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Abstract 
Labeled ink stroke data is essential to the development and evaluation of sketch recognizers. Manually labeling 
strokes is a tedious, time-consuming, and error prone task; and very few tools are available to facilitate this. We 
propose a new and intuitive method of automatic labeling for single stroke primitives. This involves building a 
recognizer from a partially labeled dataset. This recognizer is then used to identify and automatically label the 
remaining data, therefore reducing the amount of manual labeling required by researchers. An evaluation 
comparing manual labeling against our new auto labeling method shows that users are able to label significantly 
faster and produce less errors using auto labeling. Furthermore, users found auto labeling easier and more 
preferable. 
 

Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document and Text Processing]: Document 
Capture: Graphics recognition and interpretation, I.2.5 [Artificial Intelligence]: Programming Languages and 
Software: Expert system tools and techniques. 

 

 

1. Introduction 

A central part of developing more accurate sketch 
recognizers is the collection and analysis of quality digital 
ink data. There is a growing desire to standardize and 
simplify the process of collecting ink data, in order to 
support the collaborative efforts and the corroboration of 
results. For example, SOUSA [PWJH08, KJM*09] is an 
online applet allowing researchers to collect and verify 
sketches. Users can participate in this study via the website 
and sketch the required diagrams. Although their web 
interface provides ease of access to search, collect, and 
download data; it does not provide any labeling facility. 
Labeled data is required to provide ground truth 
information for evaluation or testing purposes, and 
developing recognizers using supervised learning 
techniques. 

A commonly identified problem is the difficulty of data 
labeling, largely due to the tedium and time requirements 
of manually labeling large sets of data. Previous work 
[WSA07, BPGW08] has attempted to reduce the effort of 
labeling by providing tools specifically tailored to manual 
labeling. However, labeling continues to present a 
challenge for sketch recognition researchers, as the amount 
of data in sketch datasets scale to greater numbers, 
increasing the labour requirements for manually labeling 
the data. Relief may be found in the automation of dataset 

labeling. Automation presents itself as a scalable solution 
that counters both the tedium and effort demanded for the 
labeling of ever increasing datasets.  

We present, an innovative and intuitive way to automate 
the assigning of labels to stroke data, based on previous 
research into data mining for stroke recognizers [CBP12]. 
The technique involves the generation of an on-the-fly 
recognizer, created by modeling a small manually labeled 
subset of the dataset; the generated recognizer is used to 
automatically label the majority of the dataset. We 
implemented the technique by integrating the auto labeling 
function into the labeling component of RATA [CBP12], a 
complete software toolkit aimed at non-experts for 
generating single stroke gesture recognizers. Initially, using 
the RATA labeling component interface, the user manually 
labels some of the strokes within a dataset and then invokes 
the auto labeling function for the rest. The user then 
manually corrects errors made by the automated function. 
Figure 1 shows the RATA labeling interface. 

The main contributions of this paper are: the 
development of a new auto labeling method, and an 
improved manual labeling experience. Both contributions 
are designed to remediate the increasing demands of the 
manual labeling process for sketch recognition research by 
reducing the time and effort required while still providing 
accurate labels. 
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Figure 1: The RATA labeling component interface 
implemented with auto labeling function access from top 

control tab. 

2. Related Work 

Several tools have been developed to assist in labeling 
digital ink data. Wolin et al [WSA07] designed a tool for 
more efficient labeling of ink data using a stylus. Their tool 
is able to complete three main tasks; stroke fragmentation 
(automatic and manual), stroke grouping (manual), and 
symbol labeling (manual). Fragmentation derives ink 
primitives (such as lines and arcs) by either splitting 
strokes, or separating strokes that contain more than one 
symbol. Stroke grouping works in the opposite direction by 
joining components made of more than one stroke. Once 
these tasks have been performed, manually labeling the 
symbol in the sketch can be carried out. Their tool also 
allows for multiple labels to be applied to a stroke. The 
only automated process available in this application is for 
fragmentation of strokes. 

DataManager [BPGW08, BSP09] is a tool designed for 
sketch data collection, labeling, and automatic dataset 
generation. The labeling scheme allows for multiple labels 
to be applied to a stroke, and group labeling (for 
components containing more than one stroke). There is also 
an inbuilt automatic labeler for classifying strokes into 
either shapes or text using a divider algorithm [BPGW08]. 
Any corrections that need to be made can then be done 
manually. This study showed that using DataManager 
greatly improved the efficiency of labeling. However, the 
automated labeler is limited to the broad classification of 
ink into either text or shape categories– different classes of 
shapes are not classified. 

MacLean et al [MTL*09] developed a tool for collecting 
and labeling handwritten mathematical expressions. Their 
goal was to generate a corpus of data by limiting the bias 
resulting from researchers collecting only the type of data 
that their recognizers are more familiar with. To ensure 
their datasets are as varied as possible they use random 
walks of a grammar-based mathematical expressions 
recognizer to generate a large range of expressions for 
participants to transcribe. Participants write these 
expressions and strokes are then labeled automatically, 
using a recognition algorithm for mathematical 

expressions. Unfortunately, this tool is limited to the 
collection and labeling of mathematical expressions. 

Several tools have been developed focusing more on 
sketch data collection. These include web-based games 
[Joh09, JD09], and an online applet, SOUSA [PWJH08, 
KJM*09]. These tools do not provide a labeling facility for 
individual parts of a sketch, but have user defined 
descriptions of the sketch as a whole. 

Frameworks have also been developed for building and 
evaluating gesture recognizers, which include data 
collection and labeling functions [BLMM07, SKN07, 
SNK07, AFGP08, MMBK09]. These systems are typically 
used to collect isolated gestures or components rather than 
full diagrams. 

One reason why researchers have preferred to collect 
isolated components is that labeling is easier - the label for 
a shape can simply be inferred by the diagram name, in 
contrast to full diagrams where each stroke must be labeled 
individually. Unfortunately, isolated components lack 
important spatial and temporal contextual information that 
may exist between gestures. Training with such data has 
been found to have a direct effect on recognition accuracy 
if the recognizer is to be applied on more complex sketches 
[FGP*09, SPB09]. We seek to provide better support for 
labeling full diagrams through the use of an automated 
system. 

3. Our Approach 

Our auto labeling technique is implemented as part of 
RATA (Recognition Algorithm Tools for ink Applications) 
[CBP12], a recognizer generation toolkit. It contains 
components to collect digital ink, manually label the ink 
data, select and generate stroke feature sets and a data 
mining tool wrapper that trains and generates recognizers. 
The manual labeling component and data mining features 
provide a suitable basis to implement the auto labeling, as 
our technique requires some manual labeling at the 
beginning and also training to produce a recognizer. The 
integration of auto labeling as a feature in the manual 
labeling interface also allows us to easily compare the two 
methods.  

The auto labeling process begins with a collection of 
unlabeled digital ink sketches that can be drawn by various 
contributors. Our labeling technique can be used on 
isolated components (e.g. individual gestures) or full 
diagrams (e.g. entity relationship diagrams). Each 
component must be drawn as a single stroke, for example a 
rectangle must be drawn in one stroke rather than four.  A 
few strokes from each class are manually labeled first. 
These strokes are used to train a recognizer using the built 
in RATA model generation component.  

The recognizer is built using the default feature set and 
RATA.Gesture algorithm [CBP12]. Rata.Gesture is an 
ensemble of four algorithms: Bayesian Network [Ben07], 
Logit Boost [FHT00], Logistic Model Tree [LHF05; 
SFH05], and Random Forest [Bre01]. RATA.Gesture was 
developed through a rigorous analysis of nine data mining 
algorithms, which involved parameter tuning, feature 
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selection and the testing of ensembles. An evaluation 
shows that it outperforms other recognizers [CBP12]. The 
same algorithm can be used via the RATA model 
generation component to generate a robust recognizer with 
a fully labelled dataset. 

The generated recognizer is then used to classify the 
remainder of the dataset. The training of the interim 
recognizer and labeling of strokes by the recognizer is 
automated; the user is only required to manually label a 
small subset of the data and then click a button to do the 
rest. Given that recognizers very seldom produce 100% 
accurate results, once the auto labeling is finished, the user 
checks for any labeling errors and corrects them manually. 
The auto labeling process is summarized in Figure 2. 

 

Figure 2: The auto labeling process. 

3.1 Auto Labeling Accuracy 

A central question to this automated process is how 
much of the original dataset must be manually labeled 
before the accuracy of the auto labeler is high enough for it 
to be useful. We investigated the accuracy of our auto 
labeling technique over different numbers of manually 
labeled examples using three different datasets (Figure 3). 
These datasets represent realistic sketch data that is 
difficult to manually label. The datasets have an average of 
634 strokes, 5 classes and 20 contributing participants each, 
and two were also fully drawn diagrams with intersecting 
strokes and text.  

Figure 3: Datasets used in auto label accuracy tests. A: 
Shapes, B: Directed Graph, C: Class Diagram 

The datasets were first fully manually labeled and 
checked to be correct in order to provide ground truth data 
for measuring accuracy. Next, unlabeled copies of each 
dataset were used to run automated auto labeling tests. The 
independent variable was the number of manually labeled 
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examples for each class and the dependent variable was the 
overall accuracy of the dataset after auto labeling. We set 
the independent variable to begin at 1 (i.e. one example of 
each class is manually labeled) and incremented it by 1, up 
to 22 (i.e. 22 examples of each class are manually labeled). 
At each increment, the accuracy of the auto labeler was 
recorded (Figure 4). 

   

Figure 4: Accuracy of auto labeler with increasing 
number of examples manually labeled per class 

The accuracy plots of the Directed Graph, Class 
Diagram, and Shapes datasets roughly follow logarithmic 
trend lines (coefficient of determination R² = 0.95, 0.91. 
and 0.87 respectively) suggesting diminishing returns of 
auto labeling accuracy with increasing numbers of 
manually labeled examples. From our observation of these 
curves we estimate that manually labeling 8 to 10 examples 
per class to be optimum; after that the slope of the curve 
levels off, reducing the accuracy gain. This is consistent 
with experiments on other trainable recognizers [Rub91, 
FPJ02]. 

 With our experimental datasets this is 10-12% of the 
dataset but the number of labeled examples required is 
independent of the dataset size. For datasets with a similar 
number of examples per class (i.e. our shapes dataset), this 
will provide near 95% accuracy in auto labeling. This 
means that having manually labeled 10% of the dataset, 
90% of the data will be automatically labeled with an 
accuracy of approximately 95%, therefore requiring only 
minor corrections to be made. 

However, there are factors that affect the accuracy of the 
auto labeling and the number of manually labeled examples 
required. These factors include: the number of classes, the 
size of the dataset, the number of contributors to the dataset 
(who may have different drawing styles), the nature of the 
data itself, and how distinct each class is.  

We investigated whether picking examples to manually 
label from a variety of different contributors would 
increase the auto labeling accuracy. Intuitively, we 
expected that providing labeled examples from as many 

different contributors as possible would produce a more 
style tolerant recognizer (i.e. if manual labeling ten 
instances of each class, we label one instance of each class 
from ten different contributors). We tested this hypothesis 
using the same method as above, but taking only one 
labeled example of each class per participant. We found 
that the accuracy only improved slightly and curved off 
into similar diminishing returns. This style of manual 
labeling incurs the cost of having to change class and/or 
participants for each stroke. This is much more time 
consuming than systematically labeling all instances of 
each class in turn on a single diagram before moving onto 
the next diagram. 

3.2 Improving Manual Labeling 

We also made some improvements to the existing 
manual labeling component in RATA; firstly, to reduce the 
time and effort required to manually label examples for 
auto labeling; secondly, to improve basic manual labeling 
as much as possible for a fairer comparison against auto 
labeling. 

We observed that users tend to label all strokes of a 
single type (e.g. all circles and then all squares) so we 
modified the label selection to a mode selection: once a 
label is selected, any strokes selected while in this mode 
are given that label, until the next label is selected and the 
mode is changed (Figure 5). 

 

 

Figure 5: Labeling component with labels area 
highlighted, currently set to ‘Rectangle’ mode. 

Stroke selection was originally accomplished by using 
the default Microsoft.Ink selection tools (i.e. point and 
click or a selection lasso). The basic point and click method 
is very difficult because strokes are too thin. Lasso 
selection causes difficulty when strokes contained other 
strokes, and thus unwanted strokes are also selected when 
lassoing the perimeter (Figure 6 A). We implemented an 
additional way to select strokes that allows users to draw 
selection strokes - any strokes that the selection stroke 
intersects with are selected (Figure 6 B). 

Our informal tests showed that these changes made 
considerable improvements to the interaction required by 
manual labeling. The modal label selection style reduced 
the number of clicks required by users and shortened the 
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distance traveled by the mouse cursor as each label from 
the right hand side panel was only selected once for each 
diagram. The changes to stroke selection speeded up the 
labeling process and allowed for more accurate stroke 
selection. 

 

Figure 6: A - The old lasso selection. B - The new 
intersecting stroke selection. 

4. Comparative Evaluation 

 In order to gauge the efficacy of our auto labeling 
technique, we compared the function to manual labeling in 
RATA [CBP12]. To do this, we ran a user experiment 
involving the two labeling methods to compare: 

 Accuracy of labeling and error correction 

 Time taken to label 

 User preference 

We recruited postgraduate computer science and 
software engineering students for the study because of their 
likelihood to understand sketch recognition and labeling 
tasks. Two subjects participated in pilot studies and nine 
subjects were recruited for the final experiment. Each 
experiment was performed on a desktop PC with a Core 2 
Duo e8400, 3 GHz processor, 4GB RAM running 64bit 
Windows 7 and Morae screen capture software. 

4.1 Tasks 

The experiment involved the manual and auto labeling of 
data in the RATA labeling component. In order to compare 
the two labeling methods, we prepared two typical datasets 
for labeling: a flow chart diagram and a class diagram set 
(Figure 7). The datasets were completely unlabeled. Each 
dataset consists of 20 diagrams each drawn by a different 
person.  In total they have a similar number of strokes and 
classes (Flow Chart: 599 strokes and Class diagram: 596 
strokes. Both have five label classes; e.g. Rectangle, 
Triangle, Diamond, Line and Arrow for Class diagrams). 

Each participant performed two labeling tasks: manually 
labeling one whole dataset, and auto labeling the other. In 
order to reduce the learning effect we rotated the order of 

datasets and labeling methods for each participant in the 
experiment, such that there were four unique conditions. 
Two participants did each condition, except for the last 
condition, which was completed by three participants. For 
manual labeling, users were asked to manually label every 
stroke of every diagram. For auto labeling, users were 
asked to manually label the first three diagrams 
(approximately 8 examples per class), activate the auto 
labeling function to auto label the other diagrams, and then 
review the diagrams to correct any labeling errors. 

After each task was complete, participants were asked to 
fill in a questionnaire about the labeling method used. Each 
question was presented on a 5-point Likert scale. We asked 
participants to rate the labeling methods based on factors 
such as ease of use, intuitiveness, and utility.  After a 
participant completed both labeling tasks, we also asked for 
general feedback on the labeling techniques, including 
which labeling method they found the easiest and which 
was most preferred.  

During the pilot studies it was evident how inherently 
boring labeling is, with participants taking little notice of 
whether their labels were correct. In the study, to motivate 
participants, we offered a $20 prize for the ‘best’ labeling, 
best being fastest with the least errors (each error added 20 
seconds to their time).  

 

 

Figure 7: Unlabeled datasets used in the comparative 
evaluation. A: Class Diagram, B: Flow Chart. 
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4.2 Experimental Measures 

Both performance and accuracy are important factors 
when labeling. The two central goals for improving 
labeling methods are to reduce the time taken to label and 
increase the accuracy of labeling. To evaluate these factors 
for our labeling schemes we captured the following data.   

First, we recorded the time taken to label the datasets 
using each labeling condition. For manual labeling we 
measured the start time from when the user selects the first 
label to begin labeling the first diagram, and recorded the 
end time from when the last unlabeled stroke of the last 
diagram was labeled. For auto labeling, we recorded the 
start time in the same manner as manual labeling, the start 
time for each subsequent phase (recognizer generation, 
auto labeling and corrections) and took the end time from 
when the user affirms that they had finished correcting all 
the auto labeling errors. 

The second measure we took was the accuracy of each 
labeling method. We measured this by counting the number 
of errors made by each labeling technique. In manual 
labeling, the two types of errors made are incorrectly 
assigned labels, and strokes that have not been labeled. In 
auto labeling, all strokes have labels as the auto labeler 
applies labels to everything. There are, however, errors 
made by the auto labeler that have not been checked and 
corrected by the user. We hypothesized that more errors 
would result from uncorrected misclassifications made by 
the auto labeler than from manual labeling errors, as 
checking errors made by the auto labeler maybe less 
intuitive. 

4.3 Results 

The first two pilot experiments revealed errors in the 
experimental and questionnaire set up. These were 
corrected and used for the final nine participants. All 
labeling errors and time data was recorded via Morae 
screen capture and analyzed after the experiment. Each 
experiment took 45 minutes on average to complete. 

4.3.1 Preferred labeling technique  

All nine participants rated auto labeling as the easier 
labeling method over manual labeling. Seven out of nine 
participants preferred auto labeling over manual labeling, 
while the other two recorded no preference.  

Participants strongly agreed that they had a high 
understanding of both tasks (Mean=4.89, SD=0.33 for both 
tasks). They also enjoyed auto labeling more (M = 3.00 for 
manual labeling and M = 3.44 for auto labeling). 
Participants found auto labeling to be more helpful for 
completing the task, easier and more intuitive than manual 
labeling. (M = 4.44 for auto labeling for both questions 
versus M = 3.00 and M = 3.44 for manual labeling). 
Confirming our intuition, users found it easier to correct 
manual labeling errors than auto labeling errors (Manual: 
M = 4.33, SD = 0.5, Auto: M =3.56, SD = 0.7). Table 1 
summarizes these statistics. 

  
  

Auto  Manual 

Mean  SD  Mean  SD 

Task Understanding  4.89  0.33  4.89  0.33 

Task Enjoyment  3.44  1.13  3.00  1.22 

Helped Complete Task  4.44  1.01  3.00  1.58 

Easy and Intuitive  4.44  0.53  3.44  1.24 

Easy Error Correction  3.56  0.73  4.33  0.50 

Table 1: Summary of user preference data. 

4.3.2 Performance and Accuracy 

On every experimental trial, participants labeled faster with 
auto labeling than manual labeling. Participants on average 
took 539.6 seconds to auto label and 1003.7 seconds to 
manually label. With the average dataset at 597.5 strokes, 
that is 1.1 strokes per second for auto labeling and 0.60 
strokes per second for manual labeling. A two-tailed 
paired-sample t-test of the mean time taken for each 
labeling strategy shows that auto labeling is significantly 
faster than manual labeling (t= 5.206, p = 0.001, df = 8). 
Table 2 summarizes these statistics. 

 

   Error Rates  Time (seconds) 

Participants  Auto  Manual  Auto  Manual 

1  1 6  632  868

2  1 2  464  918

3  11 0  425  911

4  5 9  511  754

5  3 3  536  1382

6  4 6  537  1054

7  3 7  672  995

8  1 4  559  713

9  3 15  520  1438

Mean  3.56 5.78  539.56  1003.7

SD  3.13 4.41  76.25  253.86

Table 2: Summary of the evaluation performance data. 

The performance time for auto labeling was further 
broken down into its procedural parts (Table 3) and 
analyzed. We consider the manual labeling and recognizer 
generation time a constant factor in auto labeling and the 
recognizer labeling and user error correction time as a 
variable cost depending on the number of strokes in the 
dataset. We can use this information to estimate the 
performance times of manual labeling and auto labeling in 
different sized datasets. For manual labeling, given that our 
participants could label 0.60 strokes per second on average, 
we estimate that it takes 1.67 seconds (1 / 0.60) per stroke 
to label. The total time to manually label and to auto label a 
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dataset is calculated as follows (where t is the time and n is 
the number of strokes in the dataset): 

Total tmanual labeling= 1.67n 

 

Total tauto labeling = tmanual labeling + trecognizer generation +   

(trecognizer labeling + terror correction)n 

             = 188 + 11 + (0.10 + 0.44)n 

             = 199 + 0.54n 

With these two time estimates, we plot the estimated 
time costs for different sized datasets for both manual and 
auto labeling (Figure 8). The graph shows that the time to 
manually label strokes increases at a faster rate than the 
time to auto label strokes as the size of the dataset 
increases. 

 

Mean (sec)  SD 

Manual Labeling Time  188  33.44 

Recognizer Generation 
Time  11  2.5 

Recognizer Labeling Time 

59
 (0 .10 sec 
per stroke)  1.5 

User Error Correction 
Time 

262.56 
(0.44 sec per 

stroke)  76.20 

Table 3: Auto labeling performance time (seconds) 
broken up into its procedural components. 

 

 

Figure 8: Graph of estimated performance times over 
increasing dataset sizes. 

In terms of the number of errors found, the mean number 
of errors was 3.56 for auto labeling (after user corrections) 
and 5.78 for manual labeling. Seven participants had more 
errors in manual labeling than in auto labeling, one had the 

same amount of errors and one had more errors in auto 
labeling. The standard deviation was high however (SD = 
3.13 for auto label and SD = 4.41 for manual label), and a 
2-tailed Wilcoxon Signed-Rank test showed no statistically 
significant difference between the two mean error rates (Z 
= -1.542, p = 0.123). Table 2 summarizes these statistics. 

4.3.3 General Feedback 

We asked participants to contribute general feedback and 
suggestions on the labeling techniques. Most users liked 
the auto labeling technique because of the time and effort 
saved. One participant commented that auto labeling “saves 
time and energy from having to repetitively label each 
stroke”, another mentioned “it was faster and only required 
a bit of my time”. Other participants commented on the 
good accuracy of the auto labeler. An area identified as 
needing improvement is the speed of the auto labeling 
process in terms of the time taken for the algorithm to train 
and auto label the remaining diagrams. Some participants 
also commented about the error correction: “It’s a bit 
harder to spot the mistakes”; “it was harder to check for 
errors because it was already all labeled”. 

While all participants preferred auto labeling to manual 
labeling, one participant commented that if there were less 
than five diagrams, they would prefer manual labeling 
because they find “checking the mistakes that the auto 
labeling may have made it a bit harder”. However, this 
participant also commented that “if there are a lot to label, 
auto labeling would obviously help”.  

5. Discussion 

The results of the experiments showed the effectiveness 
of an automated method of labeling data where it 
performed almost twice as fast as manual labeling. In 
addition auto labeling was the easiest, most intuitive and 
preferred method by our participants. The main source of 
errors for manual labeling was from strokes that had not 
been labeled. Due to the size and nature of full diagrams, it 
is not uncommon to mis-label certain stroke components. 
Since our auto labeling method attempts to label every 
stroke, it is not prone to this type of error.  

A function which identifies unlabeled strokes for the 
manual labeler would alleviate this problem. If we exclude 
the errors resulting from unlabeled strokes, we expect the 
errors from auto labeling to be the same or higher than 
manual labeling. This is reflected by user complaints of the 
difficulty of checking for mistakes in data that is already 
labeled, and in the lower rating on “ease of error 
correcting” than manual labeling.  

A possible method for identifying mis-labeled strokes 
from the auto labeler would be to re-build the recognizer 
with the fully labeled, manually corrected dataset. Then use 
the new recognizer to identify the data. Any cases where 
the recognizer and label differ could be highlighted for 
manual inspection. This theoretically should highlight 
some of the mis-labeled strokes; a number of experiments 
would be required to test this hypothesis.  
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High error rates from the auto labeler are an indication 
that the gesture set is difficult to distinguish. If researchers 
can isolate problematic gesture classes early on in the 
recognizer development process then we believe they are 
more likely to devise solutions to such problems when 
designing their algorithms.  

The performance time is significantly lower for auto 
labeling, and we have estimated that this difference 
increases as the amount of data increases (Figure 8). These 
estimates do not factor in extra time taken due to fatigue or 
boredom when labeling or correcting large datasets. 
However, we expect these factors to influence the time 
taken to manually label a dataset more than auto labeling – 
where only the correction time might increase.  In smaller 
datasets however, manual labeling is still the preferred 
method of labeling because there is a near constant cost of 
the actual auto labeling processing time. This was reflected 
in user comments as mentioned previously: one participant 
commented they would prefer manual labeling if there 
were less than five diagrams. In general, auto labeling is 
the most preferred and more beneficial method of labeling 
when dealing with moderate to large sized datasets (i.e. 
several hundred strokes and greater). 

The results of our evaluation showed that participants did 
not enjoy auto labeling much more than manual labeling. 
One factor that may have affected this was that users are 
idle while waiting for the recognizer to generate and the 
auto labels to be applied. In our experiments this process 
took 70 seconds on average. This waiting time could be 
reduced by generating the recognizer and then applying 
labels in a separate thread. This would allow users to begin 
checking and correcting labels as soon each diagram has 
been labeled – rather than waiting for the whole process to 
end. 

Our current auto labeling algorithm is designed for 
recognition of single stroke gestures. Due to this limitation 
our evaluation was performed on data without text.  A 
potential way to extend our auto labeling scheme to include 
text is to incorporate a text shape divider into the auto 
labeling process. The process could incorporate either a 
hardcoded text shape divider algorithm or a domain-less 
trained divider, to first divide all text and shapes. Next, the 
normal auto training process is run on the full dataset with 
text included, and the results of the two different labeling 
schemes can be corroborated (i.e. agreement and 
disagreement from both auto labeling methods affect the 
outcome of the final label classification). Furthermore, 
instead of a single classification outcome, the recognizers 
can be tweaked to give a ranked classification and allow 
the user to have the final say in the labeling. This would 
also reduce the difficulty in checking for auto labeling 
errors as the system can identify strokes where there is low 
confidence in the classifications made. 

Another limitation of our auto labeling technique is that 
it only deals with single stroke primitives. Work is 
currently in progress that attempts to apply the same data 
mining techniques in single stroke recognizers for grouping 
strokes together, allowing multi-stroke shapes to be 
recognized. For example, currently a rectangle must be 

drawn in one stroke, whereas a multi stroke recognizer 
would allow a rectangle to be drawn with four strokes.  By 
the same principle, we can apply this technique for auto 
labeling and auto grouping of multi stroke shapes and 
glyphs. 

Despite these limitations our auto labeling technique has 
been successful at reducing the time and effort required for 
labeling sketch datasets.  

6. Conclusion 

We designed and implemented an auto labeling method 
for single stroke primitives. Improvements have also been 
made to manual labeling through better label and stroke 
selection techniques. We compared auto and manual 
labeling and found that auto labeling performs faster, 
requires less effort, and users find it easier, more intuitive 
and preferable. 
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