
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
L. B. Kara and K. Singh (Editors)

Newtons Pen II: An Intelligent, Sketch-Based Tutoring
System and its Sketch Processing Techniques

C. Lee2 and J. Jordan2 and T. F. Stahovich1 and J. Herold2

1Department of Mechanical Engineering, University of California, Riverside, CA 92521, United States
2Department of Computer Science, University of California, Riverside, CA 92521, United States

Abstract

We present a pen-based intelligent tutoring system (ITS) for undergraduate Statics which scaffolds students in
the construction of free body diagrams and equilibrium equations. Most existing ITSs rely on traditional WIMP
(Windows, Icons, Menus, Pointers) interfaces, which often require the student to select the correct answer from
among a set of predefined choices. Our system, by contrast, guides students in constructing solutions from scratch,
mirroring the way they ordinarily solve problems, which recent research suggests is important for effective in-
struction. Our system employs several new techniques for sketch understanding, including a simple-to-implement
stroke merging technique, a stroke clustering technique, and a technique that uses a Hidden Markov Model to
correct interpretation errors in equations. Our tutoring system was deployed in an undergraduate Statics course
at our university. Attitudinal surveys indicate that the tutoring system is preferable to traditional WIMP-based
systems and is an effective educational tool.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [H.5.2]: Information interfaces and presentation
(e.g., HCI)—User InterfacesPrototyping

1. Introduction

We present a pen-based tutoring system that scaffolds stu-
dents in solving Statics problems similar to how they or-
dinarily solve them with pencil and paper. The develop-
ment of the system is motivated by recent research that has
provided compelling evidence for the potential of natural
user interfaces for instructional tools. The research by Ovi-
att [OAC06] showed that “as the interfaces departed more
from familiar work practice..., students would experience
greater cognitive load such that performance would deterio-
rate in speed, attentional focus, meta-cognitive control, cor-
rectness of problem solutions, and memory.”

Our Statics tutoring system, called Newton’s Pen II
(NP2), provides a natural user interface for students; it
accepts digital input from a stylus and avoids common
WIMP (Windows, Icons, Menus, Pointers) interactions that
would be cumbersome to perform with a pen, such as menu
scrolling and entering typed text.

NP2 guides students in constructing and labeling free

body diagrams (FBD) and deriving the corresponding equi-
librium equations. NP2 employs numerous stroke recogni-
tion and parsing techniques to understand students’ hand
drawn FBDs and equations. In the FBD workspace of the
interface, NP2 identifies traced graphical objects, associates
hand drawn labels with relevant components, verifies that all
required components are included in the FBD boundary, and
verifies that the student has correctly identified all necessary
forces and moments. In the equilibrium equation workspace,
NP2 recognizes and interprets multi-stroke mathematical
equations. Here, we consider the design of the interpretation
algorithms. For a discussion of the instructional design and
educational effectiveness see [LS11].

To evaluate the educational effectiveness of NP2, a user
study was conducted in an undergraduate Statics course at
our university. A survey of student opinions regarding the
usefulness and usability of the system was conducted.

The next section places this work in the context of related
work. This is followed by an overview of the NP2 system,
and then detailed description of the sketch understanding

c© The Eurographics Association 2012.

DOI: 10.2312/SBM/SBM12/057-065

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SBM/SBM12/057-065

C. Lee & J. Jordan & T. Stahovich & J. Herold / Newtons Pen II

techniques employed in the FBD and equilibrium equation
sections. Lastly, the user study used to evaluate NP2 is de-
scribed and the results of the attitudinal survey taken at the
end of the study are reported.

2. Related Work

Intelligent tutoring systems (ITS) have been developed for
a wide variety of domains [RHC∗03, SH04, VLS∗05]. Al-
most all existing ITS employ WIMP interfaces. Our system
utilizes a pedagogically-sound, pen-based interface. While
conventional systems work with unambiguous input pro-
vided with a keyboard and mouse, our system is designed
to work with ambiguous, hand-drawn input.

One of the more widely used pen-based instructional sys-
tems is the Classroom Presenter [AMS05]. This system as-
sists in students’ and instructor’s communication during lec-
tures by using a networked set of tablet computers. However,
this system does not interpret what is written and provides no
tutorial assistance.

Newton’s Pen [LdSP∗07] is a Statics tutoring system
implemented on LeapFrog Inc.’s FLYT M pentop computer.
Newton’s Pen is unable to provide instruction for complex
frame and machine problems that involve multiple rigid bod-
ies. Enabling NP2 to handle such problems required the de-
velopment of new interpretation techniques and new user in-
terface techniques.

The Mechanix system [KFH11] is another pen-based tu-
toring system for teaching statics. This system is limited to
the analysis of trusses, and cannot handle the more compli-
cated frame and machine problems that our system supports.
Also, while our system can interpret and critique handwrit-
ten equilibrium equations, Mechanix cannot.

More recent examples of sketch-based tutoring systems
include PhysicsBook [CL12] and LogicPad [KJ12], which
can be used to tutor students in solving physics problems
and constructing boolean algebra visualizations respectively.
Newton’s Pen II is distinguished from these systems in that
it interprets users’ hand drawn free body diagrams and equa-
tions and also provides scaffolding for students based on
those interpretations.

Kirchhoff’s Pen is a pen-based tutoring system for teach-
ing Kirchhoff’s Law [dSBL∗07]. While Kirchhoff’s Pen is
also developed for the tablet PC, there are several distinct
differences between it and NP2. For example, the two do-
mains involve very different recognition tasks, and the clus-
tering and error correction methods used are different.

Recognition in hand-drawn sketches is difficult because
of the ambiguity inherent in human hand writing. Sev-
eral recognition techniques have been developed, includ-
ing: a graph-based recognizer [LKS06], an image-based
recognizer [KS04], a feature-based recognizer [Rub91],
a drawing-order-dependent recognizer [SD05], and many

more. NP2 employs a combination of the inverse-curvature
recognizer [LdSP∗08] and the Dollar recognizer [WWL07].
However, the latter is extended to facilitate better recognition
of arrows.

Stroke clustering has been a long researched area in sketch
understanding. Many prior recognition systems choose to
avoid this task by restricting the user’s input, such as recog-
nizing single stroke objects [Rub91,LM01], completing one
object before moving on to the next [GKSS05], and asking
users to explicitly group the strokes together by either press-
ing a button or waiting for a timeout [HN05, FPJ02]. While
our system utilizes some of these approaches, it also includes
other innovative clustering methods, such as a feature-based
method for clustering equations which is based on the work
of Peterson [PSDA10].

3. System Overview

Figure 1 shows the NP2 user interface. The top portion of
the program window contains the problem description and
the FBD workspace where the student constructs and labels
FBDs. The bottom portion contains the equation workspace
where the student constructs the equilibrium equations for
each FBD.

To construct a FBD, the student must identify the bound-
ary of the system of interest. This is performed by tracing a
boundary directly over the problem picture with the stylus as
illustrated in Figure 2. After the student traces a boundary, he
clicks the “Recognize Boundary” button to trigger interpre-
tation. NP2 then identifies which parts of the problem have
been included in the system boundary. Once the student has
defined a suitable boundary, he can use the stylus to drag a
beautified version of it to the FBD workspace.

Figure 2: An example of a FBD boundary trace in progress.

To complete the FBD, the student must draw the forces
and moments acting on the boundary, using straight and
curved arrows, respectively. During our user study, arrows
were drawn with a single stroke. However, we have also im-
plemented a recognizer to support multi-stroke arrows. If a
pen stroke is recognized as a force or a moment, it is re-
placed by a machine-drawn arrow. The student must label
each force and moment arrow; NP2 associates each arrow
with the nearest label. To show the association, the arrow
and its label are rendered in the same unique color.

c© The Eurographics Association 2012.

58

C. Lee & J. Jordan & T. Stahovich & J. Herold / Newtons Pen II

Figure 1: The NP2 user interface. The top of the application window contains the problem description and FBD workspace.
The bottom contains the equation workspace.

To create additional FBDs for multi-body problems, the
student simply repeats these steps. When all of the FBDs
are completed, the student clicks the “Critique FBDs” but-
ton to get tutorial feedback. If all the FBDs are correct, the
student is instructed to write the equilibrium equations. Oth-
erwise, appropriate tutorial feedback is given to the student.
Section 4 describes the methods NP2 uses to interpret FBD
diagrams. See [LS11] for a description of the tutorial feed-
back and instructional design.

To construct an equilibrium equation for a particular
FBD, the student first selects the name of the body from
a drop-down list. The student then specifies the equation
type, which is either a moment equilibrium equation or a
force equilibrium equation in either the X- or Y-direction.
For example, to indicate an equilibrium equation in the X-
direction, the student writes Σ Fx = 0 in the equation type
field (Figure 3.b). Next, the student writes the equation it-
self (Figure 3.c) and clicks the “Interpret” button to trig-
ger recognition. NP2 displays the interpretation in the equa-
tion display area (Figure 3.d) and uses color coding to show
how the pen strokes are grouped into characters. If there are
recognition errors, the student may erase and rewrite that
portion of the equation or select the correct interpretation
for a specific character from a list of alternatives. Once the
interpretation is correct, the student clicks the “Critique”
button to receive tutorial feedback. Section 5 describes the
techniques used for interpreting and critiquing equations.
Again, [LS11] contains a thorough description of the tuto-
rial feedback and instructional design.

4. Interpreting Free Body Diagrams

This section describes the techniques NP2 uses to inter-
pret a FBD, including techniques for interpreting the system

(a)

(c)

(b)

(d)

Figure 4: Stroke merging. (a) raw data points. (b) Re-
sampled data points. (c) Aligned points on one stroke with
those on the other. (d) Merged stroke constructed by merg-
ing matched points.

boundary, techniques for recognizing arrows, and techniques
for interpreting force/moment labels.

4.1. Stroke Merging

The notion of a system boundary is a critical part of the
NP2’s instructional design. Novice students often have dif-
ficulty defining a system, and may attempt to draw a free
body diagram by simply redrawing the original problem fig-
ure. NP2 is designed to overcome such misconceptions by
guiding the student to explicitly identify the boundary of
the system. Having such a boundary helps the student dis-
tinguish between external forces which must be represented
on the free body diagram, and internal forces which should
not appear there.

To define a boundary, the student directly traces a closed
contour around components or portions of components de-
picted in the problem picture. Students may construct the
contour with multiple pen strokes. Thus, to interpret the

c© The Eurographics Association 2012.

59

C. Lee & J. Jordan & T. Stahovich & J. Herold / Newtons Pen II

Figure 3: The equation workspace: (a) action buttons, (b) equation type area, (c) equation area, (d) equation interpretation
area. The ink in the equation is color coded to display the grouping of the strokes into characters.

Figure 5: Stroke merging criteria. (a) Tangent angle must
differ by no more than 10◦. (b) Euclidean distance must be
less than 35 pixels. (c) Perpendicular distance must be less
than 20 pixels.

boundary, it is necessary to combine the pen strokes into
a closed contour. While various contour identification tech-
niques exist [MLYS05, BGLSS03], none are suitable for
merging pen strokes.

Our pen stroke merging technique, illustrated in Figure 4,
examines nearby strokes to determine if they nearly overlap,
and thus should be merged together. To reduce computation,
each stroke is first resampled to 128 data points. Addition-
ally, only the first and last 10% of each stroke is considered
for possible merging. To reduce noise, the strokes are also
smoothed.

Figure 4(a) shows the start of one stroke (bottom) and the
end of another (top). Part (b) of the figure shows the resam-
pled ink, and part (c) shows the assignment of points on one
stroke to the nearest points on the other. If a pair of assigned
points satisfies the merging criteria, it is merged by creat-
ing a new point located at the average position of the two
original points (Figure 4(d)).

The merging criteria are illustrated in Figure 5. For two
points to be merged, the drawing directions must be the same
(Figure 5(a)). We have observed that users typically draw
contours with a consistent orientation. For example, when
drawing a square, users typically draw all strokes clockwise
or all counterclockwise. Thus, two strokes must have the

same drawing direction for them to be part of a contiguous
path. In the example of the square, two strokes forming one
side of the square would have the same drawing directions
and could be merged. However, strokes from opposite sides
would have opposite drawing directions and would not be
merged. We measure drawing direction using the tangent to
the pen stroke. To be considered for merging, the tangents of
two points cannot differ by more than 10◦.

For two points to merged, they must be near each other.
The Euclidean distance between them must be less than 35
pixels (Figure 5(b)). Additionally, the perpendicular distance
between the two strokes, measured near the points, must be
less than 20 pixels (Figure 5(c)). Finally, to prevent neigh-
boring points on a single stroke from being merged, the Eu-
clidean distance between the points must be at least twice as
large as the path length between the points. This allows two
ends of a single stroke to be merged to form a closed contour,
as the path length between the ends is relatively long.

4.2. Identifying Selected Components

NP2 uses polygon intersection techniques to identify which
components in the problem are included in the student’s
boundary. To determine if a set of components is selected,
the program merges the boundaries of the components to
produce a “nominal” polygon. A larger (“maximum”) and
smaller (“minimum”) polygon are constructed as uniform
offsets of the nominal polygon. Figure 6 shows an exam-
ple in which the set of components consists of a single
rectangular-shaped part.

A set of components is considered to be selected if three
conditions are satisfied: (a) the area of the student’s bound-
ary must differ from the area of the nominal polygon by no
more than 10%, (b) the boundary must be contained entirely
inside the maximum polygon, and (b) the minimum poly-
gon must be contained entirely inside the boundary. These
computations are performed using the polygon intersection
technique in [Bri].

When interpreting the boundary, the program considers all
combinations of components in the problem. Also, the pro-
gram handles flexible components (e.g., cables and ropes)
using special techniques: it is possible for the boundary to
select only a portion of a flexible element.

c© The Eurographics Association 2012.

60

C. Lee & J. Jordan & T. Stahovich & J. Herold / Newtons Pen II

Pmax Pnom Pmin

Figure 6: For a set of components to be selected, the stu-
dent’s boundary must be contained entirely in the maximum
polygon Pmax, and must be outside the minimum polygon
Pmin.

4.3. Force and Moment Arrow Recognition

After the FBD boundary has been dragged into the FBD
workspace, the student draws arrows to represent forces and
moments, with straight arrows for the former and curved
ones for the latter. NP2 is capable of recognizing arrows
drawn tail to head with either one or two strokes. The system
accomplishes this by combining two different arrow recog-
nizers: an inverse-curvature recognizer and a dollar arrow
recognizer.

Figure 7: Inverse curvature of an arrow. The three corners
of the arrowhead are the three smallest values of inverse cur-
vature. Image from [LdSP∗08].

The inverse-curvature recognizer identifies arrows by the
three corners typically found on arrowhead. With this tech-
nique, the stroke is first resampled to 128 points to reduce
computation time and then smoothed to remove noise. Next,
line segments are constructed between each pair of consec-
utive points. The “inverse curvature” at a point is defined as
the cosine of the angle between the two adjacent segments.
If the adjacent segments are nearly collinear, the inverse cur-
vature value is close to one. If the segments make a sharp
angle, the inverse curvature value is much smaller than one.
In the case of a 180◦ bend, for instance, the inverse curvature
is negative one. The three corners of an arrowhead can be de-
tected by their small inverse curvature values (Figure 7).

The inverse-curvature recognizer uses a neural network to

classify pen strokes. The 128 inverse curvature values for
the resampled pen stroke serve as the features to the clas-
sifier. The neural network was trained with approximately
100 arrows and 600 non-arrows (letters and numbers) from
5 different users. (The complete details can be found in
[LdSP∗07].)

The Dollar Arrow recognizer is a modified version of the
Dollar recognizer [WWL07]. The Dollar recognizer has dif-
ficulty recognizing arrows, because the shafts may be arbi-
trarily long. We have modified the algorithm to ignore most
of the shaft. To do this, the Dollar Arrow recognizer uses
inverse curvature to identify the three corners of the arrow-
head. The corners are used to compute the length of the line
segments forming the arrowhead. If the shaft (i.e., the “non-
arrowhead” portion of the arrow) is longer than twice this av-
erage length of the arrowhead segments, the shaft is clipped
to this length, otherwise the entire shaft is used. After this
preprocessing, recognition continues with the usual Dollar
recognizer approach.

Both of these recognizers accept a stroke as input and re-
turns a confidence value between [0,1] indicating the like-
lihood that the stroke is an arrow. The confidence values of
the two recognizers are combined by taking their average. If
this average is greater than 0.8, the stroke is classified as an
arrow. Both the inverse-curvature and Dollar Arrow recog-
nizer are designed for single stroke arrows. To use these rec-
ognizers for multi-stroke arrows, the end of the first stroke
is joined to the start of the second stroke. Arrows with more
than two strokes can be processed in a similar fashion, but
in this case, it is useful to consider all permutations of stroke
order when appending strokes.

To determine if an arrow is a force or a moment, NP2 fits a
linear least squares line to the shaft of the arrow. If the error
of fit is less than a threshold, the arrow is considered to be a
force, otherwise it is considered to be a moment.

4.4. Force Labels

Forces and moments can be labeled by drawing directly on
the workspace, or by using a text entry window. In the former
case, the characters are recognized with the Microsoft Hand-
writing Recognizer (MHR) [Pit07] after a user-adjustable
timeout. The ink is then replaced with its interpretation,
which is rendered with a hand-drawn character font. We use
this approach, rather than using a traditional computer font,
to preserve the informality of a student’s handwritten work.
The student can correct misinterpretations by erasing and
rewriting the text, or by pressing the button on the barrel
of the stylus and circling the ink, triggering the display of
alternative interpretations from which the student may select
the intended characters.

To initiate the use of the text entry window, the student
simply draws an “L”-shaped pen stroke, causing the window

c© The Eurographics Association 2012.

61

C. Lee & J. Jordan & T. Stahovich & J. Herold / Newtons Pen II

to appear. The text entry window contains two character en-
try boxes, as force labels are limited to two characters. After
each character is written, it is recognized using MHR and
replaced with its interpretation. If the text is misinterpreted,
the student can select the correct interpretation from the pro-
vided lists of alternatives. Once text entry is complete, the fi-
nal interpretation is displayed in the workspace with a hand-
written font.

5. Interpreting Equilibrium Equations

Equations consist of multiple characters written in-line.
Once the student completes an equation, he clicks the “in-
terpret” button to trigger recognition. Clicking the “critique”
button produces appropriate tutorial feedback. This section
describes the recognition process including stroke grouping,
recognition, and error correction.

5.1. Stroke Grouping

The first step in interpreting an equation is grouping the pen
strokes into characters. We do this using a technique based
on the grouping technique in [PSDA10]. Our technique uses
a C4.5 decision tree to determine if two strokes belong to the
same character.

The classifier employs six pairwise features: five are spa-
tial and one is temporal. The spatial features characterize
the relative positions of the strokes. These features include:
the minimum distance between the strokes, the maximum
distance between them, the distances between their cen-
troids, and their horizontal and vertical overlap (Figure 8).
To achieve size-invariance, the spatial features are normal-
ized by the height of the equation. The temporal feature is
the difference in start times of the two strokes.

It is unlikely that a single character will be comprised of
strokes that are far from each other. Thus, two strokes are
considered for grouping only if the horizontal distance be-
tween them is less than half the equation height. This both
speeds up the grouping process and increases accuracy.

To build the training data set, equations were originally
collected from members of our research lab. Later NP2 was
retrained using real world data taken from users of the tu-
toring system. This data included 221 equilibrium equations
and 189 equation type samples. To prevent biasing the data
towards any particular user, at most three equations from
each user were used for training.

5.2. Character Recognition

Once the pen strokes have been grouped into characters,
recognition begins. We use MHR for most characters, how-
ever, it has difficulty recognizing equal signs. Thus, we use
a special-purpose recognizer for equal signs.

MHR uses a lexicon to achieve high recognition accuracy

(a) Distance Features (b) Overlap features

Figure 8: Pairwise spatial features used by the grouping
classifier.

+ T (U) =

+ + C U) =

S I N

5 1 N

Figure 9: The handwriting recognition HMM uses hidden
states that correspond to the symbols a user intended (blue
text) and observations that correspond to the recognized
characters (black text).

Si Si+1

’ ’, alpha_* ’ ’
’(’ ’(’, ’-’, digit, ’C’, ’S’, ’T’, ’P’, ’N’, ’D’,

’U’
op digit, ’C’, ’S’, ’T’, ’P’, ’N’, ’D’, ’U’
digit ’(’, ’)’, op, ’.’, digit, ’=’, ’C’, ’S’, ’T’,

’P’, ’N’, ’D’, ’U’
’=’ ’0’
’C’ "CO"
"CO" "COS"
"COS" ’(’, digit, ’C’, ’S’, ’T’, ’P’, ’N’, ’D’, ’U’
’D’ "D1", "D2"
’N’ ’(’, ’)’, op, digit, ’=’, ’C’, ’S’, ’T’, ’P’,

’N’, ’D’, ’U’

Table 1: Subset of the legal state transitions for an equation
HMM for a free body diagram with labels D1, D2, and N. op
= ’+’, ’-’, ’*’, and ’/’; digit = digits from ’0’ to ’9’; alpha_*
= all uppercase letters except ’C’, ’S’, ’T’, ’P’, ’N’, ’D’, and
’U’

on text. This approach is not suitable for our application,
as it would bias equation recognition towards correct solu-
tions, hampering the system’s educational effectiveness. In-
stead, NP2 uses a grammar for valid mathematical expres-
sions and knowledge of the common recognition errors to
improve recognition accuracy. With this approach, for ex-
ample, the program is able to identify that a set of characters
recognized as “C05” was likely intended to be “COS”.

Our error correction technique utilizes the Hidden Markov
Model (HMM) shown in Figure 9. A HMM has five com-
ponents: a set of hidden states which are unknown, a set
of known observations, the probability of transitioning from
each state to every other state, the probability of seeing each
observation in each hidden state, and the probability of be-

c© The Eurographics Association 2012.

62

C. Lee & J. Jordan & T. Stahovich & J. Herold / Newtons Pen II

ginning in a particular hidden state. (For an overview of
HMMs see [Rab89].)

In our problem, the initial recognition results for the equa-
tion characters comprise the observations. The hidden states
are the intended meanings of the characters. There are 45
states that represent single characters: 26 uppercase letters
(A-Z), 10 digits (0-9), the 4 basic arithmetic operators (+, -,
/, *), the equal sign, left and right parentheses, the decimal
point, and the null state. To facilitate recognition of multi-
character symbols, such as “FX” or “SIN”, the program em-
ploys compound states. For example, in the latter case, there
are three hidden states representing “S”, “SI”, and “SIN”.

The transition probabilities are based on a grammar of le-
gal mathematical expressions. For each state, we identify the
set of possible next states that can occur in a legal mathe-
matical expression. Transitions to any of these legal states
is assumed to be equally likely, with the total probability of
transitioning to these states summing to 90%. The remaining
10% of the probability is distributed equally to the remaining
states.

The set of legal states for a given problem depends on the
variables (e.g., force labels) used in that problem. Thus, the
transition probabilities are dynamically generated for each
problem. Also, one HMM is used for interpreting equations,
and another is used for interpreting equation types. Tables 1
and 2 give examples of legal transitions.

The observation probability matrix, B j(k), encodes the
likelihood of witnessing observation k with hidden state j,
i.e., the likelihood of the MHR producing a particular recog-
nition result for a given character. This is computed as:

B j(k) = 0.6B j(kT)+0.4B j(kE) (1)

B j(kT) is the “theoretical observation probability”, which
assigns 36% probability to the observation matching the hid-
den state, 18% distributed equally over all observation that
are reasonably similar to the state (e.g., “S” observed in the
state “5”), and 6% probability distributed equally over all
remaining states. B j(kE) is the “empirical observation prob-
ability” and is computed directly from the confusion matrix
of the handwriting recognizer.

The Viterbi algorithm is used to determine the most likely
sequence of hidden states corresponding to the recognizer’s
initial results. This sequence of hidden states is then used as
the final interpretation of the equation.

6. System Evaluation

NP2 was integrated into a sophomore-level Engineering
Statics course at our university in the winter quarter of
2010, in which just over 100 students were enrolled. Stu-
dents worked in pairs due to the limited number of tablet
PCs available. Students used NP2 in their discussion sec-
tions, which lasted 50 minutes, four times during the quarter

Si Si+1

’ ’, alpha_efm, op,
digit, ’(’, ’)’, ’.’

’ ’

’=’ ’0’
’E’ ’M’, ’F’
’F’ "FX", "FY"
"FX" ’=’
"FY" ’=’
’M’ "MP", "MB", "MA"

Table 2: Legal state transitions for an “equation type”
HMM. op = ’+’, ’-’, ’*’, and ’/’; digit = digits from ’0’ to
’9’; alpha_efm = all uppercase letters except ’E’, ’F’, and
’M’

(tablet PCs running NP2 were provided). The first session
taught students how to construct FBDs for problems involv-
ing the analysis of a single body, the second session focused
on construction of both FBDs and equilibrium equations for
single bodies, the third session addressed FBDs for multi-
body frame and machine problems, and finally the fourth
session included both FBDs and equilibrium equations for
frame and machine problems.

6.1. Attitudinal Survey

At the end of the quarter, students were asked to complete
a 25 question survey of their opinions about NP2. The sur-
vey questions and responses are listed in Table 3. The first
11 questions were related to the usability of the system, and
considered ease of drawing, recognition accuracy, and over-
all usability. In one question, students were asked to compare
the interface to a traditional WIMP interface. Their answer
was based on their general familiarity with WIMP interfaces
as the students were not provided with a WIMP-based Stat-
ics tutoring system. The next 10 questions focused on the
usefulness of the system for learning various statics concepts
and the overall instructional usefulness. The final four ques-
tions concerned the students’ overall reaction to the system.

All questions were answered on a scale from one to ten,
with one being the most negative response and ten being
the most positive. The median response on all questions
was on the positive side of the scale for all but two of the
questions. Students experienced problems with the system’s
recognition and interpretation functionality, which likely led
to some frustration. We observed that some of the frustration
was due to the system’s conventions. For example, some stu-
dents drew arrows head to tail rather than tail to head as the
program expected. Similarly, some students wrote equations
in unexpected ways, for example, writing the word “SUM”
rather than the symbol “Σ” for the equation type.

Because this was the first deployment of NP2, students

c© The Eurographics Association 2012.

63

C. Lee & J. Jordan & T. Stahovich & J. Herold / Newtons Pen II

Survey Question Scale Ave Med
1 How easy is it to trace and drag system boundaries? Hard (1) — Easy (10) 6.8 7
2 How easy is it to draw force arrows? Hard (1) — Easy (10) 6.2 6
3 How easy is it to label force names? Hard (1) — Easy (10) 5.6 6
4 How easy is it to draw correctly-interpreted equation types? Hard (1) — Easy (10) 6.4 7
5 How easy is it to write correctly-interpreted equations? Hard (1) — Easy (10) 5.5 6
6 How easy is it to correct interpretation errors in equations? Hard (1) — Easy (10) 5.9 6
7 Are the program’s interpretation capabilities sufficiently accurate? Insufficient (1) — Sufficient (10) 5.2 5
8 How easy is it to learn to use the program? Hard (1) — Easy (10) 7.1 8
9 What is your overall opinion of the usability of this program? Not usable (1) — Very usable (10) 6.1 6
10 How similar is this system to working with paper and pencil? Very Dissimilar (1) — Very similar

(10)
5.3 5

11 Is this interface preferable to WIMP interfaces? Prefer traditional UI (1) — Prefer
pen-based UI (10)

6.5 7

12 Is this program’s tutorial feedback presented in a usable form? Not usable (1) — Very usable (10) 6.8 7
13 How useful is this for learning selection of system boundaries? Not useful (1) — Very useful (10) 6.9 7
14 How useful is this for identifying forces on free body diagrams? Not useful (1) — Very useful (10) 7.1 7
15 How useful is this for application of Newton’s 3rd Law? Not useful (1) — Very useful (10) 6.8 7
16 How useful is this for analysis of two-force members? Not useful (1) — Very useful (10) 7.0 7
17 How useful is this for force equations? Not useful (1) — Very useful (10) 6.4 7
18 How useful is this for moment equations? Not useful (1) — Very useful (10) 6.5 7
19 What is your overall opinion of the usefulness of this program in learn-

ing to solve equilibrium problems?
Not useful (1) — Very useful (10) 6.5 7

20 How likely would you be using this system to study for Statics courses? Unlikely (1) — Likely (10) 6.1 7
21 How likely would you be using this kind of system for other subjects? Unlikely (1) — Likely (10) 6.2 7
22 Rate your overall reaction to the system. Terrible (1) — Wonderful (10) 6.2 6
23 Rate your overall reaction to the system. Difficult (1) — Easy (10) 6.7 7
24 Rate your overall reaction to the system. Frustrating (1) — Satisfying (10) 5.4 5
25 Rate your overall reaction to the system. Dull (1) — Stimulating (10) 6.4 7

Table 3: Survey questions and responses. Questions are answered on a scale from one to ten, with one being the most negative
and ten being the most positive. The average and medium values are listed.

also discovered some bugs in the recognition algorithms.
These issues were quickly addressed resulting in releases of
improved versions of the system throughout the quarter. We
believe that the survey results were negatively affected by
students’ experiences with the earlier versions of the system.
We expect that future deployments of the improved system
will result in more favorable opinions.

7. Conclusion

We have presented Newton’s Pen II, a pen-based tutoring
system for Engineering Statics. The system scaffolds stu-
dents in the construction of free body diagrams and equi-
librium equations of one or more rigid bodies.

This pen-based system employs several new sketch un-
derstanding techniques including: a natural pen-based tuto-
rial interface, a method for merging strokes, an extension
of the Dollar recognizer for arrows, a stroke grouping algo-
rithm designed for equations, and a dynamically-generated
HMM-based error corrector for equations.

We evaluated the system in the context of an undergrad-
uate Statics course with an enrollment of just over 100 stu-
dents. In a formal survey, students responded with favorable

opinions about the user interface design and the usefulness
of the system for learning Statics. While there is clear room
for improvement in the system, design we are encouraged by
the students’ generally favorable response to the system.

8. Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 0735695.

References
[AMS05] ANDERSON R., MCDOWELL L., SIMON B.: Use of

classroom presenter in engineering courses. In Proceedings of
Frontiers in Education ’05 (2005), pp. T2G–13–18. 2

[BGLSS03] BAREQUET G., GOODRICH M. T., LEVI-STEINER
A., STEINER D.: Straight-skeleton based contour interpola-
tion. In SODA ’03: Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms (Philadelphia,
PA, USA, 2003), Society for Industrial and Applied Mathemat-
ics, pp. 119–127. 4

[Bri] BRIDENBECKER D.: General poly clipper algorithm in java.
http://www.seisw.com/GPCJ/GPCJ.html. 4

[CL12] CHEEMA S., LAVIOLA J.: Physicsbook: A sketch-based
interface for animating physics diagrams. In Proceedings of

c© The Eurographics Association 2012.

64

http://www.seisw.com/GPCJ/GPCJ.html

C. Lee & J. Jordan & T. Stahovich & J. Herold / Newtons Pen II

the 2012 International Conference on Intelligent User Interfaces
(2012), pp. 51–60. 2

[dSBL∗07] DE SILVA R., BISCHEL D. T., LEE W., PETERSON
E. J., CALFEE R. C., STAHOVICH T. F.: Kirchhoff’s pen: a
pen-based circuit analysis tutor. In SBIM ’07: Proceedings of
the 4th Eurographics workshop on Sketch-based interfaces and
modeling (New York, NY, USA, 2007), ACM, pp. 75–82. 2

[FPJ02] FONSECA M. J., PIMENTEL C., JORGE J. A.: CALI-
an online scribble recognizer for calligraphic interfaces. In AAAI
Spring Symposium on Sketch Understanding (2002), pp. 51–58.
2

[GKSS05] GENNARI L., KARA L. B., STAHOVICH T. F., SHI-
MADA K.: Combining geometry and domain knowledge to inter-
pret hand-drawn diagrams. Computers & Graphics 29, 4 (2005),
547–562. 2

[HN05] HSE H. H., NEWTON A. R.: Recognition and beautifica-
tion of multi-stroke symbols in digital ink. Computers & Graph-
ics 29, 4 (2005), 533–546. 2

[KFH11] KEBODEAUX K., FIELD M., HAMMOND T.: Defining
precise measurements with sketched annotations. In Proceed-
ings of the Eighth Eurographics Symposium on Sketch-Based In-
terfaces and Modeling (New York, NY, USA, 2011), SBIM ’11,
ACM, pp. 79–86. 2

[KJ12] KANG B., J. L.: Logicpad: A pen-based application for
visualization and verification of boolean algebra. In Proceedings
of the 2012 International Conference on Intelligent User Inter-
faces (2012), pp. 265–268. 2

[KS04] KARA L. B., STAHOVICH T. F.: An image-based train-
able symbol recognizer for sketch-based interfaces. In AAAI 2004
Fall Symposium: Making Pen-Based Interaction Intelligent and
Natural (2004). 2

[LdSP∗07] LEE W., DE SILVA R., PETERSON E. J., CALFEE
R. C., STAHOVICH T. F.: Newton’s pen - a pen-based tutoring
system for statics. In 2007 Eurographics Workshop on Sketch-
Based Interfaces and Modeling (August 2007). 2, 5

[LdSP∗08] LEE W., DE SILVA R., PETERSON E. J., CALFEE
R. C., STAHOVICH T. F.: Newton’s pen: A pen-based tutoring
system for statics. Computers & Graphics 32, 5 (2008), 511 –
524. 2, 5

[LKS06] LEE W., KARA L. B., STAHOVICH T. F.: An efficient
graph-based symbol recognizer. In 2006 Eurographics Workshop
on Sketch-Based Interfaces and Modeling (2006), pp. 11–18. 2

[LM01] LANDAY J. A., MYERS B. A.: Sketching interfaces: To-
ward more human interface design. IEEE Computer 34, 3 (2001).
2

[LS11] LEE C.-K., STAHOVICH T. F.: A pen based tutoring sys-
tem. In ASEE Annual Conference and Exposition (2011). 1, 3

[MLYS05] MORSE B. S., LIU W., YOO T. S., SUBRAMANIAN
K.: Active contours using a constraint-based implicit representa-
tion. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses (New
York, NY, USA, 2005), ACM, p. 252. 4

[OAC06] OVIATT S., ARTHUR A., COHEN J.: Quiet interfaces
that help students think. In Proceedings of the 19th annual ACM
symposium on User interface software and technology (UIST ’06)
(2006), pp. 191–200. 1

[Pit07] PITTMAN J. A.: Handwriting recognition: Tablet pc text
input. Computer 40 (2007), 49–54. 5

[PSDA10] PETERSON E. J., STAHOVICH T. F., DOI E., AL-
VARADO C.: Grouping strokes into shapes in hand-drawn dia-
grams. In AAAI (2010), Fox M., Poole D., (Eds.), AAAI Press.
2, 6

[Rab89] RABINER L. R.: A tutorial on hidden Markov models
and selected applications in speech recognition. Proceedings of
the IEEE 77, 2 (1989), 257–286. 7

[RHC∗03] ROSELLI R. J., HOWARD L., CINNAMON B., BRO-
PHY S., NORRIS P., ROTHNEY M., EGGERS D.: Integration of
an interactive free body diagram assistant with a courseware au-
thoring package and an experimental learning management sys-
tem. In Proceedings of American Society for Engineering Edu-
cation Annual Conference & Exposition (2003). 2

[Rub91] RUBINE D.: Specifying gestures by example. Computer
Graphics 25 (1991), 329–337. 2

[SD05] SEZGIN T. M., DAVIS R.: HMM-based efficient sketch
recognition. In International Conference on Intelligent User In-
terfaces (IUI’05) . (2005). 2

[SH04] SUEBNUKARN S., HADDAWY P.: A collaborative intel-
ligent tutoring system for medical problem-based learning. In
Proceedings of the 9th International Conference on Intelligent
User Interfaces (IUI ’04) (2004), pp. 14–21. 2

[VLS∗05] VANLEHN K., LYNCH C., SCHULZE K., SHAPIRO
J. A., SHELBY R., TAYLOR L., TREACY D., WEINSTEIN A.,
WINTERSGILL M.: The Andes physics tutoring system: Lessons
learned. International Journal of Artificial Intelligence in Edu-
cation 15, 3 (2005). 2

[WWL07] WOBBROCK J. O., WILSON A. D., LI Y.: Gestures
without libraries, toolkits or training: a $1 recognizer for user
interface prototypes. In UIST ’07: Proceedings of the 20th an-
nual ACM symposium on User interface software and technology
(New York, NY, USA, 2007), ACM, pp. 159–168. 2, 5

c© The Eurographics Association 2012.

65

