

Automated Labeling of Ink Stroke Data

Jacky (Shunjie) Zhen, Rachel Blagojevic, Beryl Plimmer

Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand

Abstract
Labeled ink stroke data is essential to the development and evaluation of sketch recognizers. Manually labeling
strokes is a tedious, time-consuming, and error prone task; and very few tools are available to facilitate this. We
propose a new and intuitive method of automatic labeling for single stroke primitives. This involves building a
recognizer from a partially labeled dataset. This recognizer is then used to identify and automatically label the
remaining data, therefore reducing the amount of manual labeling required by researchers. An evaluation
comparing manual labeling against our new auto labeling method shows that users are able to label significantly
faster and produce less errors using auto labeling. Furthermore, users found auto labeling easier and more
preferable.

Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document and Text Processing]: Document
Capture: Graphics recognition and interpretation, I.2.5 [Artificial Intelligence]: Programming Languages and
Software: Expert system tools and techniques.

1. Introduction

A central part of developing more accurate sketch
recognizers is the collection and analysis of quality digital
ink data. There is a growing desire to standardize and
simplify the process of collecting ink data, in order to
support the collaborative efforts and the corroboration of
results. For example, SOUSA [PWJH08, KJM*09] is an
online applet allowing researchers to collect and verify
sketches. Users can participate in this study via the website
and sketch the required diagrams. Although their web
interface provides ease of access to search, collect, and
download data; it does not provide any labeling facility.
Labeled data is required to provide ground truth
information for evaluation or testing purposes, and
developing recognizers using supervised learning
techniques.

A commonly identified problem is the difficulty of data
labeling, largely due to the tedium and time requirements
of manually labeling large sets of data. Previous work
[WSA07, BPGW08] has attempted to reduce the effort of
labeling by providing tools specifically tailored to manual
labeling. However, labeling continues to present a
challenge for sketch recognition researchers, as the amount
of data in sketch datasets scale to greater numbers,
increasing the labour requirements for manually labeling
the data. Relief may be found in the automation of dataset

labeling. Automation presents itself as a scalable solution
that counters both the tedium and effort demanded for the
labeling of ever increasing datasets.

We present, an innovative and intuitive way to automate
the assigning of labels to stroke data, based on previous
research into data mining for stroke recognizers [CBP12].
The technique involves the generation of an on-the-fly
recognizer, created by modeling a small manually labeled
subset of the dataset; the generated recognizer is used to
automatically label the majority of the dataset. We
implemented the technique by integrating the auto labeling
function into the labeling component of RATA [CBP12], a
complete software toolkit aimed at non-experts for
generating single stroke gesture recognizers. Initially, using
the RATA labeling component interface, the user manually
labels some of the strokes within a dataset and then invokes
the auto labeling function for the rest. The user then
manually corrects errors made by the automated function.
Figure 1 shows the RATA labeling interface.

The main contributions of this paper are: the
development of a new auto labeling method, and an
improved manual labeling experience. Both contributions
are designed to remediate the increasing demands of the
manual labeling process for sketch recognition research by
reducing the time and effort required while still providing
accurate labels.

EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
L. B. Kara and K. Singh (Editors)

c© The Eurographics Association 2012.

DOI: 10.2312/SBM/SBM12/067-075

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SBM/SBM12/067-075

Figure 1: The RATA labeling component interface
implemented with auto labeling function access from top

control tab.

2. Related Work

Several tools have been developed to assist in labeling
digital ink data. Wolin et al [WSA07] designed a tool for
more efficient labeling of ink data using a stylus. Their tool
is able to complete three main tasks; stroke fragmentation
(automatic and manual), stroke grouping (manual), and
symbol labeling (manual). Fragmentation derives ink
primitives (such as lines and arcs) by either splitting
strokes, or separating strokes that contain more than one
symbol. Stroke grouping works in the opposite direction by
joining components made of more than one stroke. Once
these tasks have been performed, manually labeling the
symbol in the sketch can be carried out. Their tool also
allows for multiple labels to be applied to a stroke. The
only automated process available in this application is for
fragmentation of strokes.

DataManager [BPGW08, BSP09] is a tool designed for
sketch data collection, labeling, and automatic dataset
generation. The labeling scheme allows for multiple labels
to be applied to a stroke, and group labeling (for
components containing more than one stroke). There is also
an inbuilt automatic labeler for classifying strokes into
either shapes or text using a divider algorithm [BPGW08].
Any corrections that need to be made can then be done
manually. This study showed that using DataManager
greatly improved the efficiency of labeling. However, the
automated labeler is limited to the broad classification of
ink into either text or shape categories– different classes of
shapes are not classified.

MacLean et al [MTL*09] developed a tool for collecting
and labeling handwritten mathematical expressions. Their
goal was to generate a corpus of data by limiting the bias
resulting from researchers collecting only the type of data
that their recognizers are more familiar with. To ensure
their datasets are as varied as possible they use random
walks of a grammar-based mathematical expressions
recognizer to generate a large range of expressions for
participants to transcribe. Participants write these
expressions and strokes are then labeled automatically,
using a recognition algorithm for mathematical

expressions. Unfortunately, this tool is limited to the
collection and labeling of mathematical expressions.

Several tools have been developed focusing more on
sketch data collection. These include web-based games
[Joh09, JD09], and an online applet, SOUSA [PWJH08,
KJM*09]. These tools do not provide a labeling facility for
individual parts of a sketch, but have user defined
descriptions of the sketch as a whole.

Frameworks have also been developed for building and
evaluating gesture recognizers, which include data
collection and labeling functions [BLMM07, SKN07,
SNK07, AFGP08, MMBK09]. These systems are typically
used to collect isolated gestures or components rather than
full diagrams.

One reason why researchers have preferred to collect
isolated components is that labeling is easier - the label for
a shape can simply be inferred by the diagram name, in
contrast to full diagrams where each stroke must be labeled
individually. Unfortunately, isolated components lack
important spatial and temporal contextual information that
may exist between gestures. Training with such data has
been found to have a direct effect on recognition accuracy
if the recognizer is to be applied on more complex sketches
[FGP*09, SPB09]. We seek to provide better support for
labeling full diagrams through the use of an automated
system.

3. Our Approach

Our auto labeling technique is implemented as part of
RATA (Recognition Algorithm Tools for ink Applications)
[CBP12], a recognizer generation toolkit. It contains
components to collect digital ink, manually label the ink
data, select and generate stroke feature sets and a data
mining tool wrapper that trains and generates recognizers.
The manual labeling component and data mining features
provide a suitable basis to implement the auto labeling, as
our technique requires some manual labeling at the
beginning and also training to produce a recognizer. The
integration of auto labeling as a feature in the manual
labeling interface also allows us to easily compare the two
methods.

The auto labeling process begins with a collection of
unlabeled digital ink sketches that can be drawn by various
contributors. Our labeling technique can be used on
isolated components (e.g. individual gestures) or full
diagrams (e.g. entity relationship diagrams). Each
component must be drawn as a single stroke, for example a
rectangle must be drawn in one stroke rather than four. A
few strokes from each class are manually labeled first.
These strokes are used to train a recognizer using the built
in RATA model generation component.

The recognizer is built using the default feature set and
RATA.Gesture algorithm [CBP12]. Rata.Gesture is an
ensemble of four algorithms: Bayesian Network [Ben07],
Logit Boost [FHT00], Logistic Model Tree [LHF05;
SFH05], and Random Forest [Bre01]. RATA.Gesture was
developed through a rigorous analysis of nine data mining
algorithms, which involved parameter tuning, feature

c© The Eurographics Association 2012.

68

selection and the testing of ensembles. An evaluation
shows that it outperforms other recognizers [CBP12]. The
same algorithm can be used via the RATA model
generation component to generate a robust recognizer with
a fully labelled dataset.

The generated recognizer is then used to classify the
remainder of the dataset. The training of the interim
recognizer and labeling of strokes by the recognizer is
automated; the user is only required to manually label a
small subset of the data and then click a button to do the
rest. Given that recognizers very seldom produce 100%
accurate results, once the auto labeling is finished, the user
checks for any labeling errors and corrects them manually.
The auto labeling process is summarized in Figure 2.

Figure 2: The auto labeling process.

3.1 Auto Labeling Accuracy

A central question to this automated process is how
much of the original dataset must be manually labeled
before the accuracy of the auto labeler is high enough for it
to be useful. We investigated the accuracy of our auto
labeling technique over different numbers of manually
labeled examples using three different datasets (Figure 3).
These datasets represent realistic sketch data that is
difficult to manually label. The datasets have an average of
634 strokes, 5 classes and 20 contributing participants each,
and two were also fully drawn diagrams with intersecting
strokes and text.

Figure 3: Datasets used in auto label accuracy tests. A:
Shapes, B: Directed Graph, C: Class Diagram

The datasets were first fully manually labeled and
checked to be correct in order to provide ground truth data
for measuring accuracy. Next, unlabeled copies of each
dataset were used to run automated auto labeling tests. The
independent variable was the number of manually labeled

c© The Eurographics Association 2012.

69

examples for each class and the dependent variable was the
overall accuracy of the dataset after auto labeling. We set
the independent variable to begin at 1 (i.e. one example of
each class is manually labeled) and incremented it by 1, up
to 22 (i.e. 22 examples of each class are manually labeled).
At each increment, the accuracy of the auto labeler was
recorded (Figure 4).

Figure 4: Accuracy of auto labeler with increasing
number of examples manually labeled per class

The accuracy plots of the Directed Graph, Class
Diagram, and Shapes datasets roughly follow logarithmic
trend lines (coefficient of determination R² = 0.95, 0.91.
and 0.87 respectively) suggesting diminishing returns of
auto labeling accuracy with increasing numbers of
manually labeled examples. From our observation of these
curves we estimate that manually labeling 8 to 10 examples
per class to be optimum; after that the slope of the curve
levels off, reducing the accuracy gain. This is consistent
with experiments on other trainable recognizers [Rub91,
FPJ02].

 With our experimental datasets this is 10-12% of the
dataset but the number of labeled examples required is
independent of the dataset size. For datasets with a similar
number of examples per class (i.e. our shapes dataset), this
will provide near 95% accuracy in auto labeling. This
means that having manually labeled 10% of the dataset,
90% of the data will be automatically labeled with an
accuracy of approximately 95%, therefore requiring only
minor corrections to be made.

However, there are factors that affect the accuracy of the
auto labeling and the number of manually labeled examples
required. These factors include: the number of classes, the
size of the dataset, the number of contributors to the dataset
(who may have different drawing styles), the nature of the
data itself, and how distinct each class is.

We investigated whether picking examples to manually
label from a variety of different contributors would
increase the auto labeling accuracy. Intuitively, we
expected that providing labeled examples from as many

different contributors as possible would produce a more
style tolerant recognizer (i.e. if manual labeling ten
instances of each class, we label one instance of each class
from ten different contributors). We tested this hypothesis
using the same method as above, but taking only one
labeled example of each class per participant. We found
that the accuracy only improved slightly and curved off
into similar diminishing returns. This style of manual
labeling incurs the cost of having to change class and/or
participants for each stroke. This is much more time
consuming than systematically labeling all instances of
each class in turn on a single diagram before moving onto
the next diagram.

3.2 Improving Manual Labeling

We also made some improvements to the existing
manual labeling component in RATA; firstly, to reduce the
time and effort required to manually label examples for
auto labeling; secondly, to improve basic manual labeling
as much as possible for a fairer comparison against auto
labeling.

We observed that users tend to label all strokes of a
single type (e.g. all circles and then all squares) so we
modified the label selection to a mode selection: once a
label is selected, any strokes selected while in this mode
are given that label, until the next label is selected and the
mode is changed (Figure 5).

Figure 5: Labeling component with labels area
highlighted, currently set to ‘Rectangle’ mode.

Stroke selection was originally accomplished by using
the default Microsoft.Ink selection tools (i.e. point and
click or a selection lasso). The basic point and click method
is very difficult because strokes are too thin. Lasso
selection causes difficulty when strokes contained other
strokes, and thus unwanted strokes are also selected when
lassoing the perimeter (Figure 6 A). We implemented an
additional way to select strokes that allows users to draw
selection strokes - any strokes that the selection stroke
intersects with are selected (Figure 6 B).

Our informal tests showed that these changes made
considerable improvements to the interaction required by
manual labeling. The modal label selection style reduced
the number of clicks required by users and shortened the

c© The Eurographics Association 2012.

70

distance traveled by the mouse cursor as each label from
the right hand side panel was only selected once for each
diagram. The changes to stroke selection speeded up the
labeling process and allowed for more accurate stroke
selection.

Figure 6: A - The old lasso selection. B - The new
intersecting stroke selection.

4. Comparative Evaluation

 In order to gauge the efficacy of our auto labeling
technique, we compared the function to manual labeling in
RATA [CBP12]. To do this, we ran a user experiment
involving the two labeling methods to compare:

 Accuracy of labeling and error correction

 Time taken to label

 User preference

We recruited postgraduate computer science and
software engineering students for the study because of their
likelihood to understand sketch recognition and labeling
tasks. Two subjects participated in pilot studies and nine
subjects were recruited for the final experiment. Each
experiment was performed on a desktop PC with a Core 2
Duo e8400, 3 GHz processor, 4GB RAM running 64bit
Windows 7 and Morae screen capture software.

4.1 Tasks

The experiment involved the manual and auto labeling of
data in the RATA labeling component. In order to compare
the two labeling methods, we prepared two typical datasets
for labeling: a flow chart diagram and a class diagram set
(Figure 7). The datasets were completely unlabeled. Each
dataset consists of 20 diagrams each drawn by a different
person. In total they have a similar number of strokes and
classes (Flow Chart: 599 strokes and Class diagram: 596
strokes. Both have five label classes; e.g. Rectangle,
Triangle, Diamond, Line and Arrow for Class diagrams).

Each participant performed two labeling tasks: manually
labeling one whole dataset, and auto labeling the other. In
order to reduce the learning effect we rotated the order of

datasets and labeling methods for each participant in the
experiment, such that there were four unique conditions.
Two participants did each condition, except for the last
condition, which was completed by three participants. For
manual labeling, users were asked to manually label every
stroke of every diagram. For auto labeling, users were
asked to manually label the first three diagrams
(approximately 8 examples per class), activate the auto
labeling function to auto label the other diagrams, and then
review the diagrams to correct any labeling errors.

After each task was complete, participants were asked to
fill in a questionnaire about the labeling method used. Each
question was presented on a 5-point Likert scale. We asked
participants to rate the labeling methods based on factors
such as ease of use, intuitiveness, and utility. After a
participant completed both labeling tasks, we also asked for
general feedback on the labeling techniques, including
which labeling method they found the easiest and which
was most preferred.

During the pilot studies it was evident how inherently
boring labeling is, with participants taking little notice of
whether their labels were correct. In the study, to motivate
participants, we offered a $20 prize for the ‘best’ labeling,
best being fastest with the least errors (each error added 20
seconds to their time).

Figure 7: Unlabeled datasets used in the comparative
evaluation. A: Class Diagram, B: Flow Chart.

c© The Eurographics Association 2012.

71

4.2 Experimental Measures

Both performance and accuracy are important factors
when labeling. The two central goals for improving
labeling methods are to reduce the time taken to label and
increase the accuracy of labeling. To evaluate these factors
for our labeling schemes we captured the following data.

First, we recorded the time taken to label the datasets
using each labeling condition. For manual labeling we
measured the start time from when the user selects the first
label to begin labeling the first diagram, and recorded the
end time from when the last unlabeled stroke of the last
diagram was labeled. For auto labeling, we recorded the
start time in the same manner as manual labeling, the start
time for each subsequent phase (recognizer generation,
auto labeling and corrections) and took the end time from
when the user affirms that they had finished correcting all
the auto labeling errors.

The second measure we took was the accuracy of each
labeling method. We measured this by counting the number
of errors made by each labeling technique. In manual
labeling, the two types of errors made are incorrectly
assigned labels, and strokes that have not been labeled. In
auto labeling, all strokes have labels as the auto labeler
applies labels to everything. There are, however, errors
made by the auto labeler that have not been checked and
corrected by the user. We hypothesized that more errors
would result from uncorrected misclassifications made by
the auto labeler than from manual labeling errors, as
checking errors made by the auto labeler maybe less
intuitive.

4.3 Results

The first two pilot experiments revealed errors in the
experimental and questionnaire set up. These were
corrected and used for the final nine participants. All
labeling errors and time data was recorded via Morae
screen capture and analyzed after the experiment. Each
experiment took 45 minutes on average to complete.

4.3.1 Preferred labeling technique

All nine participants rated auto labeling as the easier
labeling method over manual labeling. Seven out of nine
participants preferred auto labeling over manual labeling,
while the other two recorded no preference.

Participants strongly agreed that they had a high
understanding of both tasks (Mean=4.89, SD=0.33 for both
tasks). They also enjoyed auto labeling more (M = 3.00 for
manual labeling and M = 3.44 for auto labeling).
Participants found auto labeling to be more helpful for
completing the task, easier and more intuitive than manual
labeling. (M = 4.44 for auto labeling for both questions
versus M = 3.00 and M = 3.44 for manual labeling).
Confirming our intuition, users found it easier to correct
manual labeling errors than auto labeling errors (Manual:
M = 4.33, SD = 0.5, Auto: M =3.56, SD = 0.7). Table 1
summarizes these statistics.

Auto Manual

Mean SD Mean SD

Task Understanding 4.89 0.33 4.89 0.33

Task Enjoyment 3.44 1.13 3.00 1.22

Helped Complete Task 4.44 1.01 3.00 1.58

Easy and Intuitive 4.44 0.53 3.44 1.24

Easy Error Correction 3.56 0.73 4.33 0.50

Table 1: Summary of user preference data.

4.3.2 Performance and Accuracy

On every experimental trial, participants labeled faster with
auto labeling than manual labeling. Participants on average
took 539.6 seconds to auto label and 1003.7 seconds to
manually label. With the average dataset at 597.5 strokes,
that is 1.1 strokes per second for auto labeling and 0.60
strokes per second for manual labeling. A two-tailed
paired-sample t-test of the mean time taken for each
labeling strategy shows that auto labeling is significantly
faster than manual labeling (t= 5.206, p = 0.001, df = 8).
Table 2 summarizes these statistics.

 Error Rates Time (seconds)

Participants Auto Manual Auto Manual

1 1 6 632 868

2 1 2 464 918

3 11 0 425 911

4 5 9 511 754

5 3 3 536 1382

6 4 6 537 1054

7 3 7 672 995

8 1 4 559 713

9 3 15 520 1438

Mean 3.56 5.78 539.56 1003.7

SD 3.13 4.41 76.25 253.86

Table 2: Summary of the evaluation performance data.

The performance time for auto labeling was further
broken down into its procedural parts (Table 3) and
analyzed. We consider the manual labeling and recognizer
generation time a constant factor in auto labeling and the
recognizer labeling and user error correction time as a
variable cost depending on the number of strokes in the
dataset. We can use this information to estimate the
performance times of manual labeling and auto labeling in
different sized datasets. For manual labeling, given that our
participants could label 0.60 strokes per second on average,
we estimate that it takes 1.67 seconds (1 / 0.60) per stroke
to label. The total time to manually label and to auto label a

c© The Eurographics Association 2012.

72

dataset is calculated as follows (where t is the time and n is
the number of strokes in the dataset):

Total tmanual labeling= 1.67n

Total tauto labeling = tmanual labeling + trecognizer generation +

(trecognizer labeling + terror correction)n

 = 188 + 11 + (0.10 + 0.44)n

 = 199 + 0.54n

With these two time estimates, we plot the estimated
time costs for different sized datasets for both manual and
auto labeling (Figure 8). The graph shows that the time to
manually label strokes increases at a faster rate than the
time to auto label strokes as the size of the dataset
increases.

Mean (sec) SD

Manual Labeling Time 188 33.44

Recognizer Generation
Time 11 2.5

Recognizer Labeling Time

59
 (0 .10 sec
per stroke) 1.5

User Error Correction
Time

262.56
(0.44 sec per

stroke) 76.20

Table 3: Auto labeling performance time (seconds)
broken up into its procedural components.

Figure 8: Graph of estimated performance times over
increasing dataset sizes.

In terms of the number of errors found, the mean number
of errors was 3.56 for auto labeling (after user corrections)
and 5.78 for manual labeling. Seven participants had more
errors in manual labeling than in auto labeling, one had the

same amount of errors and one had more errors in auto
labeling. The standard deviation was high however (SD =
3.13 for auto label and SD = 4.41 for manual label), and a
2-tailed Wilcoxon Signed-Rank test showed no statistically
significant difference between the two mean error rates (Z
= -1.542, p = 0.123). Table 2 summarizes these statistics.

4.3.3 General Feedback

We asked participants to contribute general feedback and
suggestions on the labeling techniques. Most users liked
the auto labeling technique because of the time and effort
saved. One participant commented that auto labeling “saves
time and energy from having to repetitively label each
stroke”, another mentioned “it was faster and only required
a bit of my time”. Other participants commented on the
good accuracy of the auto labeler. An area identified as
needing improvement is the speed of the auto labeling
process in terms of the time taken for the algorithm to train
and auto label the remaining diagrams. Some participants
also commented about the error correction: “It’s a bit
harder to spot the mistakes”; “it was harder to check for
errors because it was already all labeled”.

While all participants preferred auto labeling to manual
labeling, one participant commented that if there were less
than five diagrams, they would prefer manual labeling
because they find “checking the mistakes that the auto
labeling may have made it a bit harder”. However, this
participant also commented that “if there are a lot to label,
auto labeling would obviously help”.

5. Discussion

The results of the experiments showed the effectiveness
of an automated method of labeling data where it
performed almost twice as fast as manual labeling. In
addition auto labeling was the easiest, most intuitive and
preferred method by our participants. The main source of
errors for manual labeling was from strokes that had not
been labeled. Due to the size and nature of full diagrams, it
is not uncommon to mis-label certain stroke components.
Since our auto labeling method attempts to label every
stroke, it is not prone to this type of error.

A function which identifies unlabeled strokes for the
manual labeler would alleviate this problem. If we exclude
the errors resulting from unlabeled strokes, we expect the
errors from auto labeling to be the same or higher than
manual labeling. This is reflected by user complaints of the
difficulty of checking for mistakes in data that is already
labeled, and in the lower rating on “ease of error
correcting” than manual labeling.

A possible method for identifying mis-labeled strokes
from the auto labeler would be to re-build the recognizer
with the fully labeled, manually corrected dataset. Then use
the new recognizer to identify the data. Any cases where
the recognizer and label differ could be highlighted for
manual inspection. This theoretically should highlight
some of the mis-labeled strokes; a number of experiments
would be required to test this hypothesis.

c© The Eurographics Association 2012.

73

.

High error rates from the auto labeler are an indication
that the gesture set is difficult to distinguish. If researchers
can isolate problematic gesture classes early on in the
recognizer development process then we believe they are
more likely to devise solutions to such problems when
designing their algorithms.

The performance time is significantly lower for auto
labeling, and we have estimated that this difference
increases as the amount of data increases (Figure 8). These
estimates do not factor in extra time taken due to fatigue or
boredom when labeling or correcting large datasets.
However, we expect these factors to influence the time
taken to manually label a dataset more than auto labeling –
where only the correction time might increase. In smaller
datasets however, manual labeling is still the preferred
method of labeling because there is a near constant cost of
the actual auto labeling processing time. This was reflected
in user comments as mentioned previously: one participant
commented they would prefer manual labeling if there
were less than five diagrams. In general, auto labeling is
the most preferred and more beneficial method of labeling
when dealing with moderate to large sized datasets (i.e.
several hundred strokes and greater).

The results of our evaluation showed that participants did
not enjoy auto labeling much more than manual labeling.
One factor that may have affected this was that users are
idle while waiting for the recognizer to generate and the
auto labels to be applied. In our experiments this process
took 70 seconds on average. This waiting time could be
reduced by generating the recognizer and then applying
labels in a separate thread. This would allow users to begin
checking and correcting labels as soon each diagram has
been labeled – rather than waiting for the whole process to
end.

Our current auto labeling algorithm is designed for
recognition of single stroke gestures. Due to this limitation
our evaluation was performed on data without text. A
potential way to extend our auto labeling scheme to include
text is to incorporate a text shape divider into the auto
labeling process. The process could incorporate either a
hardcoded text shape divider algorithm or a domain-less
trained divider, to first divide all text and shapes. Next, the
normal auto training process is run on the full dataset with
text included, and the results of the two different labeling
schemes can be corroborated (i.e. agreement and
disagreement from both auto labeling methods affect the
outcome of the final label classification). Furthermore,
instead of a single classification outcome, the recognizers
can be tweaked to give a ranked classification and allow
the user to have the final say in the labeling. This would
also reduce the difficulty in checking for auto labeling
errors as the system can identify strokes where there is low
confidence in the classifications made.

Another limitation of our auto labeling technique is that
it only deals with single stroke primitives. Work is
currently in progress that attempts to apply the same data
mining techniques in single stroke recognizers for grouping
strokes together, allowing multi-stroke shapes to be
recognized. For example, currently a rectangle must be

drawn in one stroke, whereas a multi stroke recognizer
would allow a rectangle to be drawn with four strokes. By
the same principle, we can apply this technique for auto
labeling and auto grouping of multi stroke shapes and
glyphs.

Despite these limitations our auto labeling technique has
been successful at reducing the time and effort required for
labeling sketch datasets.

6. Conclusion

We designed and implemented an auto labeling method
for single stroke primitives. Improvements have also been
made to manual labeling through better label and stroke
selection techniques. We compared auto and manual
labeling and found that auto labeling performs faster,
requires less effort, and users find it easier, more intuitive
and preferable.

7. Acknowledgements

This research is supported by a Royal Society of New
Zealand Marsden Grant and Rutherford Foundation Post-
Doctoral Fellowship.

References

[AFGP08] AVOLA D., FERRI F., GRIFONI P., PAOLOZZI
S.: A Framework for Designing and Recognizing
Sketch-Based Libraries for Pervasive Systems.
UNISCON (2008), Springer, 405-416.

[Ben07] BEN-GAL I.: Bayesian Networks. Encyclopedia of
Statistics in Quality and Reliability, F. Ruggeri, F.
Faltin and R. Kenett, John Wiley & Sons, 2007.

[BLMM07] BICKERSTAFFE A., LANE A., MEYER B.,
MARRIOTT K.: Developing Domain-Specific Gesture
Recognizers for Smart Diagram Environments. GREC-
IAPR Workshop on Graphics Recognition (2007),
Curitiba, Brazil, 145-156.

[BPGW08] BLAGOJEVIC R., PLIMMER B., GRUNDY J.
WANG Y.: A Data Collection Tool for Sketched
Diagrams. Sketch Based Interfaces and Modeling
(2008), Annecy, France, Eurographics, 73-80.

[Bre01] BREIMAN L.: Random Forests. Machine Learning
45(1), (2001), 5-32.

[BSP09] BLAGOJEVIC R., SCHMIEDER P., PLIMMER B.:
Towards a Toolkit for the Development and Evaluation
of Sketch Recognition Techniques. Intelligent User
Interfaces Sketch Recognition Workshop (2009),
Florida, USA.

[CBP12] CHANG S. H.-H., BLAGOJEVIC R., PLIMMER B.:
RATA.Gesture: A Gesture Recognizer Developed
using Data Mining. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing (AI
EDAM), 26(3), (2012), accepted, in press.

[FGP*09] FIELD M., GORDON S., PETERSON E.,
ROBINSON R., STAHOVICH T., ALVARADO C.: The
effect of task on classification accuracy: Using gesture

c© The Eurographics Association 2012.

74

recognition techniques in free-sketch recognition.
CAD/GRAPHICS, 34(5), (2009), 499-512.

[FHT00] FRIEDMAN J., HASTIE T., TIBSHIRANI R.:
Additive Logistic Regression: a Statistical View of
Boosting. The Annals of Statistics, 28(2), (2000), 337-
407.

[FPJ02] FONSECA M. J., PIMENTEL C. E., JORGE J. A.:
CALI: An Online Scribble Recogniser for Calligraphic
Interfaces. AAAI Spring Symposium on Sketch
Understanding, (2002), IEEE, 51-58.

[Joh09] JOHNSON G.: Picturephone: A game for sketch
data capture. Intelligent User Interfaces Workshop on
Sketch Recognition, (2009), Sanibel Island, Florida.

[JD09] JOHNSON G., DO E. Y.-L.: Games for sketch data
collection. Proceedings of the 6th Eurographics
Symposium on Sketch-Based Interfaces and Modeling
(2009), New Orleans, Louisiana, ACM, 117-123.

[KJM*09] KASTER B., JACOBSON E., MOREIRA W.,
PAULSON B., HAMMOND T.: SOUSA v2.0:
Automatically Generating Secure and Searchable Data
Collection Studies. International Workshop on Visual
Languages and Computing, (2009), Redwood City,
CA, USA, 365-368.

[LHF05] LANDWEHR N., HALL M., FRANK E.: Logistic
Model Trees. Machine Learning, 59(1-2), (2005), 161-
205.

[MTL*09] MACLEAN S., TAUSKY D., LABAHN G.,
LANK E., MARZOUK M.: Tools for the efficient
generation of hand-drawn corpora based on context-
free grammars. Proceedings of the 6th Eurographics
Symposium on Sketch-Based Interfaces and Modeling
(2009), New Orleans, Louisiana, ACM, 125-132.

[MMBK09] MEYER B., MARRIOTT K., BICKERSTAFFE
A., KNIPPING L.: Intelligent diagramming in the
electronic online classroom. Human System Interaction
(2009), Catania, 174-180.

[PWJH08] PAULSON B., WOLIN A., JOHNSTON J.,
HAMMOND T.: SOUSA: Sketch-based Online User
Study Applet. Sketch Based Interfaces and Modeling,
(2008), Annecy, France, Eurographics, 81-88.

[Rub91] RUBINE, D. H.: Specifying gestures by example.
Proceedings of SIGGRAPH (1991), ACM, 329-337.

[SPB09] SCHMIEDER P., PLIMMER B., BLAGOJEVIC R.:
Automatic Evaluation of Sketch Recognizers. Sketch
Based Interfaces and Modelling, (2009), New Orleans,
USA, 85-92.

[SKN07] SIGNER B., KURMANN U., NORRIE M. C.:
iGesture: A General Gesture Recognition Framework.
9th International Conference on Document Analysis
and Recognition (2007), Curitiba, Brazil, 954-958.

[SNK07] SIGNER B., NORRIE M. C., KURMANN U.:
iGesture: A Java Framework for the Development and

Deployment of Stroke-Based Online Gesture
Recognition Algorithms. Zurich, Switzerland, Institute
for Information Systems, ETH Zurich (2007).

[WSA07] WOLIN A., SMITH D., ALVARADO C.: A Pen-
based Tool for Efficient Labelling of 2D Sketches. 4th
Eurographics Workshop on Sketch-Based Interfaces
and Modeling, (2007), Riverside, CA, 67-74.

c© The Eurographics Association 2012.

75

