EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2010)

M. Alexa and E. Do (Editors)

Assisted Multitouch Image-Based Reconstruction

Frank Bauer and Marc Stamminger

Computer Graphics Group, University of Erlangen-Nuremberg

Abstract

We present an image-based reconstruction approach for mobile, multitouch enabled devices. A novel scene de-
scription based on a multi-agent system is used to allow a real-time reconstruction workflow even on devices with
relatively low processing speeds. Using the built in camera along with data from an accelerometer, compass and
GPS module allows us to easily add new camera objects to our reconstruction world with an initial estimation
for position and orientation. Our multi-agent scene description proved to be flexible enough to perform modelling
tasks beyond image-based reconstruction using multitouch gestures only.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Modeling packages

1. Introduction

Latest PDAs or mobile phones include a camera, GPS, an ac-
celerometer and maybe even a compass. Whenever a photo is
taken, it is thus possible to also store the camera’s world po-
sition and orientation. If a particular object is photographed
from several positions and directions, we obtain a (roughly)
calibrated set of views, which is a perfect basis to recon-
struct a textured 3D model from this object, for instance in
the style of Facade [DTM96].

The general idea of Facade is simple: the user first pro-

Figure 1: Reconstructed toy-church created from three im-
ages on an iPhone (4 Blocks, 30 Agents)

(© The Eurographics Association 2010.

DOI: 10.2312/SBM/SBM10/025-032

vides the basic structure of the object by defining primitives
and constraints for their relative position. For instance, the
curch’s tower in Fig. 1 is composed of a box and a pyra-
mid. The pyramid is always on top of the box, and width and
depth of the pyramid and the box are the same. The remain-
ing degrees of freedom (tower’s height, roof’s height, width
and depth) are fixated by marking the position of primitives’
corners or edges in images of the object. Global optimization
is used to find a solutions for these parameters. Finally, the
images are projected back onto the reconstructed geometry
to achieve textures.

In this paper, we describe such a modelling system de-
signed for a mobile device with small display, multitouch
screen, and relatively low CPU power. The choice of this
setup had a number of interesting consequences for our mod-
elling tool:

e Due to the lack of CPU power and the desire for in-
teractive reconstruction we cannot afford costly high-
dimensional global optimization.

e The definition of the primitives and constraints must hap-
pen with (multitouch) gestures only.

e For on-site reconstruction, it must be possible to incre-
mentally refine a model and add new images with the pos-
sibility to undo improvements for the worse.

e Inputimages are already coarsely oriented and positioned,
so we have a good starting point for optimization.

Users of gesture controlled applications also expect im-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SBM/SBM10/025-032

26 F. Bauer & M. Stamminger / Assisted Multitouch Image-Based Reconstruction

mediate feedback to their input. This makes it necessary that
our system updates the scene at interactive frame rates as
soon as the user triggers a change.

As a result, we developed a reconstruction process which
is based on a multi-agent system [WWO1]. A scene con-
sists of a number of geometric primitives (rectangles, cubes,
spheres etc.). The parameters of these primitives (dimen-
sions, world position, rotation, radius etc.) are incrementally
set and updated by agents, which enforce constraints such as

e objects A and B both lie on a common plane or
e object A’s corner k is visible in image i at position (x,y)

Agents are thus used to enforce user-defined constraints be-
tween the primitives, as well as to transform geometry to fit
with the images.

In our system, agents always work sequentially. An agent
only updates parameters in a way that it does not invalidate
previously established constraints. If this is not possible, it
tries to minimize the overall error. Agents thus look for pre-
vious agents they can interfere with and try to find an optimal
common solution using simple local optimization.

Next to agents that monitor constraints, we also have
agents that create geometric primitives, or do other modi-
fications on the primitives. The reconstruction process is de-
scribed by a sequence of agents, that sequentially generate
the final model. Since all agents are deterministic, the re-
construction state can always be recomputed by sequentially
evoking them from the start.

We found that this way to model the reconstruction pro-
cess fits very well our needs:

e By the sequential processing of the agents the reconstruc-
tion problem is not described as one big high-dimensional
problem, thus costly global high dimensional optimiza-
tion is avoided.

e Agents and thus the entire reconstruction process can be
defined using multitouch gestures.

e The reconstruction process can be iteratively refined by
adding, reordering, or removing agents.

e An improvement for the worse can always be undone by
removing or changing the offending agent recomputing
the reconstruction beginning with the changed agent.

e Since user changes only affect a small number of agents,
we can reevaluate the scene very fast, providing a true
interactive modelling experience.

In fact it turned out that the agent-based description of the
reconstruction process is not only beneficial for image-based
reconstruction on a mobile device. We also show that it is a
user-friendly way to model scenes in any modelling tool.

2. Previous Work

It is a difficult task to generate precise models using mul-
titouch or other finger-based gestures. This drawback is of-
ten balanced by additional algorithmic efforts. Murugappan

et al. for example did beautify sketches by suggesting pro-
totypes for curves [MSRO09]. Masry et al. derive primitives
from sketches using a kinematic simulation [MKLO7]. In
contrast, our system starts with precise primitives (cubes,
spheres...). Multitouch gestures are then used to refine that
geometry or define constraints.

Constraints are an important part of image-based recon-
struction using Facade [DTM96]. We think the general pro-
cess lends itself for multitouch enabled devices. However
the monolithic optimization is not well suited for mobile ap-
plications due to CPU restrictions. In general users of multi-
touch software expect immediate results. This invalidates the
two-stage (planning and optimizing) process Facade uses.
The tool PhotoTourism [SSS06] finds corresponding points
in a multitude of input images. Besides the fact, that many
images are needed, the reconstruction itself is quite CPU in-
tense. Moreover the resulting reconstruction is a point cloud
that would need further processing.

With procedural modelling, the scene is described by
means of simple equations. Mueller et al. derive a procedu-
ral, monolithic description for facades in [MZWVGO07]. Our
application is based on the advantages of a procedural scene
description as well, however agents must not be monolithic
and have to work independently. This makes them easier to
develop and maintain.

As we mentioned earlier, constraints are frequently used
(for example: [BB88], [KGC97], [WTJ*03]). Unfortunately
most described constraint based systems optimize all equa-
tions in one high dimensional global pass and often incre-
mentally build upon previous results. This approach is slow
(especially on embedded hardware), the results are often un-
predictable and errors produced by subsequent optimization
passes can not be easily revised.

3. Multi-Agent Scene Description

All reconstructed scenes are described by a sorted list of
agents A and a set of available primitives P. Initially, both are
empty. Every user action is translated into a new agent that is
automatically added to the end of A. Executing the agents in
sequence produces the final scene deterministically. Based
on this representation we can optimize the system to work at
interactive speeds even on mobile CPUs. Fig. 3 depicts the
basic idea.

Optional Anchor

Evaluation J 7

Kernel

Execution
Parameters ~m——-

Kernel

Working Obiject

Figure 2: Structure of an agent

(© The Eurographics Association 2010.

F. Bauer & M. Stamminger / Assisted Multitouch Image-Based Reconstruction 27

Reset Reset
Scene Scene

@
@

[] Add Circle Add Circle o

<
<

Add Rectangle Add Rectangle

@
@

o Rotate Cube 45° Move Cube Down [)
Link Vertex from Link Vertex from
o Cube to Circle Cube to Circle o

Modified Agent

Figure 3: A multi-agent scene description. The 3rd agent
was modified in the right scene producing a different, but
consistent result.

An agent is a lightweight object that performs a specific
task without global knowledge. Tasks include

e primitive generation (spheres, cubes, cameras, ...)

e storing user input (dragging, rotation, ...)

e enforcing constraints

e geometry modification (adding vertices, lines, faces, ...)
Each primitive created by an agent is stored in P along
with an affine transformation and a set of items like its ver-
tices, lines or faces. Agents are used to enforce constraints,
but they are more general and can fulfill any programable
task, like adding new faces to an existing primitive.

If an agent is modified, we return to the state immedi-
ately before the agent was first executed, alter the parameters
of the agent and re-execute all following agents. In Fig. 3
the rotation-agent is replaced with a translation-agent on the
right side. The system would handle the change like this:

e reset scene to state after the 2nd agent (Add Rectangle)
e modify the 3rd agent
e re-execute agents 3 and 4

The user can modify existing agents at any time while
keeping all changes that were applied at a later point. It is
easy for users to understand the consequences of changes
as the resulting scene is calculated and presented at interac-
tive speeds. In the example from Fig. 3 replacing the rotation
with a translation generates a different result that still satis-
fies the constraint defined by the 4th agent (vertex on circle).

In the following subsections, we present the general con-
cept of our multi-agent scene description. In Sect. 4 we detail
on the extension to multitouch image-based reconstruction.

(© The Eurographics Association 2010.

3.1. Agents

Agents are used to execute small programs that alter the
scene, one of its primitives or an item of a primitive. Fig- 2
presents the design of an agent i. It stores a parameter vector
Pi and optionally references an anchor object. The values of
pi can be changed by a call of the agent’s Evaluation Ker-
nel evi(p). The Evaluation Kernel may access the referenced
anchor object to calculate ;. The Execution Kernel ex;(P) is
called, whenever the agent’s parameters need to be applied
to the scene. In most cases the Execution Kernel modifies the
working object referenced by the agent.

Fig. 4 demonstrates the execution of a point-on-surface
agent. The anchor object is the sphere, the anchor item is its
surface (orange circle). The working object is the cube, its
item is the selected vertex (purple circle). The agent’s pa-
rameter vector describes a translation. The Evaluation Ker-
nel computes the translation needed to move the cubes to
ensure that the vertex is on the surface of the sphere. The
Execution Kernel changes the transformation matrix of the
cube according to the values from p;. The result of the agents
execution is depicted in the middle of Fig. 4.

The user can manually drag, rotate or scale the cube. The
execution part of our multi-agent scene description enforces
all constraints. In this case the cube moves along the surface
of the sphere. The transparent cube in the rightmost image of
Fig. 4 depicts the position before the constraint was satisfied.

g

Sy
&

Figure 4: Creating a constraint (left). Scene after the agent
was executed (middle). Manual modifications to the initial
state (right).

3.2. Agent Categories
Agents can be grouped into four basic categories:

Constant Agents: These are the simplest agents. They
take a constant value (quaternion, translation-vector, scale,
...) as input and apply it to the working object or one of its
items. Another example for this category are agents that cre-
ate new primitives.

Copy Agents: Copy agents copy values (like the scale)
from an anchor object to the agents working object. The
Evaluation Kernel of agents from this class stores the values

28 F. Bauer & M. Stamminger / Assisted Multitouch Image-Based Reconstruction

from the anchor object in p;. The Execution Kernel writes
the values from pj; to the working object.

Constraint Agents: These agents are used to enforce de-
pendencies like the point-on-surface constraint from Fig. 4.
In general, an anchor object is needed to compute p; in
the Evaluation Kernel. The following constraint agents are
available in our implementation:

e point-on-point, point-on-line, point-on-surface
e line-on-point, line-on-line, line-on-surface
e surface-on-point, surface-on-line, surface-on-surface

There are other possible agents for this category, for exam-
ple a line-intersects-line agent. Our system can easily be ex-
panded by new agents.

It is important to note that a point-on-line-agent is differ-
ent from a line-on-point-agent since agents can only influ-
ence their working object.

Modelling Agents: Agents from this category can change
the set of available items for an object. As proof of concept
we implemented a very simple subdivision agent. It splits a
selected line in half, creating new faces if necessary. Fig. 5
shows two subsequent subdivision agents. The resulting new
geometry (in the above example two additional vertices, one
additional line and one additional face) is used by the fol-
lowing agent, in this case a line moving agent.

Changing the geometry of an object after some agents
were already applied to it is unproblematic. The scene is
always reset (which undoes the geometry change) and the
agents are executed in their original sequence. Agents exe-
cuted before the geometry modification still work with the
items from the original primitive. Later agents may use the
altered items. As a consequence, agents that use newly cre-
ated items cannot be moved to a position before that item
was created.

Figure 5: Scene with line split agents

3.3. Executing Agents

Every scene is described by a sorted list of multiple agents.
Executing them in sequence creates a scene that respects the
defined constraints and modifications.

To support fast re-execution of unmodified agents, we

separated the calculation of the parameter values p; (Evalua-
tion Phase) from the execution of the agent. The two phases
of the re-execution process are depicted in Fig. 7.

During the Evaluation Phase the Evaluation Kernel
evi(p;) : Pi — mi; is called for every agent. Agents with con-
stant parameters (most agents without an anchor object/item)
can update p; within the Evaluation Kernel. If p; depends on
non constant values (like the position of an anchor object),
we need to compute it in the kernel. After the Evaluation
Kernel has finished, the Execution Kernel is called. The later
call makes sure that the results of the agents evaluation are
reflected in the scene.

Figure 6: Scene before agents (depicted by red lines) are
executed (left). After execution of both agents (right).

A point-on-point agent for example depends on the cur-
rent state of the anchor to calculate the parameter values. The
example in Fig. 6 shows two vertex constraints (red lines) for
the middle cube. Calculating a translation vector can satisfy
the first one. Moving the cube again to enforce the second
agent can satisfy the later one, but violates the results of the
first. The second agent needs to calculate a rotation and an
additional translation to satisfy both constraint. This results
in a non-linear system of equations [Sca85].

To solve the non-linear system, the Evaluation Kernel re-
turns a measurement vector #i;. If ||n;|| = O the agent is sat-
isfied. We use the measurements in a Levenberg-Marquardt
solver [Mor77] that updates the agent’s parameter vector
pi in each iteration. Rotations - traditionally a problem in
non-linear optimization - are represented as quaternions and
reparameterized for the minimization process as detailed in
[SNO1].

If p; is computed directly in the Evaluation Kernel, the
dimension of #i; is 0. That way, it does not contribute a mea-
surement (as it would always be 0 anyway) for the non-linear
solver.

When two agents (like in Fig. 6) apply to the same work-
ing object the later may invalidate the result of the first.
Agents need to be aware of previously executed agents for
the same object, and make sure that they do not interfere.
To integrate this behaviour into our system, we introduce the
concept of a Solver Group.

(© The Eurographics Association 2010.

F. Bauer & M. Stamminger / Assisted Multitouch Image-Based Reconstruction 29

Evaluation Execution
Phase Working Object Phase

Anchor

Single Evaluation
Evaluate Kernel

Parameters (-

- Anchor
ingle -,

Evaluate "\ Evaluation
S y Kernel

(Group \ Parameters (-

| Evaluate |

Execution
Kernel

4

Execution
Kernel

Figure 7: Schematic execution of agents from Fig. 6 (right)

The Solver Group S; for a seed agent i contains all previ-
ous agents that use the seed agent’s anchor as working item.
If we resolve cycles, we additionally use the anchors of all
added agents to determine participation in S;.

Computing p; for an agent i during the evaluation phase
is a three step process:

1. Run ev;(p;). If the dimension of #i; is not O start a solver
run with measurements ev;(p;).

2. Start a solver run with measurements 7 = e, evi(P)
where p = Uyes, Pk-
This potentially changes the parameters of all participat-
ing agents, but ensures that no previous agent is violated.
The state of the scene immediately before i was executed
is used as initial input when solving the non-linear system
of equations.

3. Run exi(pj) for k € S; (modifies the state of the scene).

Calling the Executing Kernels of all agents in sequence
after the Evaluation Phase produces the correct (or in cases
where not all constraints can be fulfilled, the best possible)
result.

Our incremental approach exploits the weakness of non-
linear solvers. When the user adds a new constraint, we as-
sume that the next best solution is the closest local minimum
of the current equation system. If this is not the case, the user
can manually drag the primitives to a better starting point by
inserting a new agent directly before the constraint. The user
can transform the object, until the following optimizer falls
into the correct minimum. This behaviour helps preventing
erratic jumps in the resulting scene when only minor modi-
fications are applied, something we often did observer when
using a global optimization approach.

3.4. Scene Changes

With our multi-agent system, only a limited number of
agents need to be reevaluated if part of the scene changes.
When a new agent is added, evaluating and executing the

(© The Eurographics Association 2010.

newly created agent (as well as all agents in its Solver
Group) is sufficient.

Changes to the input of an existing agent are a bit more
complex to process. We need to reexecute the changed agent
and all later agents that use the modified working object as
either anchor or working object. This is accomplished by a
minor adjustment to the Evaluation Phase.

The working object of the changed agent is marked as
dirty. We run the Evaluation Phase beginning with the
changed agent, leaving the results of all previous agents un-
touched. Before the Evaluation Kernel of an agent is called,
we check the dirty flag of its anchor and working object. If
one is set, the agent is reevaluated and its working object
marked dirty.

During our reconstruction tests, the average of agents ex-
ecuted was 5.3 (Scenes contain an average of 35 Agents).

This approach is possible, because we can reset our scene
to any previous state. A global approach (where all con-
straints are solved in one big equation system) would always
reevaluate the complete scene. In addition, most global ap-
proaches use the result of the latest solved system as the in-
put of the next solver pass, making it impossible to undo
wrong decisions at a later stage.

3.5. Parameter Selection

Most constraint agents alter different parameters p;, of the
referenced working object w to enforce their constraint. The
example from Fig. 4 could also be solved by changing the
cube’s scale instead of translation. Optimizing for an unnec-
essary high dimensioned pj, often confuses the Levenberg-
Marquardt solver and produces an erratic changing p,. The
result is an inconsistent scene. Our agents use a simple test
to decide which parameters they should use to satisfy their
constraints.

When an agent is executed for the first time, we test all
possible parameter combinations and choose the one combi-
nation that results in the least error. We cache this result to
save performance time for subsequent executions. However,
if the error generated by the cached parameter assignment is
greater than a given threshold, we try to find a better set.

Object parameters p;, (like the objects’ translation, rota-
tion or scale) used by an agent are locked, and cannot be
used by later agents. If no more parameters are available for
a new agent, it will choose from all available parameters.

4. Image-Based Reconstruction

Our multi-agent system is flexible enough to be used as a
basis for an image-based reconstruction tool. To this end,
our system offers a special camera object. The user can se-
lect feature points in the camera image. These are translated
into a modelling agent that adds the ray from the focal point

30 F. Bauer & M. Stamminger / Assisted Multitouch Image-Based Reconstruction

Figure 8: Basic image-based reconstruction (left). Auto-
matic camera orientation (right)

of the camera through the marked feature point to the cam-
era primitive. The reconstruction itself is then as simple as
adding constraints between an object an those camera rays.

Fig. 8 (left) shows a very basic reconstruction using 5 fea-
ture points. The resulting lines were used as anchors in 5
point-on-line constraints for the cube object.

4.1. Retrieving Cameras

The estimation of the initial camera position and rotation is
often problematic. Modern cameras store GPS information
and some even their orientation. This data can be used to es-
timate the initial position of the camera in the virtual scene.
On an iPhone for example, we access the GPS information
as well as the current compass and accelerometer reading.
When our software takes a picture with the built-in camera,
we create a new virtual camera object and set the position
and orientation according to the gathered values.

The first camera is always placed in the origin of the vir-
tual world. If subsequent images are in close proximity to the
first camera (determined by the recorded GPS-Information),
we assume that the new camera looked at the centre of the
scene, and position it accordingly based on its recorded ori-
entation (Fig. 8 right).

If the distance to the first camera is greater than a given
threshold, we use the GPS-Information to determine the rel-
ative position of the camera in the virtual world.

When the application runs on an iPad or a Mac, we can
connect it to a remote iPhone. An image taken on the con-
nected device automatically shows up with the estimated po-
sition and orientation.

The information gathered by the GPS-Sensor and the ac-
celerometer is precise enough for an initial estimate. The
compass, however, is very fragile, and responds to very small
magnetic changes in the environment.

4.2. Calculating Global Orientation

An accelerometer returns a gravity vector G, relative to
the devices’ local coordinate system. By its nature an ac-

celerometer cannot record rotations around the gravitation
axis. As a result it is impossible to determine which direc-
tion the device was looking at if it is held upright. This is
why we also need a compass. The compass returns a vector
M pointing to the magnetic north pole. Using both we can
determine an absolute orientation for the device.

On an iPhone we calculate the rotation around G by pro-
jecting M into the plane perpendicular to G (Fig. 9, left). The
angle between calibrated north N and the projection of M is
the rotation around G. The vector G should point in the in-
verse direction of the normal from the devices screen. We
use this information (along with the magnetic rotation) to
calculate the absolute rotation of the device.

4.3. Feature Selection

When tapping the camera with two fingers (instead of one),
the camera image is displayed full screen. The view can
be set to three different modes: Creation, Modification and
Pick.

In Pick-Mode a feature-point can be picked to create a new
constraint. Modification-Mode allows the points to be moved
around the image. In Creation-Mode new feature-points can
be added.

When defining features on a multitouch device, the user
needs some assistance. One common approach is to mag-
nify the screen region where the users fingers are pointing.
The placement of this magnification is critical for its usabil-
ity. It must be presented in a region of the screen that is not
obscured by the users hand.

Figure 9: Rotation around the gravity vector (left). Result of
edge enhancement (right)

To assist the user further, we implemented an edge de-
tection. We use multiple filter and recognition passes on the
input image and combine them to the final edge enhance im-
age (Fig. 9 right). The following images are blended using
the specified percentage as weight:

e Grayscale image (20%)
e Canny filtered image (30%)
e Lines from a Hough transformation (50 %)

The edge image is used as an alternative view in the mag-
nification. If the user wishes, a corner detection algorithm
locates the edge closest to the input and moves the feature
point to that location. This allows subpixel exact positioning
of feature points even on multitouch devices.

(© The Eurographics Association 2010.

F. Bauer & M. Stamminger / Assisted Multitouch Image-Based Reconstruction 31

5. User Interface

With multitouch enabled gestures, users can navigate a 3D-
scene with ease. A basic overview is given in [Sel08]. In
our implementation a single finger move rotates the scene
around its centre. Moving two fingers translates the scene,
and using a pinch-gesture zooms in and out. Picking is in-
tuitive as well using a single tap. Tapping with two fingers
opens the view of the last used camera object. For our re-
construction task, we need to provide additional gestures to
allow object transformations and constraint creation.

Most tests were performed on an iPhone 3G-S. The phys-
ical size of the devices screen makes it impossible to display
all necessary controls at once. To compensate this restriction,
our App uses context aware glyphs and overlays.

When an object is picked, it is augmented by several
glyphs that provide controls for tasks like moving, rotating
and item picking. Fig. 10 (left) shows these glyphs. When an
item is selected it can either be modified (Fig. 10, right) or
it can be the working item of a new constraint. In that case
we also need to pick the anchor item in the same manner.
Fig. 4 (left) demonstrates the creation of a new constraint.
The cube is the working object. The vertex marked with the
purple circle is the working item. The sphere (augmented by
the picking-glyphs) is the anchor and the line marked with
the orange circle is the anchor item. This creates a constraint
that ensures that the selected vertex stays on the spheres sur-
face.

‘ }'E‘f’

Figure 10: Cube augmented by pickable glyphs (left). Mov-
ing the marked (purple circle) line (right).

Together these concepts provide a very natural reconstruc-
tion experience. The concept of inter object constraints al-
lows for precise models and is very useful in the context of
multitouch reconstruction.

Once agents are created, they are stored in a sorted list.
We allow the user to modify that list in our user interface.
This way we can delete unneeded or faulty agents or change
the order the agents are executed in. Reordering agents might
have an effect on the resulting scene, as most agents use the
scene state created by previous agents to calculate their pa-
rameters in the Evaluation kernel.

6. Results

We built three different scenes. The toy church from Fig. 1
was reconstructed on an iPhone 3G-S. We used multiple

(© The Eurographics Association 2010.

cameras to enhance the textures for different views. All im-
ages were taken with the iPhone and automatically posi-
tioned. The derived orientations in the scene were very close
to the ones reconstructed (less than 1% off). The position
information was not used, as the camera locations were to
close. The images were uncalibrated.

Figure 11: Reconstruction of a house in Rome

Fig. 11 shows a simple building. It is created from 7 prim-
itives and one camera. The model in Fig. 12 shows a wooden
Viking Church. It is composed from 13 cube primitives some
modified using line-split agents to resemble a roof. A single
camera was used.

As we mentioned in the introduction, our system also pro-
vides a very user-friendly way to model simple scenes with
nothing but multitouch gestures. Fig. 13 shows a model of
a figure created with our system on an iPhone. Moving the
spheres attached to the arms, also rotates and stretches that
arm. This behaviour is implicit in our system as executing all
agents in sequence simply enforce the constraints that were
used to model the figure.

The reconstruction tests on an iPhone show that for most
changes the speed of the iPhone CPU is sufficient. Most user
interactions are additions of new primitives or agents. In that
case, the number of agents we need to execute is small com-
pared to the number of total agents. In rare cases, when a

Figure 12: Reconstruction of a Viking Church

32 F. Bauer & M. Stamminger / Assisted Multitouch Image-Based Reconstruction

Figure 13: Model with basic inverse kinematics

modified agent alters an object that is used as anchor in many
other agents, the speed is not sufficient. Since every agent
takes a different amount of time (depending on the initial
parameter values and the type of the agent), it is difficult
to specify the maximum number of agents we are able to
execute at interactive frame-rates. In our practical test the
average limit was around 15-20 agents.

For most tasks, our system scales much better than the
traditional global optimization. When a user enhances the
scene, we only need to re-evaluate a very small subset of
agents with a low dimensional parameter vector. In the case
of global optimization we would need to reevaluate the com-
plete set of constraints for all available parameters resulting
in a noticeable slower reconstruction for large scenes.

7. Conclusions

The results of our test on the iPhone show, that a global, high
dimensional optimization would be impractical with limited
CPU power. Through our design we work around this limi-
tation, by only evaluation a few lightweight agents most of
the time. Only in rare cases do we have to execute all or a
sufficient high number of agents that the user will experience
lag.

Reconstruction using only multitouch gestures, without
any help from a keyboard or high precision pointing de-
vices feels quite natural. The software is easy to understand
and simple to use. The features of modern devices - like ac-
celerometer, GPS or compass - make it very easy to estimate
the initial position of a camera, which is of great importance
for a working reconstruction.

Describing the scene by a multi-agent system proofed to
be even more flexible than we initially thought. It is quite
simple to enhance the system with new agents, as they each
perform a local and very small program (in our experience
max. 10 lines of code). Together, they provide a system pow-
erful enough to perform many kinds of modelling tasks. This
includes surface reconstruction of point clouds, which we

did not discuss in this paper. Especially the *-on-point agents
are very useful in that line of work.

The size of the scene for reconstruction on an iPhone is
limited - foremost by the very small screen. Devices like
the iPad or Microsoft’s Surface are better suited. Both plat-
forms could leverage the benefit of our system, offering big-
ger screens and faster CPUs.

References

[BB88] BARZEL R., BARR A. H.: A modeling system based
on dynamic constraints. In SIGGRAPH ’88: Proceedings of the
15th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1988), ACM, pp. 179-188. 2

[DTM96] DEBEVEC P. E., TAYLOR C. J., MALIK J.: Modeling
and rendering architecture from photographs: a hybrid geometry-
and image-based approach. In SIGGRAPH ’96: Proceedings of
the 23rd annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 1996), ACM, pp. 11-20.
1,2

[KGC97] KWAITER G., GAILDRAT V., CAUBET R.: Interactive
constraint system for solid modeling objects. In SMA '97: Pro-
ceedings of the fourth ACM symposium on Solid modeling and
applications (New York, NY, USA, 1997), ACM, pp. 265-270. 2

[MKLO7] MASRY M., KANG D., LIPSON H.: A freehand sketch-
ing interface for progressive construction of 3d objects. In SIG-
GRAPH °07: ACM SIGGRAPH 2007 courses (New York, NY,
USA, 2007), ACM, p. 30. 2

[Mor77] MORE J. J.: The Levenberg-Marquardt algorithm: Im-
plementation and theory. In Numerical Analysis (Berlin, 1977),
Watson G. A., (Ed.), Springer, pp. 105-116. 4

[MSR09] MURUGAPPAN S., SELLAMANI S., RAMANI K.: To-
wards beautification of freehand sketches using suggestions. In
SBIM ’09: Proceedings of the 6th Eurographics Symposium on
Sketch-Based Interfaces and Modeling (New York, NY, USA,
2009), ACM, pp. 69-76. 2

[MZWVGO07] MULLER P., ZENG G., WONKA P., VAN GOOL
L.: Image-based procedural modeling of facades. In SSIGGRAPH
"07: ACM SIGGRAPH 2007 papers (New York, NY, USA, 2007),
ACM, p. 85. 2

[Sca85] SCALES L. E.: Introduction to non-linear optimization.
Springer-Verlag New York, Inc., New York, NY, USA, 1985. 4

[Sel08] SELKER T.: Touching the future. Commun. ACM 51, 12
(2008), 14-16. 7

[SNO1] ScHMIDT J., NIEMANN H.: Using quaternions for
parametrizing 3-d rotations in unconstrained nonlinear optimiza-
tion. In VMV ’01: Proceedings of the Vision Modeling and Vi-
sualization Conference 2001 (2001), Aka GmbH, pp. 399-406.
4

[SSS06] SNAVELY N., SEITZ S. M., SZELISKI R.: Photo
tourism: exploring photo collections in 3d. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers (New York, NY, USA, 2006),
ACM, pp. 835-846. 2

[WTJ*03] WILCZKOWIAK M., TROMBETTONI G., JERMANN
C., STURM P., BOYER E.: Scene modeling based on constraint
system decomposition techniques. In ICCV ’03: Proceedings
of the Ninth IEEE International Conference on Computer Vision
(Washington, DC, USA, 2003), IEEE Computer Society, p. 1004.
2

[WWO01] WOOLRIDGE M., WOOLDRIDGE M. J.: Introduction
to Multiagent Systems. John Wiley & Sons, Inc., New York, NY,
USA, 2001. 2

(© The Eurographics Association 2010.

