined. Each cell repre-
sents a state of the character and is indexed by position and
orientation within the environment (x,z,θ) as well as by in-
coming motion clip. Cell [7,1,θ1,A], shown in Figure 3, for
example, indicates that after playing motion segment A, the
character has arrived at position (7,1) and orientation θ1.

For each cell in the 4D state space, all possible links out of
that cell are created. Figure 3 illustrates this process. To form
all possible links out of a cell, we first identify outgoing mo-
tion segments by examining the original motion graph. We
assume for this example that incoming motion segment A
can link to outgoing motion segments B and C. One-step un-
rolling from cell [7,1,θ1,A], then, will involve forming links
from that cell to cells that can be reached by playing motion
clips B and C from the starting point (7,1,θ1). Some amount
of motion editing may be acceptable, and so the number of
destination cells associated with each motion clip may be
greater than one. Section 5.2 describes how we constrain the
amount of motion editing used.

Note that repeating this process just once for each cell re-
sults in forming all possible links in the graph. All starting
configurations, all motion clips, and all of the editing vari-
ations that we model are considered. We also mention that
although the character is only able to enter the highlighted
cell in Figure 3 along motion segment A, this cell may have
many incoming links at the end of the one-step unrolling pro-
cess. The character may be able to enter cell [7,1,θ1,A] by
playing motion segment A from several different locations.

After the one-step unrolling process has been performed
for all cells, we find the largest strongly connected compo-
nent (SCC) in the directed graph [CLRS01]. This SCC is the
desired embedded graph. Extracting only the SCC ensures
that the character can traverse the graph without encounter-
ing a dead end, which is important for ensuring the character
will always be in a state within which autonomous or inter-
active control will be viable.

If we assume the character is to navigate continuously
throughout the environment, this embedded SCC is conve-
nient for computing coverage of that environment. It is also
useful for computing path quality. For example, consider
evaluating path quality between two points using search
techniques on the original motion graph. Potentially, all of
the best paths between the points could lead unavoidably to
states where the character has no motions available (e.g., the
only available motions take the character through obstacles).
Using standard search techniques to discover that these paths
are dead ends would cause us to incur additional computa-
tional expense.

Moreover, since estimating an expected level of path qual-
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ity requires sampling path quality in many places, there is
the risk that computationally expensive path-validation will
be duplicated over many samples. Failing to discover that
these paths are dead ends, however, may lead to incorrect
estimates of path quality. While it has a high one-time com-
putational cost, using an embedded graph structure to com-
pute path quality allows efficient and correct computation of
the many local path quality tests required to gain an accurate
measure of global path quality available in the environment
using the original motion graph.

5.2. Motion Editing Constraints

The number of links created in the embedded graph and the
resulting estimate of coverage (Equation 2) depend on the
extent to which we are willing to edit the motion segments
in the original motion graph. It is not well understood how to
quantify the amount of motion editing that is acceptable for
motions such as walking; perceptual experiments are needed
to develop a well grounded model. To illustrate the effect of
editing on coverage, we assume a very simple model, based
on the intuition that the amount that a motion can be changed
should grow with distance traveled. In particular, we specify
the amount that the root position and orientation can be ad-
justed as a linear function of distance traveled:

abs(p(a)− pM(a)) < a





rx
rz
rθ



 (3)

where (p(a)− pM(a)) is the vector difference between the
original and new root configurations, a is the arclength of
the original motion clip, and a[rx rz rθ]

T is the size of the
ellipsoid representing allowable edits to root configuration at
arclength a. In our experiments, which had a grid spacing of
20cm in position and 20degrees in orientation, we used the
value 25cm/m for rx and rz and 25degrees/m for rθ. Figure 4
shows a 2D sketch to illustrate the idea of this “edit region.”

This linear model serves as a simplified abstraction of the
different motion editing techniques one could employ; the
edit region is our estimate of the points to which we could
possibly warp the endpoint of a motion, given its starting
point, the motion editing techniques available, and limita-
tions on motion editing that are imposed to maintain motion
quality. Our model of motion editing estimates that warp-
ing the motion to end at any of the grid points outside the
edit region will result in an edited motion that may contain
unacceptable artifacts.

5.3. Obstacle Avoidance and Annotation Constraints

Many links will not be possible due to collisions with obsta-
cles in the environment or other constraint violations (e.g.,
attempting to walk across a chasm). For obstacle avoidance,
constraint checking is done at the time the links are formed.
We do not process cells where the character would collide
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Figure 4: In our grid-based algorithm, the end of each mo-
tion segment is snapped to the centers of cells based on a
region of acceptable destinations computed for that motion
segment. This figure compares how growth in this theoreti-
cal “edit region” compares to the regions actually used in
the grid-based algorithm.

with obstacles; links that would result in collisions between
the character and the environment are culled from the graph
before the final SCC is computed.

Other types of constraint violations are handled using an-
notation constraints, where the environment is annotated to
indicate regions where a specific type of motion should or
should not be performed. This constraint type was used to
map stepping motion to the blue obstacle in Figure 1. The
same procedure could also be used for more freeform anno-
tations, such as placing a particular dance move in front of
the judges.

5.4. Correctness of the Embedding Algorithm

Our embedding algorithm is resolution complete in the sense
that a sufficiently fine grid will capture all significant varia-
tions in character paths that are possible given our motion
graph, task domain, and motion editing model. However, at
practical grid resolution, some possible paths will be lost.
Figure 4 shows an example. Consider a straight walking mo-
tion that can repeat. Figure 4 shows a sketch of edit regions
grown using our approach, which requires forcing motion
clips to terminate at cell centers. The theoretical edit region
that would result from playing the same motion clip twice in
succession is also shown. Eventually, (after playing the mo-
tion clip three or four times in succession), the theoretical
edit region will contain cell centers that are not captured by
our algorithm. As the grid is made finer, the practical effect
of this approximation will decrease.

The embedding algorithm can be made conservative by
making connections only to grid centers within the edit re-
gion associated with a motion segment. If the algorithm is
implemented in this way, no paths can be generated that are
not possible given the motion graph, task domain, and mo-
tion editing model.

We chose to use a slightly different approach, however,
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and always make a connection between the end of a motion
segment and the nearest grid center, regardless of whether
that center is in the interior of the edit region. Our ap-
proach preserves the connectivity of the original motion
graph. However, if the size of the edit region is small com-
pared to grid size, it can introduce paths that are not possible
given our model. To avoid introducing such paths, grid res-
olution should be kept sufficiently small that all edit regions
will contain at least one grid point. (Looking ahead to the
results, Table 2 shows how poor coverage can result from
mismatching grid size and edit size.)

6. Example Scenario

Our primary test scene is a cluttered environment through
which the character must navigate (Figure 1). The size of the
room was 7m by 8m. The room was divided into cells with
a resolution of 20cm, and a grid spacing of 20 degrees was
used for the character’s orientation about the vertical axis.

We began by forming a motion graph in the charac-
ter’s local reference frame. The motion set for this graph
was 23 motions downloaded from the CMU motion cap-
ture database (mocap.cs.cmu.edu). These motions included
6 straight walks, 4 gradual left turns, 4 gradual right turns,
4 sharp left turns, 4 sharp right turns, and 1 stepping mo-
tion. The motions were relatively short clips and the total
amount of motion was approximately 77 seconds. Costs for
transitions between motion segments were computed using
the technique of Lee et al. [LCR∗02]. The map of transi-
tion costs was then processed to identify local maxima and
to enforce a user-specified minimum clip length. The Ap-
pendix contains some details of our motion graph algorithm.
The minimum clip length was enforced to help ensure that
snapping motion segment endpoints to grid centers did not
create unreasonable artifacts. When identifying transition lo-
cations that were local maxima, we used an objective func-
tion that attempted to preserve the largest possible number of
connections to other motion segments, with each connection
weighted by quality of the transition; our goal was to pre-
serve as much flexibility in the character’s motion as pos-
sible given our clip length restrictions. Forming a motion
graph in the character’s local reference frame on our motion
set resulted in an SCC with 64 nodes and 154 links.

The motion graph in the character’s local reference frame
was then embedded into the environment as described in
Section 5. The code was written in Java, and run on a 2.2GHz
Xeon computer. Simple collision checking was done by giv-
ing the character a uniform radius in the horizontal direc-
tions. The embedded graph had 195K nodes and 963K links,
and required approximately 5 minutes to compute.

When playing back motion through the embedded graph,
transitions between motion clips were smoothed by using
quaternion splines to gradually close the gap formed at the
transition point. Motion editing to warp clips to grid centers

Motion Set Source MoGraph Coverage Fraction
Frames Frames XZ XZA

Full Set 2304 1177 0.951 0.904
Half Motions 1424 1010 0.955 0.905
No Duplicates 733 537 0.922 0.879
No Sharp Turns 1551 948 0.942 0.893
No Gradual Turns 1543 682 0.958 0.896

Table 1: Frames of source motion, frame size of the motion
graph, and coverage comparison for the different motion
datasets. XZ coverage indicates the fraction of the collision-
free ground plane that can be reached at some orientation.
XZA coverage is the fraction of all collision-free 3D config-
urations (x,z,θ) that can be reached.

was done using displacement splines on the root translation
and yaw angle. This editing technique of course creates foot
sliding artifacts, which should be cleaned up in postprocess-
ing.

7. Results

Motion Dataset Comparison. We begin by comparing dif-
ferent motion data sets. How much motion is really needed
to allow the character to perform reasonably in the environ-
ment? To explore the value of having duplicate motions and
different types of turns, we examined results from 5 different
motion sets, starting from the original set of 23 motions con-
taining straight walks, gradual turns, sharp turns, and step-
ping:

1. the original dataset: 23 motions
2. half of the motions of each type removed: 12 motions
3. one motion of each type retained: 6 motions
4. all sharp turns removed: 15 motions
5. all gradual turns removed: 15 motions

The number of frames in the resulting motion graphs is
shown in Table 1. Note that the number of frames in these
motion sets does not vary as much as might be expected.
Because we enforce a minimum clip length of 0.333 seconds
when forming the motion graph, doubling the number of mo-
tions does not always lead to doubling the number of frames
in the motion graph. Through experimentation, we found
that when enforcing a minimum clip length, short source
motions (2–3s) tended to provide far fewer usable clips as
compared to longer source motions (4–5s) than their relative
sizes would suggest. The Half Motions and No Duplicates
sets of source motions do not contain these shorter motions,
accounting for their more efficient utilization of the available
frames.

Coverage. Table 1 also shows the differences in cover-
age obtained from different motion sets. Coverage was quite
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Editing Size Coverage Fraction
Always connect Respect edit bounds
XZ XZA XZ XZA

5 0.557 0.256 0.000 0.000
10 0.772 0.538 0.241 0.145
15 0.882 0.737 0.624 0.405
20 0.938 0.875 0.897 0.821
25 0.951 0.904 0.949 0.896
30 0.969 0.943 0.969 0.942
35 0.974 0.954 0.974 0.954

Table 2: Effect of motion editing size on coverage. Editing
size is the value of rx and rz in cm/meter and also the value
of rθ in degrees/m in Equation 3. “Always connect” means
to always connect to at least one cell center. “Respect edit
bounds” means only connect to cell centers within the edit
region. XZ coverage and XZA coverage are as in Table 1.
Numbers in bold show our experimental settings. Results de-
pend on grid spacing, which was 20cm for x and z and 20
degrees for θ.

high for all examples, and only pruning the motion set all the
way down to 6 clips had a sizable effect.

How much motion editing is required to obtain good cov-
erage? Table 2 shows how coverage for the full dataset varies
with the amount of motion editing permitted. An editing size
of 25 (cm/m in position and degrees/m in orientation) was
used in our experiments. When editing size was smaller than
20, we observed degradation in ability to form high quality
paths at the grid resolution used in our experiments.

While allowing more motion editing permits greater cov-
erage of the environment, in practice there are limits on the
extent to which a motion can be edited while remaining of
high enough quality to meet the requirements of the appli-
cation. When editing size is larger than 25, we observe un-
acceptable footsliding artifacts in the resulting motion. Al-
though our current estimate of a reasonable amount of mo-
tion editing is subjective, it is our hope that it will be possible
to develop perceptually based algorithms to automatically
compute such estimates.

It can be helpful to display the locations of the largest
gaps or holes; Figure 5 illustrates these results. Arrows indi-
cate orientation at local maxima and typically point toward
or away from the nearest obstacle. The most obvious prob-
lem that can be inferred from this figure is that there are no
motions in the dataset that allow the character to stop and
turn in place.

Path Quality. Table 3 shows the differences in ability to
navigate from a start to an end point for the different test mo-
tion sets. In all cases, the median motion is quite good. Mo-
tions with no gradual turns show the poorest performance,
especially in the number of paths more than 25% longer than
the minimum (EP > 1.25). Motions with no sharp turns pro-

Figure 5: Holes in coverage. The brightest regions are the
farthest distance from covered, collision-free cells. This fig-
ure shows at each x,z position the maximum distance over
all orientations θ. Arrows indicate orientations of some of
the local maxima.

Motion Set Path Quality % Poor Quality
Median 95% EP > 1.1 EP > 1.25

Full Set 1.0066 1.124 7.0 2.0
Half Motions 1.0063 1.131 6.6 2.8
No Duplicates 1.0083 1.140 8.2 2.2
No Sharp Turns 1.0066 1.133 9.0 2.2
No Gradual Turns 1.0082 1.180 8.8 3.8

Table 3: Path quality comparison for the different motion
datasets. The median column lists median path length as a
fraction of the minimum path length (EP in Equation 1). The
95% column lists 95th percentile values for EP. The “EP >
1.1” column lists the percent of paths tested having a path
length ratio greater than 1.1, and the “EP > 1.25” column
lists the percent of paths with path length ratios greater than
1.25.

duce a relatively large motion graph and good coverage (Ta-
ble 1), but produce many poor paths due to the inability to
take sharp corners. (This problem is especially apparent in
the EP > 1.1 column.) All of the motion sets tested have
some combinations of start and end positions that produce
poor results.

For the complete motion set, Figures 1 and 6 show ex-
amples of median and poor paths identified during Monte
Carlo sampling. From this and other poor paths identified,
we can infer that the character cannot easily pass between
the two closest barrels and that the stepping motion is not
sufficiently flexible to generate consistently good motions
over the step obstacle. It would be useful to add additional
stepping motions to the dataset, especially preceded and fol-
lowed by turns.

Video. The video shows some additional paths, along with
their path length ratios EP. Note that only the positions of the
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Figure 6: Examples of paths found during Monte Carlo sam-
pling. The upper left path has median value for path length
ratio EP. The other paths are all near the 95th percentile,
meaning that 5% of paths are as poor or worse. Specific val-
ues for EP are 1.002, 1.15, 1.16, and 1.11.

start and end points were specified. Any initial orientation
could be used, and the initial orientations shown are those
that lead to the shortest paths. For these examples, the mo-
tion graph is lacking the motions or transitions that would
make more direct paths possible.

8. Discussion

This is to our knowledge the first attempt to evaluate global
properties of a motion graph data structure such as ability
to reach all points in an environment and ability to follow a
path. Embedding a motion graph into the environment and
assessing global properties of this data structure allows us to
compare motion datasets and identify weak points in these
motion datasets.

In our exploration of a very small walking dataset, we
were able to display evidence of two specific problems: (1)
the lack of motions for stopping and turning made it difficult
for the character to get into tight spaces, and (2) the single
stepping motion we used was not sufficient to produce con-
sistently natural looking behavior when moving between the
two regions of the environment that are separated by the step
obstacle. We also were intrigued by two other observations:
(a) adding duplicate motions provided a relatively small im-
provement in path quality and coverage, and (b) extremely
small motion datasets were capable of producing good be-
havior on average for this test application.

Design of Good Metrics. The metrics that we chose—

path quality and coverage—are specific to the task of nav-
igation, and many applications, even those relying on navi-
gation, may benefit from a different choice of metrics. Much
work remains to explore how the idea of evaluating a motion
graph can be adapted to a variety of applications and used to
improve algorithms for motion graph generation. Our goal in
this paper was to introduce the idea, work through a concrete
example, and show that quantitative evaluation techniques
can provide insight into character capabilities captured in a
motion graph data structure.

Scalability. Regarding timing, embedding the graph into
the environment takes 5 minutes (including all program
setup), determining coverage requires 32 minutes, and per-
forming 500 path length runs requires 50 minutes for the full
motion set.

As with any motion graph algorithm, the size of the orig-
inal motion graph may scale poorly with the number of
frames in the example motions, but in practice is typically
found to scale well when some care is used to select tran-
sitions. Once the original motion graph has been formed,
time required to run the embedding algorithm scales linearly
with the number of links in the original motion graph. Path
length computation time depends on the branching factor of
the embedded graph, but over the range of our examples, it
was strongly linear in the size of the original motion graph
(F = 239, p < 0.0006). The number of edges in the embedded
graph also scaled linearly in the size of the original motion
graph over the range of our examples (F = 157, p < 0.0002).
The coverage calculation scales linearly with the size of the
embedded motion graph.

Practically, accommodating significantly larger motion
sets should be feasible with the current implementation, and
we are currently exploring the extent to which the basic al-
gorithm will scale. To scale to very large motion databases
will require either separating out distinct behaviors as sug-
gested by Kovar and his colleagues [KGP02] or pursuing
an approach that involves clustering and/or multiple lev-
els of resolution, as in the work of Arikan and his col-
leagues [AFO03]. We are interested in investigating effi-
ciency improvements such as these.

To scale to large environments, we envision a form of
tiling. The environment would be represented as a collec-
tion of tiles—embedded graphs that are computed and an-
alyzed separately, but that can be connected together in a
seamless way. An ability to use the same tile in different
parts of the environment would result in considerable com-
putational savings.

The most extreme case is open space or a space that can be
regularly tiled. In this case, the embedding algorithm is run
on a single tile, and edges are allowed to wrap around and
back onto that tile (i.e., the tile is topologically equivalent to
a torus). Figure 7 shows an example.

One drawback of grid-based techniques is that they scale
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Figure 7: (Left) The character is following a random path
through a motion graph that has been embedded into an en-
vironment tiled with a repeating pattern. (Right) A random
path wraps around from left to right, bottom to top, then right
to left.

exponentially with the dimensionality of the task space.
While this cannot be avoided, Kovar et al. [KG04] demon-
strate that interesting tasks can often be parameterized and
controlled with only a very few degrees of freedom. We hope
to explore techniques such as tiling for compositing tasks
that are low-dimensional in isolation, allowing complex be-
haviors to be efficiently formed from layers of simpler be-
haviors.

Static vs. Dynamic Task Domains. The algorithms pre-
sented in this paper are appropriate for the portion of the task
domain that is static. Accommodating moving obstacles is
an area of future work. However, we note that good cover-
age and path quality within the static portion of the environ-
ment are necessary conditions for good performance when
moving obstacles or other dynamic objects are added.

Building Good Motion Graphs. One of our longer term
goals is to use tools such as these to direct a motion capture
session. In some motion capture scenarios, the talent is only
available for a short period of time. It is important to collect
all of the motion that will later be necessary. It would be
useful to be able to monitor the motion database as it is being
collected, evaluate the intermediate results for an intended
task, and suggest new motions that should be obtained to fill
in any gaps (e.g., by extrapolating from existing motions).

Working with Other Motion Generation Algorithms.
We note that the evaluation algorithms described in this pa-
per could be applied to alternative techniques for generating
motion. For example, a character controlled by a procedu-
ral algorithm could be run through its repertoire of actions,
either systematically or by hand (i.e., under interactive user
control). The resulting motion could be treated as motion
capture data, embedded into a task domain, and evaluated to
assess how the character might operate in that domain.

In summary, the techniques shown here provide a way to
evaluate a character’s capabilities that is more sound than the
trial and error approach commonly used. Evaluation tech-
niques such as these can help a user to compare alternative
data structures and identify areas in which a motion graph or
motion generation algorithm can be improved.
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Appendix: Transition Selection

Given an initial set of candidate transitions between frames
of the input motions, we use the following iterative algo-
rithm to compute the final transitions with an enforced min-
imum clip size:

Repeat
• Find window w with count(w) > 1, frame c ∈ w that max-

imizes value(w,c)
• coalesce(w,c)
Until count(w) ≤ 1∀ windows w

window(s, f, m): the set of m frames in source file s ranging
from f to f + m− 1. Here, m is always the minimum clip
size, and w will always refer to a window of this sort.

count(w): the number of frames f ∈ w s.t. ∃ frame g ∈ DB
s.t. equivalency( f ,g) > 0.

DB: the set of frames of the input source motion files

value(w,c): ∑g equivalency(c,g) ∀g s.t. ∃ f ∈ w s.t.
equivalency( f ,g) > 0. i.e., the value of window w if all tran-
sitions must go through frame c.

equivalency(f,g): the similarity of frames f and g, if that
value is greater than the acceptance threshold, else 0.

coalesce(w,c): ∀g∈DB s.t. ∃ f ∈w s.t. equivalency( f ,g) > 0
recompute equivalency(c,g) and set equivalency( f ,g) to 0.
i.e., force all transitions inside window w to use frame c or
no frame at all.
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