
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

System for Authoring Highly Interactive, Personality-Rich
Interactive Characters

A. Bryan Loyall, W. Scott Neal Reilly, Joseph Bates and Peter Weyhrauch

Zoesis Studios, Newtonville, MA, USA

Abstract
We describe an innovative system for authoring expressive, fully autonomous interactive characters. The focus of
our work is creating a system to allow rich authoring that captures as much of the artistic intent of the author in
procedural form as we can, and that provides automatic support for expressive execution of that content. The sys-
tem is composed of two parts: (1) a programming language with unusual language features including concurrency,
reflection, backtracking, continuously monitored expressions, and a model of emotion, that was created for the ex-
pression of interactive self-animating characters; and (2) a motion synthesis system that combines hand-animated
motion data with artistically authored procedures for generalizing the motion while preserving the artistic intent.
This system has been used to create over a dozen interactive characters, which have been shown at juried venues,
as well as being deployed commercially. We describe how artistic qualities important to interactive characters are
encoded and supported using this system, and demonstrate the system with an implemented interactive character.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation I.2.0 [Artificial
Intelligence]: Cognitive simulation

1. Introduction

The wealth of details that make Bugs Bunny the compelling
personality that he is were created by talented artists who
carefully crafted every detail of his motion, with all of the
principles of animation, human common sense, knowledge
of (cartoon) physics, emotional psychology, social skills and
acting ability at their disposal. This human artistic knowl-
edge guided their decisions at every moment of their linear
film to bring the character to life. For fully autonomous,

Figure 1: Mr. Bubb, an example interactive character.

interactive characters to approach this level of richness,
we must enable skilled artists to craft each of these details
procedurally, so that the interactive character can have the
knowledge it needs to make the right decisions at all of the
moments of its interactive “life.” This information must be
encoded procedurally in the character, because the artist will
not be there to help make the decisions when the character
is executing, and because the character has to make the right
interactive choices that the artist would make if they were
there.

The more interactive and rich the system, the more
knowledge-based active elements the character must have
to react appropriately. This knowledge doesn’t have to be
encoded in a general way for any character and any situa-
tion, which would be an impossible task for the foreseeable
future, but it must be crafted for the specific character and
the full generality of the interactive situations which can
occur in its world.

In this paper, we present a system to enable the authoring
of rich procedural knowledge of interactive characters. This
system is composed of two parts: a programming language,
called Gertie, specialized for the expression of interactive

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

self-animating characters; and a motion synthesis system,
called the WB, that allows similar expressive authoring for
generalized acts. (Gertie is named for Gertie the dinosaur
by Winsor McCay, widely regarded as the first animated
character, and the WB is named after warping and blending
because of its use of motion reuse techniques.)

We demonstrate the qualities of the system by descriptive,
illustrative examples taken from an implemented interactive
character, Mr. Bubb. An image of the character and physical
environment is shown in Figure 1. The interactive experience
is a simple game with Mr. Bubb, similar to one children
might play where they take turns hitting a balloon to keep
it from hitting the ground. The user controls a hand in the
world with a mouse. The game is purposefully simple, to fo-
cus the experience on interactions with the personality-rich,
emotional character. Excerpts of interactions are shown on
the video.

2. Related Work

There has been much work on interactive characters in
both computer graphics and artificial intelligence. This
includes work in behavioral animation such as the early
work of Reynolds [Rey87] and later work by Funge
[FTT99] in which the character behavior typically focuses
on appropriate group behavior with less support for the
expression of individual personality. Work in realistic virtual
humans has also been an active area of research with the
early and continuing work of Magnenat-Thalmann and
Thalmann [MTT87] and Badler [BPW93] as representative
examples. Interactive characters for education has more
recently been actively pursued. In this work, the expres-
siveness of the characters is in service to pedagogical goals
[RJ99, LZGB99] and typically focuses less on expression
of individual personalities than our work. Related work
is also pursued in simulation and training (e.g. [GM01]).
This work includes strong personality-types, but works in
conversational domains rather than dynamic-animation-
based domains. The area of embodied conversational agents
(e.g. [AR02] is a good representative example) is similar
in its de-emphasis of action. Advances being made in these
conversational agents may be complementary to our work.

One of the systems that focuses on authoring of expres-
sive personality-rich interactive characters is Perlin and
Goldberg’s Improv system [PG96]. This system produces
compelling motion, especially for background actions
that keep the character seeming alive without the appear-
ance of repetition. Their system also provides a behavior
authoring system using nested scripts of a constrained
subset of English, with the goal of allowing authoring by
non-programmers. A side-effect of this is that the scripting
mechanism provides less structured support for authoring
complex behavior than we focus on.

Another group of systems that supports complex interac-
tive characters is the work of the MIT Media Lab Synthetic

Characters Group [BDI∗02, Joh95]. Their systems feature
models of the mental structures for synthetic agents, includ-
ing interesting models of synthetic vision and learning. The
authoring ability in these systems is not the main focus, caus-
ing it to be less expressive than the approach we present. In
addition, the main goal of this work is making ethologically
correct synthetic animals rather than interactive characters,
which leads to very different system choices and capabilities.

Mateas and Stern take an expressive authoring approach
to their interactive story system Façade [MS02], however
their emphasis avoids dynamic animated interaction by
focusing on “dinner-party” interactions with little physical
interaction. This has the effect of focusing the system
on higher-level cognitive abilities of the agent (such as
conversation and dramatic story control), and makes it a
complementary line of research with our own.

Commercially, interactive characters are used in computer
games, crowd scenes in film production, other entertainment
applications, and education, and we believe they are a central
component of what will become a new form of mass market
entertainment that will ultimately be as popular as film and
television are now—truly interactive stories. However, at
the current time, these commercial applications typically
use simpler and less capable technologies such as motion
playback with simple blending.

3. Approach

Because we want to create interactive characters that are
continuously making choices and changing their behavior
as if the artist were there making the choices for them,
the approach we take to building these characters is to
encode their behavior and motion procedurally in a language
designed for this purpose.

This means that the ideal author is someone who is
both a programmer and a character artist. Such people
are becoming more common as courses are created in
technology-based art and entertainment, as artists are drawn
to technology, and as technologists are drawn to the creative
outlets that technology affords. At Zoesis we have gathered
and are continuing to attract and train such artists.

Although it is impossible to prove such a claim, we
believe that for highly interactive interactive characters,
there is no other way to build them than by building small
“brains” to encode the artist’s conception of the character.

4. Structure of the System

The structure of our system is shown in Figure 2. The
content that an author creates is shown on the right, and is
composed of motivations, goals, behaviors, styles of acting,
reactions, emotional expressions, motions, etc. This content
is encoded from high-level aspects of the personality to low-
level motion. The upper levels are authored in Gertie and
low-level motions are expressed both in Gertie and as acts in

c© The Eurographics Association 2004.

60

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

System

Behavior
 System:

 Gertie

Model

Sensing

Authored Content

 Motivations
 High−level Goals,
Behaviors, Emotions
 Styles of acting
 .
 .
 .

 Mid−level Goals,
Behaviors, Emotions,
 Styles of acting
 .
 .
 .

 Low−level
 Motion
 Action

System: WB

Figure 2: System structure.

the WB. The dashed line in the middle of low-level motion
indicates this change in authoring language. Originally all
low-level motion was authored as acts, but as we describe
in Section 5.2, we have found it often to be advantageous
to author low-level motion in Gertie. The unevenness of the
line shows that there is no fixed point for this change in au-
thoring language, and authors are free mix the two languages
as appropriate to their needs. This mixing and the reasons
for choosing one versus another are discussed in Section 5.2.

The authored content is used at runtime to bring the
interactive character to life. Each frame, Gertie executes the
active goals of the character, sensing the world, executing
behaviors in service to the goals of the agent, and issuing
and aborting parameterized acts in the WB. The WB uses
the current set of acts each frame to produce values for the
degrees of freedom for the body.

In the following sections we describe the components of
the system in detail. While it is impossible to describe all the
implementation details due to space, we attempt to describe
key techniques by which the system provides support for the
central challenges in bringing interactive characters to life.
We first describe Gertie, followed by behavior authoring in
Gertie, and low-level motion authoring in Gertie. We then
describe the WB, followed by discussion and conclusion.

5. Gertie

Gertie is a complete modern programming language
with unusual features, and draws on our previous work
[Loy97, Nea96, LB93], as well as the work of Sengers
[Sen98]. It is designed to allow authors to encode complex
details of an interactive character including: the motivations
of the character and how those motivations change; the
goals, behaviors and styles of action at all of the levels of
detail from large goals to details of low-level movements;
how these behaviors and goals interact with each other; how
the character reacts to the user and unexpected events during
these behaviors and goals; and what does the character
become emotional about, and how does it express those
emotions.

In addition to interactive characters, we encode aspects of

our interactive music system and interactive drama control
in Gertie, although descriptions of these uses are outside the
scope of this paper.

The core of Gertie are the normal constructs common to
a modern high-level language. It has a lisp-like syntax and
C-like semantics (e.g. there is no garbage collection and
data-types are similar to those in C which enables a rich
foreign function capability with C and C++). It also has a
powerful macro system similar to that found in Scheme.

The unusual language features that are supported in
Gertie are: concurrency, reflection, continuously monitored
expressions, backtracking, and action and sensing. In the
remainder of this section, we describe each of these unusual
features, giving examples of their use in the different
levels of authoring of an interactive character, and describe
additional language constructs that enhance the authorial
expressiveness of these features.

Function calls in Gertie are used both to express normal
programming as well as goals of the agent. It is often useful
to think in both terms when writing Gertie programs and
we will use the terms interchangeably. Similarly, function
definitions specify the (reactive, conditional, emotionally
varying) behavior to execute the goal. The top-level of a
character typically has several goals executing concurrently.
Some of these are high-level motivations and goals of the
character, some structure high-level motivations and goals,
and some encode other aspects of the character’s mind such
as: behaviors to carry out inferences to interpret the complex
flow of activity; demons to carry out physical reactions; etc.

To explain the unusual features of Gertie as a program-
ming language and illustrate how it is used to encode
behaviors, consider the following illustrative pseudocode of
a portion of Mr. Bubb. (Note that details have been elided,
such as parameters to the functions and some annotations, in
order to focus on the control flow and expressive features of
the language being described. Further details are described
in following sections.)
(defun playGame () (1)

(persistent (2)

(seq (bubbTurn) (userTurn))) (3)

(defun bubbTurn () (4)

(seq (5)

(concurrent (6)

(persistent (priority-mod +1) (deferToUser)) (7)

(moveIntoPosition ball)) (8)

(hitBall ball)))) (9)

(defun userTurn () (10)

(concurrent (11)

(annotate (optional) (encourageUser)) (12)

(recognizeHit) (13)

(annotate (optional) (assistIfNeeded)))) (14)

Complex structures of behavior, action and arbitrary com-
putation can be created by nested sequential and concurrent
expressions. For example, the structure of the game is
expressed as a repeating (persistent) sequence (seq) of
the respective turns (line 3), with bubbTurn composed of

c© The Eurographics Association 2004.

61

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

a nested seq and concurrent. Additional structure can be
expressed by annotations within concurrent expressions.
The author can specify that some of the component expres-
sions are optional, or that a smaller number than the entire
set are needed to complete in order for the concurrent

expression to complete. For example, in userTurn (in lines
10-14) both encourageUser and assistIfNeeded are
annotated as optional which causes them to be executed but
not be considered for success of the userTurn. The behavior
will succeed when recognizeHit succeeds.

Behaviors are grounded in acts and sensing expressions.
Both can be viewed as normal functions. Acts are executed
by the WB; Gertie issues the act to the WB and waits on
that thread for the act to succeed or fail. (Note that other
threads continue concurrently.) If the behavior aborts the act
for any of the reasons described below, an abort call is sent
to the WB. Typically Gertie issues several overlapping acts
each second and aborts a fair number over time. Sensing
expressions are task-specific functions that return simple
information about the world. Complex information is infered
by the patterns of these simple sensations and their effect in
context of structured behaviors.

Priorities and mutual-exclusion information can be added
to functions and acts. Any two functions, two acts, or a
pair of a function and an act can be marked as mutually
exclusive (using the defconflict primitive), and will be
automatically prohibited from executing at the same time
by Gertie. The one that has a lower priority is suspended
until the higher priority one completes. The suspension
could happen before the lower-priority act or function starts
executing or at any time during its execution. For example,
Mr. Bubb’s author wanted him to be socially aware and
considerate of others’ desires. One detailed instantiation
of this is that while hitting the ball, Mr. Bubb attempts to
allow the user to hit whenever they want. This is expressed
by creating adding another behavior, deferToUser, to run
concurrently with the main behavior moveIntoPosition.
DeferToUser is a simple demon that monitors whether
the user is trying to hit the ball and causes Mr. Bubb to
stand back and watch him if so. The (priority-mod +1)

annotation causes deferToUser to execute at a higher
priority than its siblings, and elsewhere the declaration
(defconflict deferToUserBody moveIntoPosi-

tion) specifies that the body of deferToUser is mutually
exclusive with moveIntoPosition. The result is that while
executing moveIntoPosition, Mr. Bubb continuously
monitors the user in parallel due to the concurrent. Any-
time the demon fires, deferToUserBody executes causing
moveIntoPosition to be automatically suspended, which
has the effect of causing Mr. Bubb to stop and watch
whenever he thinks the user is trying to hit. This can happen
multiple times, because the persistent annotation causes
deferToUser to reset after executing.

Failure is an extended concept in Gertie designed to allow
the author to express what to do when an act or behavior fails.

The mechanisms for handling failure are similar to exception
handlers in traditional programming languages. There are
four constructs that can handle a failure of a Gertie ex-
pression: ignore-failure, persistent, persistent-
when-fails and one-of. Ignore-failure aborts
the expression and treats the failure as a normal return.
Persistent and persistent-when-fails both reset the
expression, causing it to be available to be executed again. A
one-of expression is a more complicated construct. A sim-
ple example is presented here. (Note that summaries of larger
computation are given as descriptions in angle brackets.)
(defun hitBall (style)

(one-of

((precondition <on left side>) (hit-with-left-arm style))

((precondition <close>) (hit-with-head style))

(hit-with-both-arms style)))

A one-of expression is a way to author alternatives to
accomplish a task. At execution, it will choose one of its
component expressions to execute using preconditions and
partial-ordering information provided by the author. Above,
two of the alternatives have a precondition, and no partial
order is provided. If the preconditions and partial order does
not uniquely specify an alternative at execution time, one is
chosen randomly from the top candidates. When a failure
is handled by a one-of the executing alternative is aborted,
and another is chosen to be executed, excluding any that
have already failed. For example, the above function might
first try to hit the ball with its head, and if that fails (perhaps
due to an act failing), the one-of would choose (hit-

with-arm style) or (hit-with-both-arms style).
If no expression is eligible to be chosen (due to failures or
false preconditions) the one-of expression fails. The result is
that the character tries any ways he knows to accomplish a
task, failing when his options are exhausted.

Gertie includes a simple form of reflection. Any code
can query the status of a function or act, which could be
one of: executing, available for execution but not executing,
suspended, completed successfully, or failed. Reflection is
used by an emotion system that is built in Gertie to make it
easy to author what a character becomes emotional about,
and how they express those emotions, as well as by character
code to coordinate between different goals and behaviors.

The emotion system itself automatically generates emo-
tions based on this information, along with the author’s
notations of which goals are emotionally important. (For ex-
ample, Mr. Bubb cares if he is playing well, so his hitBall
function is annotated as being emotionally important.) When
a goal that has been marked as emotionally important fails,
the emotion system uses reflection to notice this failure, and
automatically causes sadness. If the character had inferred
a cause of the failure, the system causes the creation of
an anger-at emotion; and if the character infers that an
executing act is likely to fail, the emotion system creates a
fear emotion. (A more complete exposition of the causes
and types of emotions that can be automatically generated
in this way can be found in [Nea96].) The created emotions

c© The Eurographics Association 2004.

62

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

Figure 3: Interactions with Mr. Bubb. He becomes happy
when you play well together and can become sad if you hog
the ball or if he plays badly. He is socially aware, and tries
to give you space and encouragement to hit, and will try to
hit for you when he thinks you can’t reach it.

are automatically summarized and decayed over time by the
emotion system, and the current emotional state is available
to all of the executing Gertie code, so that it can continually
adjust its choices based on the emotions of the character.

Note that these inferences for cause and likelihood of fail-
ure, etc. don’t have to be correct. Some characters might al-
ways blame themselves, or jump to hasty conclusions based
on little evidence, while others may make careful, reasoned
inference. In addition, the inference process is written in Ger-
tie and has access to the same emotional state information.
This makes it easy to author a character who increasingly
blames others as they become anxious or similar effects.

The last feature to describe in Gertie is continuously mon-
itored expressions, which are used in interactive characters
to express reactivity to the world (especially including the
user) or to unexpected internal events. They can be added
to any expression in Gertie, and they come in two versions,
succeed-when and fail-when, that as a group we call
whens. During the execution of the expression to which
they are attached, the condition of the when is continuously
evaluated. At the point it becomes true it aborts the attached
expression, and causes it to return normally or fail depending
on the type of when. An optional replace-with expression
can be present in a when. If present, it is executed when the
when triggers. Example uses are given below.

5.1. Behavior Authoring in Gertie

Now that we have given an overview of Gertie, let us turn to a
description of how it provides support for authoring of inter-
active characters. Figure 3 shows representative scenes from
an interaction with Mr. Bubb, and Figure 4 lists properties of
interactive characters that are supported by Gertie. For each
property, an illustrative example is given from Mr. Bubb.

To illustrate how rich, interactive behavior can be encoded
in Gertie, let’s further consider the basic structure of Mr.

Property Supported Example from Mr. Bubb

high level goal authoring play with user, mope, and play alone
personality-specific, reactive behavior move to hit the ball unless user is trying to hit
expressive motion authoring sneeze, stretch and hit motion
complex understanding user hit for me to help vs. user hogging the ball
emotional causes playing badly produces sadness
emotional expression move slower, choose to mope
general awareness recognize accidental hit
social conventions getting out of user’s way
reactive staging knowledge if time, move & face camera before hitting ball
physical reactions react to being hit by ball; slipping on the ice
showing changes in thought when accidently make a good hit, show surprise

Figure 4: Character properties supported in Gertie.

Bubb’s turn in the game. At the start of Mr. Bubb’s turn, the
user has just hit the ball. His basic goal is to possibly give a
reaction to the User’s hit (particularly if it was a good hit),
move into position (being reactive to both the ball and the
user) and then hit the ball. This is expressed in the following
more detailed pseudocode for bubbTurn.
(defun bubbTurn ()

(seq

(if (nice-hit)

((succeed-when <ball is far relative to its height>

(replace-with (small-react-to-nice-hit)))

(react-to-nice-hit)))

((succeed-when (or <in position for ball>

<ball is too low>))

(concurrent

(persistent (priority-mod +1) (deferToUser))

(moveIntoPosition ball)))

(hitBall ball)))

This behavior is a sequence with three parts. The first
expression is a conditional that determines whether Mr.
Bubb thinks this is a nice hit. If so, the body is executed:
a succeed-when continuously monitored expression
modifying the main behavior react-to-nice-hit. The
replace-with expression of the succeed-when specifies
a Gertie expression to execute instead of the main behavior.
So, normally, the react-to-nice-hit behavior would
execute to completion performing an acknowledgment to the
user that Mr. Bubb thinks she made a nice hit. If the ball is
too far away relative to its height, the react-to-nice-hit
is aborted by the succeed-when, and replaced with the
shorter reaction small-react-to-nice-hit. Also, since
this is a continuously monitored expression, if the ball
moves too far away (e.g. because the wind blows it away)
during the bigger reaction, it will be aborted and Mr. Bubb
will transition to the smaller reaction.

The core of the next expression moves Mr. Bubb into po-
sition for hitting while being polite to the user, as described
previously. The succeed-when around this expression
causes the behavior to end whenever Mr. Bubb is already in
position (or if he becomes opportunistically in position, e.g.
because of the wind) or when the ball is too low (and his
only chance to hit it is to stretch out and try to hit it).

Gertie supports staging knowledge in interactive charac-
ters as the term is used in theater, that the actor reasons about
what the audience can see and moves himself to enable the

c© The Eurographics Association 2004.

63

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

Acts

openMouth
squashBody

headLean
armFlex

moveEyelids
say

lookAt
RecoverFromFaint

Low-Level Behaviors

dissapointedGesture
tenseMouth
wringHands

cringe
frustratedFace

sneeze

Figure 5: Representative acts and low-level behaviors.

best presentation. Good actors do this in a way that doesn’t
interfere with their main action or hamper believability. This
can be expressed in Gertie by including behavior to, e.g.,
turn toward the camera or move to an advantageous position
as part of the behavior. These behaviors can be written
similarly to the reaction to a nice hit above, to allow them to
adapt to the time available and other aspects of the ongoing
behavior so that they integrate seamlessly. Many of the Mr.
Bubb behaviors include adaptive staging.

Showing changes in thought is one of the main ways of
bringing a character to life, as has been repeatedly described
in animation and acting. Such changes can often be easily
locally expressed in Gertie, for example succeed-when

and fail-when expressions often encode conditions under
which a character stops executing a given goal and behavior
and starts executing another. The replace-with clause in
each succeed-when and fail-when executes whenever
these changes in goals occur. By adding appropriate behav-
ior to these clauses to express the change in thought we are
able to give our interactive characters the ability to show
these changes in thought with little additional code.

In order to express the emotional life of the character, an
author encodes the goals that are emotionally important to
the character, and code to generate additional knowledge
needed for the generation of particular emotions, as de-
scribed above. In Gertie, often these inferences can be easily
expressed by adding small expressions at key points in the
code. For example, in the deferToUser behavior described
above, Mr. Bubb is already computing that the user is in his
way preventing him from getting to the ball. If Mr. Bubb
misses the ball while deferToUser is executing, he blames
the user for the goal failure, which causes anger toward the
user as well as sadness to be created.

5.2. Motion Authoring in Gertie

One of the important properties of Gertie is that it is a
powerful language for authoring motion as well as behavior.
In fact, in most of the recent interactive characters we have
built with our system, the authors have chosen to use a small
set of simple, short duration acts in the WB, and have chosen
to build most low-level motion in Gertie using that small set
of WB acts. An illustrative list of typical acts in the WB and
low-level motion built in Gertie is shown in Figure 5.

Figure 6: An execution of the sneeze behavior.

It is important to point out that this is not due to the WB
being incapable of creating longer, expressive acts. It is often
used for this (e.g. the slide on ice, crash into object, and faint
motions, which are all shown on the video, are each long,
expressive acts built in the WB), and authors are free to
mix either method as they choose. Rather, this choice is due
to the advantages that building actions in Gertie provides.
These advantages are: (1) for many motions it is easier and
faster to create the desired motion by composing lower-level
acts than by creating new animation and generalizing it with
the WB; (2) using Gertie, the author is able to achieve some
effects that would be difficult or impossible in our action
system or other action systems that typically reason in terms
of animation control curves; and (3) the author’s intentions
with respect to complex interactions between the act and
other acts and behaviors can be easily expressed when the
motion is created in Gertie.

To illustrate these properties, we describe a typical
expressive motion written in Gertie: a sneeze from Mr.
Bubb. The animation from an example execution of the
sneeze is shown in Figure 6 and in the accompanying video.
The motion is typically between 4.4 and 6.4 seconds long.

There are seven acts that are used to create the sneeze

behavior (the first seven acts in Figure 5), and the structure of
the behavior is shown here. Each of the function and act calls
have several arguments that we omit in order to focus on the
expressive structure of the behavior. The main arguments
to the sneeze behavior itself are a, s, r for the desired
timing of the attack, sustain and release parts of the motion.
(defun sneeze (a s r) (1)

(concurrent (2)

(seq (with-timeout a (3)

(sneeze-anticipation)) (4)

(sneeze-payoff)) (5)

(optional (succeed-when <prone>) (6)

(seq (wait-for) (squashBody) ...)) (7)

(optional (priority-mod -10500) (8)

(concurrent (9)

(seq (armflex right) ...) (10)

(optional (seq (armflex left) ...)))) (11)

(optional (seq (moveEyelid left) ...)) (12)

(optional (seq (moveEyelid right) ...)) (13)

(optional (seq (wait-for) (lookAt) (lookAt))))) (14)

(defconflict openMouth say) (15)

c© The Eurographics Association 2004.

64

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

(defun sneeze-anticipation () (16)

(concurrent (17)

(seq (openMouth) ...) (18)

(persistent (one-of (say almost-sneeze1) ...) (19)

(seq (headLean) ...))) (20)

(defun sneeze-payoff () (21)

(seq (22)

(headLean) ... (23)

(concurrent (24)

(seq (headLean) ...) (25)

((priority-mod +10000) (26)

(concurrent (armFlex left) (armFlex right))) (27)

(one-of (say sneezeWord1) ...)))) (28)

The basic structure of the motion is accomplished by nesting
concurrent and seq expressions to create the appropriate
structure of acts. The main concurrent in the sneeze has
six clauses (lines 3-14) that respectively specify parallel
motion for the: head and mouth (lines 3-5); shoulders (6-7);
arms (8-11); left eye lids (12); right eye lids (13); and eyes
(14). Timing of the motion is specified by parameters to the
acts (omitted in the code structure above), with-timeout,
wait-for, and optional expressions. With-timeout is a
primitive that causes the enclosing expression to succeed af-
ter the specified amount of time (in line 3 the ’a’ parameter,
which specifies the desired attack duration for the sneeze
motion). Wait-for is a primitive that introduces a delay
for the specified amount of time. Optional annotations on
clauses of a concurrent are used to make those clauses be
aborted whenever all of the non-optional clause complete.
In this case, all but one of the clauses of the concurrent

are marked as optional so when the unmarked clause
completes the concurrent completes, causing all other
behavior in the concurrent to end at the same time.

The sneeze-anticipation is an example of gener-
alized motion that would be difficult to create as a single
act in a typical motion system, including ours. The main
part of the sneeze-anticipation is a randomized
sequence of mouth gesticulations (created by (seq (open-

Mouth) ...)) and “almost-sneezing” vocalizations with
associated lip-sync (created by the say act). There are a
number of ways to create such a randomized sequence in
Gertie. In this case, the author chose to express it as two
artist-created sequences that are randomly mixed together.
The first is a fixed sequence of mouth gesticulations done
with a seq of openMouth acts with fixed parameters (line
18); and the second is an infinite random sequence of
“almost sneezing” vocalizations created by line 19. The
infinite sequence is created by the persistent expression,
and the one-of expression causes a different authored say

invocation to be chosen each time. The choices in the one-of
all use the say act with different parameters (authored and
randomized). Because openMouth and say conflict and are
equal priority, Gertie will intermix the two sequences auto-
matically, resulting in an authored pseudo-random sequence.

Gertie automatically layers acts and behaviors that arise
from concurrency in the character. By expressing low-level
motion in Gertie rather than as a single act in the WB, the
author can also specify finer-grained information about how

it should interact with other behaviors and acts. For example,
the priority-modifier expression on line 8 lowers the
priority of the enclosed expression that controls the arms.
This lower amount causes the arm motion to have higher
priority than the behavior that moves the arms randomly as
a background behavior, but lower priority than the behaviors
that move the arms intentionally (such as the behaviors to hit
the ball). On line 26, however, the arm motion at the instant
of the sneeze is annotated to have a priority that is higher
than the intentional movements. This encodes the artist’s
conception that Mr. Bubb should be able to concentrate
enough to still move his arms to hit the ball while he is
sneezing, but at the instant of the sneeze he cannot; the
sneeze takes precedence.

Other types of this fine-grained authoring are demon-
strated by lines 6-7 which show how a succeed-when

expression can be used to reactively prevent part of the
motion from executing under certain conditions. In this case
the squashbody act (which performs a shoulder motion)
will not happen if the character is lying down, and will stop
if the character lies down during the sneeze motion.

As we mentioned above, low-level movements can be
authored in either Gertie for the above advantages or in
the WB. Typically authors choose to use the WB where
the motion would be faster to create as an act, and the
additional level of sophistication in variation of the motion
and interaction with other acts isn’t needed. In Mr. Bubb, for
example, the behavior of losing control and sliding on the
ice is expressed in five large acts: slide, sitSlide, crash, faint
and recoverFromFaint. Each of these would have been more
expensive to create in behavior (in large part because they
would have required new primitive acts, such as a sitting act,
to be created), and they each take over nearly the entire body,
so complex interactions with other acts is not as needed.

6. The WB

A character built in Gertie typically sends several over-
lapping acts each second to be executed and aborts some
of the previously issued acts. This stream of dynamically
changing, overlapping acts is the natural result of a character
that is highly reactive to a rich unpredictable world.

To handle this high interactivity, for personality-rich
interactive characters, an action system needs to satisfy
four goals: (1) it should allow for dynamically changing
layered motion, e.g. the mind should be able to decide to
reach to grab something while walking and doing other acts
and be able to change the grab to a wave at any point; (2)
a side-effect of the first goal above is that acts need to be
able to transition to other acts at any nearly any point—if
transitions are limited, then interactivity is proportionally
limited; (3) it needs to produce authorable generalized
motion with artistic quality that approaches hand-created
motion; and (4) it needs to be realtime. In the remainder
of this section, we briefly survey previous motion control

c© The Eurographics Association 2004.

65

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

 Generator

Specialized Motion

Author−Created Act

Hand−Animated Motion

World State +
Act Parameters
(including style,
 emotion, etc.)

Figure 7: Mechanism for generalized motion.

systems, especially with respect to these goals, and then
describe our novel motion control system.

A most common motion control approach is verbs and
adverbs by Rose [RCB98], with related versions by Johnson
[Joh95], and Downie and Blumberg [BDI∗02]. These
systems interpolate between different animations of the
same motion performed in different styles. Transitions from
one action to another is done by a transition graph. The
expressiveness of individual motions is large, however, we
did not believe that interpolation alone would enable authors
to capture the full range of desired generalization in both
parameters and style, and if it is possible, the number of
example animations required is proportional to the desired
generality which makes the authoring cost too large. In
addition, the need for (near) arbitrary transitions is not well
supported by this approach.

Many systems produce compelling, expressive motion,
but are not real-time, for example [Gra00, HP97, WK88].

Motion graphs (e.g. [KGP02]) are a new set of algorithms
that create a reasonably dense graph of transitions given a
rich set of example animations. This approach is compelling,
however it currently only works on whole body animation
not satisfying our first goal, and it would require a large
number of animations to get a sufficiently broad range of
expressive motions.

Finally, Perlin and Goldberg’s approach to generalized
action [PG96] is the closest to satisfying our goals. Their
approach is real-time, produces expressive motion, supports
transitions, and supports composable actions for parts of the
body. The reason we did not adopt Perlin and Goldberg’s
motor control system is that we believed that it would not
be easy enough to author and achieve the full range of
generalized action that we need.

Our approach to allowing the authoring of generalized
motion is shown in Figure 7. Each act is a combination of
author-created hand-animated keyframe curves, which we
call the gesture for the act, and an author-created procedure,
the generator, that expresses how to generalize the motion.
This approach is similar to Grassia’s motion models [Gra00].

To enable the author to easily write the generator, the WB

Figure 8: An execution of a slide act.

provides a number of primitives that can be combined for
powerful effects including: motion interpolation primitives
[RCB98]; warping and time warping [WP95] along with
simpler motion editing methods such as splicing, scaling,
etc.; and blending and coherent noise from Perlin and
Goldberg [PG96].

Coordination between the gesture and the generator is
accomplished by symbolic annotations on the keyframe
curves. Annotations give a name to an artistically mean-
ingful moment in the motion, e.g. start-anticipation
or launchTime and landTime for a jump motion. The
set of annotations for a gesture is specified by the author,
to be whatever they need to capture the artistic intent of
their motion. By using symbolic names for the conceptually
interesting times, an author can create a new gesture for
a given act without changing the generator as long as the
motion’s structure doesn’t change.

These annotations, combined with an author-written pro-
cedure for generalizing the motion allows the author to use
different methods on different parts of the motion to preserve
the artistic qualities that he/she thinks are important. For
example, to preserve overlapping timing between two curves
in an animation when shortening the overall duration, an
author could: proportionally scale the overlapping segment,
keep the overlapping segment constant, or proportionally
scale the overlapping segment subject to a minimum
constant time (e.g. to ensure that the overlap is seen by the
user). Any of these properties of the original motion may
be important artistic intent. Expressing the generalization
process as an author-written procedure enables this intent to
be preserved, which more automatic approaches do not. An
example of an execution of an act is shown in Figure 8.

The ability to abort an act, which is important to allow
arbitrary transitions in some cases, is specified in an addi-
tional function for each act. These functions typically allow
the act to be aborted unless it is physically impossible. For
example a jump act can be aborted at any point except when
the character is in the ballistic motion in the air. Encoding

c© The Eurographics Association 2004.

66

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

hand−animated motion

A1 instance, A2,
world state
act parameters
(including style,
 emotion, etc.)

 transition
 generator

A2A1

 new
generated
 motion

A1 A2

stream of motion
after transition execution

A1 A2

stream of motion
from generators

transition execution

nownow

Figure 9: Transition mechanism.

this information procedurally allows the author’s knowledge
of the meaning of the act to inform coherent motion.

Transitions are supported in two ways. In addition to the
parameters to the act, each generator is written to accept any
initial state of values and tangents for the degrees of freedom
that it controls, for instance, by using blending or warping
primitives. This is adequate for handling transitions between
most acts and transitions between aborted acts and the
next act to execute. For some cases, however, a specialized
transition is needed. The system supports this by allowing
arbitrary transition generators to be written by the author.
A transition generators takes an executing act and the act to
follow, and can remove motion and/or create and insert new
motion at the join. This process is illustrated in Figure 9.

Although transition generators are theoretically N2 in the
number of acts, we have found that only a few strategic ones
are needed. Most transitions can be effectively handled by
the act’s generator itself.

7. Usability

Given the complexity of the authoring system we have
presented, an important question is how usable is it for
authoring interactive characters. In this section we discuss
the ease of expressing envisioned interactive characters,
brittleness of these characters, and ease of debugging. These
observations come from experience training over a half
dozen character builders (our term for authors of interactive
characters), and from over a dozen interactive characters
built by these character builders. Several of these interactive
characters are publicly available from www.zoesis.com.

While Gertie is by no means a simple language, we have
found authoring in it to be economical and intuitive once
a character builder is trained. This is in large part due to
the hierarchical nature of interactive minds, and the locality
of the Gertie language structures for specifying properties
of these minds, and in part because many of the potential
complexities of authoring turn out to be sparse in practice.
For example, the authoring of defconflict expressions in
Gertie is theoretically O(N2) in the number of functions in a
character mind, and the number of needed succeed-when

and fail-when expressions are potentially O(E ∗ S) where
E is the number of expressions in the Gertie program and

S is the number of types of situations to be sensed and
reacted to. In practice, both defconflicts and whens

tend to be sparse in character minds. The reason for this is
the inherent abstraction and hierarchical nature of minds.
An appropriate succeed-when or fail-when applied to a
goal or behavior often obviates the need for similar whens
in the same behavior because the effects of the success or
failure propagate up to parent behaviors and cause children
behaviors to be aborted. The result is that whens tend
to be O(S) with a small constant. Similarly, because the
suspensions caused by a defconflict effectively block
all components of that behavior and behaviors that follow it
sequentially, defconflicts are also sparse in practice.

In addition, this sparsity of annotations is not an additional
complexity of the language that must be explicitly managed
by the author. Rather, there are typically natural, local,
intuitive positions where a fail-when, succeed-when

or defconflict is appropriate to be placed to capture the
intended artistic effect.

Debugging in Gertie can be complex. This is in large
part because of the complexity of working in a concurrent
language. One interesting point however, is that authors
typically find debugging to be more onerous when using
Gertie as a general-purpose concurrent language, and easier
to debug when using it as a model of mind. The organizing
structure of concurrent functions as goals being pursued in
parallel, conflicting functions as behaviors that conceptually
should not be performed by the character at the same time,
etc., seems to allow for more intuitive use of the complexity
of the language.

One surprising property of interactive characters written
in Gertie is on the brittleness/robustness issue. These char-
acters are surprisingly robust. They rarely crash, and bugs
in the character behavior usually resolve themselves quickly
enough to be judged by the user as part of the personality
rather than a bug in the program. This robustness appears
to be the result of Gertie’s reactive mechanism. The same
reactivity that allows the character to adapt to an unpre-
dictable world seems to allow it to adapt and recover from
unpredictable internal bugs as well. (Memory bugs are an
exception to this. Adding automatic memory management
would be a valuable improvement to the language.)

8. Results and Conclusion

We have presented an architecture for the authoring of
personality-rich, highly interactive characters. This system
is composed of two main components: (1) Gertie, a program-
ming language with unusual language features specifically
designed for the expression of procedural artistic knowledge
for interactive behavior; and (2) the WB, an action system
designed to enable artists to combine the expressive power
of hand-crafted keyframe animation with artist written
procedures that generalize the motion while preserving the
artistic intent.

c© The Eurographics Association 2004.

67

Loyall, Neal Reilly, Bates & Weyhrauch / System for Authoring Highly Interactive, Personality-Rich Interactive Characters

We have described how this system enables important fea-
tures of interactive characters to be achieved, and presented
examples from an implemented interactive character.

The system is practical, with over a dozen interactive
characters implemented to date. Characters built using this
technology have been demonstrated at juried conferences
including ACM SIGGRAPH 2001 Emerging Technologies,
won awards for both entertainment content and technology,
and been commercially deployed.

References

[AR02] ANDRE E., RIST T.: Presenting through per-
forming: On the use of multiple lifelike charac-
ters in knowledge-based presentation systems. In
Proc. of the Second International Conference on
Intelligent User Interfaces (2002), pp. 1–8.

[BDI∗02] BLUMBERG B., DOWNIE M., IVANOV Y.,
BERLIN M., JOHNSON M. P., TOMLINSON B.:
Integrated learning for interactive synthetic char-
acters. In ACM Trans. on Graphics (2002).

[BPW93] BADLER N. I., PHILLIPS C. B., WEBBER

B. L.: Simulating Humans - Computer Graph-
ics, Animation, and Control. Oxford University
Press, 1993.

[FTT99] FUNGE J., TU X., TERZOPOULOS D.: Cogni-
tive modeling: Knowledge, reasoning and plan-
ning for intelligent characters. In Proceedings
of SIGGRAPH 1999 (New York, 1999), Com-
puter Graphics Proceedings, Annual Conference
Series, ACM, ACM Press / ACM SIGGRAPH.

[GM01] GRATCH J., MARSELLA S.: Tears and fears:
Modeling emotions and emotional behaviors in
synthetic agents. In Proc. of the 5th International
Conference on Autonomous Agents (2001).

[Gra00] GRASSIA F. S.: Believable Automatically Syn-
thesized Motion by Knowledge-Enhanced Mo-
tion Transformation. PhD thesis, Computer Sci-
ence Department, Carnegie Mellon, 2000.

[HP97] HODGINS J. K., POLLARD N. S.: Adapting
simulated behaviors for new characters. In Pro-
ceedings of SIGGRAPH 1997 (1997), Computer
Graphics Proceedings, Annual Conference Se-
ries, ACM, ACM Press / ACM SIGGRAPH.

[Joh95] JOHNSON M. P.: Exploiting Quaternions to
Support Expressive Interactive Character Mo-
tion. PhD thesis, Massachusetts Institute of
Technology, 1995.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Mo-
tion graphs. In ACM Transactions on Graphics
(2002), vol. 21 of 3.

[LB93] LOYALL A. B., BATES J.: Real-time control
of animated broad agents. In Proceedings of
the Fifteenth Annual Conference of the Cogni-
tive Science Society (1993).

[Loy97] LOYALL A. B.: Believable Agents: Building In-
teractive Personalities. PhD thesis, Computer
Science Department, Carnegie Mellon, 1997.

[LZGB99] LESTER J., ZETTLEMOYER L., GREGOIRE J.,
BARES W.: Explanatory lifelike avatars: Per-
forming user-centered tasks in 3d learning en-
vironments. In Proc. of the Third International
Conference on Autonomous Agents (1999).

[MS02] MATEAS M., STERN A.: Architecture, Autho-
rial Idioms and Early Observations of the Inter-
active Drama Facade. Tech. Rep. CMU-CS-02-
198, Department of Computer Science, Carnegie
Mellon University, 2002.

[MTT87] MAGNENAT-THALMANN N., THALMANN D.:
The direction of synthetic actors in the film
rendez-vous à montréal. IEEE Computer Graph-
ics and Applications 7, 12 (1987).

[Nea96] NEAL REILLY W. S.: Believable Social and
Emotional Agents. PhD thesis, Computer Sci-
ence Department, Carnegie Mellon, 1996.

[PG96] PERLIN K., GOLDBERG A.: Improv: A system
for scripting interactive actors in virtual worlds.
Computer Graphics 30, Annual Conference Se-
ries (1996), 205–216.

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.:
Verbs and adverbs: Multidimensional motion in-
terpolation. IEEE Computer Graphics and Ap-
plications 18, 5 (1998), 32–40.

[Rey87] REYNOLDS C. W.: Flocks, herds, and schools:
A distributed behavioral model. In Proceedings
of SIGGRAPH 1987 (New York, 1987), Com-
puter Graphics Proceedings, Annual Conference
Series, ACM, ACM Press / ACM SIGGRAPH,
pp. 25–34.

[RJ99] RICKEL J., JOHNSON W. L.: Animated agents
for procedural training in virtual reality: Percep-
tion, cognition, and motor control. Applied Arti-
ficial Intelligence 13 (1999), 343–382.

[Sen98] SENGERS P.: Anti-Boxology: Agent Design in
Cultural Context. PhD thesis, Carnegie Mellon
University Department of Computer Science and
Program in Literary and Cultural Theory, 1998.

[WK88] WITKIN A., KASS M.: Spacetime constraints.
Computer Graphics 22 (1988), 159–168.

[WP95] WITKIN A., POPOVIĆ Z.: Motion warping.
Computer Graphics 29, Annual Conference Se-
ries (1995), 105–108.

c© The Eurographics Association 2004.

68

