
Copyright © 2009 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
Sketch-Based Interfaces and Modeling 2009, New Orleans, LA, August 1–2, 2009.
© 2009 ACM 978-1-60558-602-1/09/0008 $10.00

EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)
C. Grimm and J. J. LaViola Jr. (Editors)

Sketching Subdivision Surfaces

M. Bein1 and S. Havemann 2 and A. Stork1 and D. Fellner1,2

1GRIS, TU Darmstadt & Fraunhofer IGD, Germany
2Institut für ComputerGraphik & WissensVisualisierung (CGV), TU Graz, Austria

Abstract

We describe a 3D modeling system that combines subdivision surfaces with sketch-based modeling in order to meet
two conflicting goals: ease of use and fine-grained shape control. For the excellent control, low-poly modeling is
still the method of choice for creating high-quality 3D models, e.g., in the games industry. However, direct mesh
editing can be very tedious and time consuming. Our idea is to include also stroke-based techniques for rapidly
modeling regular surface parts. We propose a simple and efficient algorithm for converting a 2D stroke to a
control polygon suitable for Catmull/Clark subdivision surfaces. We have realized a small but reasonably rich set
of interactive modeling tools to assess the expressiveness of stroke-based mesh design with a number of examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Modeling packages I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

The design of high-quality 3D shapes from scratch still is a
difficult problem. A search for “3d modeling tutorial” on
www.youtube.com returns about 27500 hits (April 2009).
A quick evaluation of the first 60 video tutorials (ranked
by relevance) yields the surprising result that about 80%
of them are concerned with direct editing of low-polygon
meshes. Although this is of course not a rigorous empirical
study, it nevertheless indicates that there is a demand for ef-
ficient mesh editing methods.

It is an interesting research question why polygonal mod-
eling is still so predominant despite the many alternative
methods for shape design. NURBS, implicit surfaces, space
carving, point clouds, Z-painting, and many others, all have
their specific user community. But apparently, many shape
professionals prefer stitching together surfaces manually,
typically quad by quad. The obvious advantage of this ap-
proach is controllability: Manipulations are very local, typ-
ically either single vertices are dragged or faces are split or
joined by editing individual edges. Like shape design in gen-
eral, polygonal modeling usually proceeds in a coarse-to-
fine manner. Another observation is that most often, quads
are used and not triangles. Regular quad meshes are com-
patible with parametric (e.g., tensor product) surfaces, and

Figure 1: Our system uses strokes for (a) sketching initial
faces, (b) path sweeping, (c) extrusions, and (d) lofting.

they are apparently well suited for man-made shapes. How-
ever, sometimes more flexibility is required than a regular
grid can provide. In such cases, irregular vertices (valence
�= 4) or faces (triangles, pentagons, n-gons) are used.

http://www.youtube.com/results?search_query=3d+modeling+tutorial
http://www.eg.org
http://diglib.eg.org

M. Bein & S. Havemann & A. Stork & D. Fellner / Sketching Subdivision Surfaces

This was the motivation for us to investigate how rapid
stroke-based design can be integrated into a mesh model-
ing framework. Sketching should be used in such a way that
primarily quad faces are produced. Furthermore, our system
uses Catmull/Clark subdivison surfaces. This reflects a trend
in professional polygonal modeling: Catmull/Clark surfaces
are compatible with low-poly modeling; they are well suited
for quadrangles; and they allow to get free-form surfaces
“for free”, as basically every manifold (water-tight) low-
poly mesh is suitable as control mesh for Catmull/Clark.

2. Related Work

Sketching is often perceived as a method for the early con-
ceptual design phase, focusing on rapid model creation. Ac-
curate and detailed geometric model construction and ma-
nipulation still is the domain of high-end modeling systems
like Maya, Rhino, SolidWorks, etc., with WIMP-style (win-
dows, icons, menu, pointer) user interfaces. The challenge
of sketch-based interfaces for modeling (SBIM) is to bring
together the best of the two worlds.

Methods for stroke-based shape editing can be roughly
divided into semi-discrete and semi-continuous methods.
Semi-continuous methods operate directly on the surface,
e.g., on densely sampled triangle meshes or point clouds.
Examples include the pioneering Teddy application [IMT99]
or recent inflation-based systems like Matisse [BPCB08] or
Répousse [PC08]. Another class of approaches uses silhou-
ette strokes or contour strokes, mainly to edit existing sur-
faces, for example the work from Nealen, Alexa et al., e.g.,
FiberMesh [NSACO05, ZNA08, NISA07].

Our system belongs to the class of semi-discrete methods,
where strokes control only discrete proxy objects, which
in turn manipulate the surface. One example are curve-
based models: The FreeDrawer system from Wesche et
al. [WD00, WS01] allows drawing curve networks between
which surfaces are suspended; Schkolne et al. [Sch06] draw
surface strips with free hands. Hui et al. generate surfaces
from profile curves [HL07], and Wang et al., decompose
suitable 3D objects into tubular pieces whose axis can be
controlled with strokes. Skeletons can also be used to control
implicit surfaces, as shown by Sugihara et al. [SdGWS08].

Very few sketch-based design systems are concerned with
editing low-poly models, or with sketching control meshes
for subdivision surfaces. Much early work was on recogniz-
ing “clean” polygonal objects from 2D sketches. However,
the challenge in editing polygonal surfaces with strokes is
that strokes have a continuous nature; so at some point, in-
formation is lost in the conversion. – The survey from Olsen
et al. [OSSJ09] mentions five major open problems of SBIM.
One is Model Quality, and they point out that bridging the
gap between surface quality and ease of use is a major chal-
lenge. Another problem is Precision, where the control-point
paradigm is usually perceived as being superior to semi-
continuous editing. We want to address these two problems.

3. Stroke Processing

The key functionality of our system is the conversion of a
sketched stroke to a reasonable control polygon. It shall de-
scribe a curve that reflects “best” the shape of the sketched
stroke, furthermore

• the control polygon should have as few control points as
possible,

• control points should be tagged as smooth or sharp (see
sec. 4).

Since Catmull/Clark is a generalization of uniform bi-cubic
B-spline surfaces [CE78], we can use a B-spline approxima-
tion scheme, e.g., least squares minimization:

n

∑
i=1

|di − c(ti)|2 → min

The di are the stroke data points, ti are the parameters as-
signed to the data points, and c(ti) is the B-spline evaluated
at ti. The minimization has a unique solution which can be
found by solving a system of linear equations. The problem
remaining is to assign suitable parameter values ti for the
points di of the sketch to solve for. Keep in mind that we use
uniform B-splines and that assigning parameters to points
automatically induces to segment the stroke. To solve that
task we use this simple but effective greedy algorithm:

Initialization. The algorithm starts with a single segment
for the whole input curve, control points are the first and
last data point.

Parameters. As the B-spline is uniform, parameters must
be assigned to data points such that every segment has the
same length. We use a simple chord length mapping.

Approximation. Solving the minimization problem yields
the control polygon

Evaluation. If all data points are closer to the correspond-
ing curve points than the threshold, the algorithm termi-
nates. If not, a new B-spline knot is inserted at the data
point with the largest deviation adding another B-spline
segment and control point.
In case the data point with the largest deviation is a knot,
or very close to a knot, this knot is tagged as sharp in-
stead of, e.g., increasing the knot multiplicity. This typi-
cally forces a tangent discontinuity.
In any case, another iteration is done (goto Parameters).

The algorithm is illustrated in Fig. 2. The accuracy can be
controlled by the distance threshold which terminates the al-
gorithm. The simple rule to insert the data point with the
largest deviation as new knot does not always lead to the best
approximation in the mathematical sense. But this heuris-
tic has proven to work very well in the test cases because
users quickly understand how it works. Especially the cor-
ner selection works reliably and transparently, even without
any explicit corner detection scheme being applied (for an
overview of corner detection methods see [Ham09]).

62

M. Bein & S. Havemann & A. Stork & D. Fellner / Sketching Subdivision Surfaces

Figure 2: Iterative Approximation of a sketched curve. The left image shows the initial curve approximation with only two knots,
the line segment between first and last data point. The distances between the sketch (orange) and the B-spline curve (blue) are
shown in red. The next images show successive iterations, with new knots being inserted at the data points with the largest
deviation. The last picture shows the seventh iteration, where 5 knots were added and 2 knots were tagged as sharp.

Figure 3: Given similar strokes, the sketch processing yields
very similar control polygons. Users perceive the method
therefore as very predictable, and experience not much frus-
tration from unexpected results.

To assess the usability of the method we have urged users
to sketch repeatedly some simple shapes (Fig. 3). Due to
the uniform knot spacings, the control vertices are also quite
evenly spaced along the curve. Although the number of con-
trol points may “jump”, their spacing remains stable. – The
result of the stroke processing is a control polygon, i.e., a
list of tagged points (smooth or sharp). The knots are uni-
form, so no explicit knot vector is necessary. Thus, the con-
trol polygon can be directly used with Catmull/Clark.

4. Underlying Shape Representation

The system integrates Catmull/Clark surfaces with stan-
dard B-reps to combine free-form with polygonal modeling.
Without restrictions the edges of the B-rep can be tagged as
smooth (green) or sharp (red). When all edges are sharp, the
surface is rendered as standard polygonal mesh (polygonal
faces); face planarity is not enforced, though. Each face with
at least one smooth edge is rendered as Catmull/Clark sur-
face (smooth faces). Finally, sharp faces are flat like polyg-
onal faces but can have B-Spline boundaries and are used at
the transition between smooth and polygonal surface parts.

The control mesh is a boundary representation (B-rep) im-
plemented in C++ as half-edge data structure. The resulting
shape representation is therefore called combined B-rep or
short cB-rep. For rendering, cB-reps use an optimized com-
putation scheme that allows gap-free tesselation-on-the-fly
as well as adjusting the level-of-detail for each face in every
frame in a view dependent way.

Figure 4: The same control mesh with different sharpness
flags. Sharp edges are red, smooth edges green.

cB-reps are efficient for rendering but provide no model-
ing functionality. This is contributed by another layer, finally
resulting in progressive combined B-reps (pcB-reps) [HF08].
They act as a middleware allowing geometry modification
exclusively through Euler operators. This is a small but
provably closed and complete set of operations for manifold
meshes, for example makeEF to insert a diagonal to a face,
or makeEV to split up a vertex in two vertices connected by
an edge. There are 10 Euler operators in total:

makeVEFS makeEV makeEF makeEkillR makeFkillR
killVEFS killEV killEF killEmakeR killFmakeR

The pcB-reps keep a log of all operations applied to the
mesh, the Euler sequence. Euler operators are invertible.
This is a highly desirable property for interactive shape de-
sign: It allows to undo the result of a previous modeling op-
erations, and to replace it by another, e.g., when dragging in-
teractively a control vertex, or adjusting when an extrusion.
So undo/redo is provided on the middleware layer.

Euler operators are typically not directly exposed to end-
users. Instead, they are a basis for creating higher-level mod-
eling operations, e.g., extrusion or lofting, as described next.

63

M. Bein & S. Havemann & A. Stork & D. Fellner / Sketching Subdivision Surfaces

a) b) c) d) e)

f) g) h) i) j)

Figure 5: Example of a modeling session to create a fancy drinking mug. First the base is created by rotational extrusion of the
selected square (a,b). Then the square face is transformed to a star shaped face by lofting (c,d). This face is slightly rotated to
the side, and a path extrusion is sketched (e) which results in the glass stem shown in (f). A square face is formed out of the star
shaped stem using low level modeling operations (g). The glass is completed with a rotational extrusion of the square face on
top of the stem (h). Switching the sharpness of edges to smooth finally rounds the surface of the glass (i,j).

5. Modeling Tools

Our sketching tool uses the gizmo approach. A gizmo is a 3D
object that stands for an operation that can be applied. Our
most common gizmos are sticks for edge-based operations
and balls for vertices and faces. Operations are typically is-
sued by clicking on a gizmo and dragging. Since there are
many modeling operations, all three mouse buttons had to
be seized for almost all gizmos. Advantage of the gizmo
approach is that it is very immediate and visual compared
to, e.g., menu selection or keyboard shortcuts. Our system
needs no conventional 2D GUI elements at all, not even as
head-up displays; everything is displayed in 3D. This makes
it suitable for non-GUI environment, e.g., modeling in a web
browser, in a presentation environment, or in a CAVE.

The disadvantage of the gizmo approach is that it is
mostly non-textual, i.e., not very descriptive at first. How-
ever, users tend to learn the 3D toolkit faster by trial-and-
error than by reading the manual, which is some indication
that the method is intuitive. Conventional non-3D menu se-
lection and shortcuts are used in our system for activating
switching between one of three available operation modes:

1. Sketching: Stroke-based modeling operations
2. Drag and flag: Moving components, sharpness edits
3. Insert and remove of vertices or edges

Each of these modes provides in fact its own assignment
for each gizmo of functions to mouse buttons. I.e., when
clicking on a vertex ball, the left mouse button behaves dif-
ferently depending on which operation mode is active. This
is nonetheless intuititive since the operation models group
similar functionalities together.

5.1. First Operation Mode: Sketching

Creation of a new component with a sketched silhouette
(Fig. 6). The user draws the silhouette of the intended
shape onto a drawing plane. When releasing the right
mouse button, a two-sided face is created and extruded.

Figure 6: Creating a new object by sketching a face.

Rotational extrusion of a face with a sketched silhouette
(Fig. 7). The user selects a face and holds down the mouse
button on a vertex to initialize the rotational extrusion.
This brings up a drawing plane for the user to sketch the
extrusion. The plane contains the vertex, face normal and
face midpoint. When the mouse button is released, the
face is extruded in normal direction, and scaled, according
to the silhouette. To keep the tool simple, the center of the
rotational extrusion always lies on the ray in normal di-
rection emanating from the face midpoint. – As shown in
Fig. 7, rotational extrusions can be copied to other faces.

Lofting a face with a sketched silhouette (Fig. 8). By select-
ing a face and clicking on the normal stick the user brings
up a drawing plane. It is parallel to the selected face and
can be slided up or down. Once it is fixed, a closed curve
can be drawn. When the mouse button is released, a lofted
face in the shape of the curve is created and connected

64

M. Bein & S. Havemann & A. Stork & D. Fellner / Sketching Subdivision Surfaces

Figure 7: Sketch of a rotational extrusion, the result with
transparent material, and the result of copying the extrusion
to the heart-shaped object.

(with quads) to the previous face. The lofted face must
have the same number of vertices as the selected face,
which restricts the quality of the approximation.

Figure 8: A rectangle shape, a lofting sketch (yellow) and
the original silhouette (brown) on a plane above the shape.
Right: the result of the lofting operation.

Path Extrusion (Sweeping) (Fig. 9). Holding the right
mouse button on a face midpoint brings up a drawing
plane. It contains the face normal, face midpoint, and the
cross product of the viewing direction and face normal.
The user can sketch the path of the extrusion on the plane.
When releasing the mouse button, copies of the selected
face are placed all along the path and connected.

Figure 9: A model of a vase, a sketch of a extrusion path and
the result of the sketching operation.

Face Path Insertion along a path sketched from one vertex
to another vertex of the same face (Fig. 10). The face is
split in two by inserting a path of valence 2 vertices.

5.2. The two other Operation Modes: Drag-and-Flag,
Insert-and-Remove

These modes are for direct low-level manipulations of the
control mesh components. Every sketch operation, which is

Figure 10: A sketch on the surface inside a face and the
inserted edges which split the face along the sketched path.

quickly done, is typically followed by tedious fine-grained
shape editing, where many action sequences of the form

selecting – adjusting – view change

are issued. The possible adjustments are:

• Drag a vertex parallel to the view plane
• Drag a face parallel to the view plane
• Rotate a face around the face center
• Switch the sharpness of a vertex, edge and face
• Insert a new vertex on an edge
• Insert a new edge between two vertices
• Remove individual vertices or edges
• Connect two faces of the same degree

Additional operations that are issued less frequently:

• Rotate a face to the direction of the mouse position
• Copy a rotational extrusion to another face (Fig. 7)
• Change the material of a face
• Undo the last mesh operation

Figure 5 shows an exemplaric modeling session that illus-
trates what is possible through the combination of the tools.

6. GML Scripting

Our sketch-based 3D modeling toolkit is implemented in
GML. The Generative Modeling Language from Havemann
[Hav05] is a very simple stack-based programming lan-
guage, syntactically very similar to PostScript. GML pro-
vides operators for geometric calculations in 3D, and it pro-
vides an operator layer on top of the pcB-rep meshes (sec-
tion 4). Euler operators are available for modeling on the
half-edge level, as well as higher-level modeling tools.

GML scripting yields the necessary flexibility to try out
quickly several different approaches to sketch-based model-
ing. The integration of the sketching functionality was not
difficult, it was essentially sufficient to add only two new
GML operators (which are implemented in C++):

[p0 ... pn] gaussian-filter −→ [q0 ... qn]
[a0 ... an] imin imax ε approximate −→ [mi] [bi]

The gaussian-filter operator smoothes out the sequence pi
of stroke input points, pushing as result on the stack an ar-
ray qi of 3D points that has the same size as the input. This
operation can be easily iterated. The approximate operator

65

M. Bein & S. Havemann & A. Stork & D. Fellner / Sketching Subdivision Surfaces

takes as input the (possibly smoothed) stroke points ai. It
performs i iterations, imin ≤ i ≤ imax, of the algorithm de-
scribed in section 3, with ε as accuracy threshold (distance
stroke/B-spline). The result is the sequence bi of B-spline
control vertices, and an array mi of (integer) flags indicating
which nodes are sharp (crease) or smooth.

1 dict {
2 mouseButton 1 eq {
3 /pt pNear pFar (0,0,1) 0.0
4 intersect_lineplane pop
5 def
6 mouseEvent 1 eq { /points [pt] def } if
7 mouseEvent 2 eq { points pt append } if
8 mouseEvent 3 eq {
9 /point points 4 { gaussian−filter } repeat def

10 points 4 40 0.2 approximate
11 /cps exch def pop

12 deleteallmacros
13 cps 5 poly2doubleface
14 (0,0.01,5) extrude
15 pop

16 bns−clear
17 0.02 /stdBlue bns−style−stick
18 points 0 0 bns−poly
19 0.02 /stdRed bns−style−stick
20 0.04 /stdRed bns−style−ball
21 cps 0 0 bns−poly
22 cps { bns−ball pop } forall
23 } if
24 } { ioremoveall } ifelse
25 } iocapturemouse

Figure 11: GML code to create a double-sided polygon from
an input sketch. It registers a mouse callback that keeps
adding points as long as the left-button is dragged. On re-
lease it produces a model similar to the one shown.

The example in Fig. 11 shows the use of these operators.
The iocapturemouse operator (line 25) registers a mouse
callback function. The left button activates a drag operation
(lines 3-23), any other button unregisters the callback (line
24). First of all, the mouse pick ray from point pnear to pfar
is intersected with the (x,y)-plane, producing point pt (lines
3-5). A pick (left-push) initiates a new stroke (line 6), drag
keeps adding points (line 7). When the button is release, a
new 3D object is created: The stroke is filtered 4 times (line
9), and then the control polygon is computed and stored as
cps. The multiplicities are discarded (lines 10/11).

Line 12 destroys all existing Euler sequences, line 13 cre-
ates a double-sided face from the control polygon, leaving
a halfedge on the stack. It is consumed by the extrude op-
erator (line 14), which extrudes the face by 0.01 in vertical
direction without shrinking it; the 5 is a mode flag, just as

with poly2doubleface. The halfedge produced by extrude is
discarded in line 15. Lines 16-22 finally just show the face
boundary in blue and the control polygon in red (tube radius
0.02). The image clearly shows the effect of the required ap-
proximation quality of only 0.2. – This example shows that
reasonable results can be obtained quickly with GML.

7. Results and Discussion

The sketching tool does not yet enjoy a large user base,
which impedes a rigorous empirical evaluation. Nonetheless
good results have been produced and important conclusions
can be drawn. Although the sketching functions modify the
cB-Rep control mesh automatically it is still important for
the user to understand the mechanism of the control mesh.
Knowing which modifications have to be done to obtain a
specific result, or to prepare the control mesh for subsequent
sketching operations can very much improve the quality of
the resulting model. To have a construction process in mind
is very helpful to create a model effiently making good use
of the sketching functions.

Both the cB-Rep mechanism and procedural thinking can
be learned by using the sketching tool. As the interaction
is done intuitively in 3D, and the number of operations is
small, the whole sketching tool is easy to learn. Explaining
the tool to test users and giving a short introduction takes
only about 15 minutes. Another 15 minutes are sufficient for
the user to exercise the functions, basic principles, and to
collect first experiences. Then the user is ready to create a
first model. Figure 12 shows the first results of two users
who never created a 3D-model before in their lives.

The test user of the table lamp almost started right away
with creating models. After 5 minutes of experiencing the
tool the user started to create the table lamp and success-
fully finished the construction within a few minutes. The
user of the alien like creature spent more time to experience
the sketching tool. Several low level mesh modifications like
inserting edges and moving vertices where needed on the

Figure 12: A table lamp and a not classified alien like crea-
ture (maybe a paperweight) created by two test users.

66

M. Bein & S. Havemann & A. Stork & D. Fellner / Sketching Subdivision Surfaces

Figure 13: High-end results. Fountain (30min), Teddy
(60min) and a shelf reconstructed from a picture (10min).
The bottom object is inspired by furniture from Zaha Hadid.

model which took about half of the 20 minutes construction
time. With some more time spent experiencing the sketching
tool we created many models, see Figures 14 and 13.

In some situations the sketching tool does not behave as
intended by the user. Row 1 in figure 15 shows the sweep-
ing operation creating self intersections because of a large
base face. Row 2 shows the lofting operation, which requires
enough control points to be available for approximating the
sketch. But in this case the four available control points al-
low to approximate the sketched silhouette only as a circle.
Row 3 shows the creation of a new face which works as in-
tended, but trying to create the table lamp this way is tedious.

In our test cases the sketching tool proved to successfully
create freeform models fast. The sketching operations en-
courage a procedural modeling style, and the non-sketching
operations allow changing models intuitively and precisely.
The tool allows creating any possible manifold surface in
GML without the need to resort to coding the construction
in a stack-based language, for which GML is often used.

Figure 14: Models created with GML sketching. Top: a
mythical creature (25min) and a goblet (6min). Bottom: a
heart-shaped teapot (25min) and a sword (20min).

8. Conclusions and Future Work

Our experience so far indicates that the following extensions
would be very useful:

• Oversketching to edit a sketch afterwards
• Life update of the control polygon while skeching
• Grid snapping for the control mesh, or for the control

polygon of a sketch; alignment to existing geometry
• Symmetry planes for mirroring objects and operations
• Surface diagnosis to support control point placement
• Advanced sketching operations: Variable width sweeping,

rotational extrusion with variable center and normal
• Moderate head-up display to improve overall usability

Since our sketching tool is realized in GML, a language
for procedural modeling, the obvious next step is to find
ways of combining sketching with procedural modeling.
Only a first step in this direction is copying a rotation extru-
sion to other faces. A key task for realizing more involved
procedural operations is to extract rules out of the user ac-
tions; or to give the user to possibility to specify rules explic-
itly. All the user’s selections have certain relations to each
other. For instance, in our heart shaped teapot (figure 14 (c)),
the handle and the nozzle are on opposite sides. This relation
can not be captured automatically when the user just selects
arbitrary faces. Without the rule "‘opposite to each other"’ it
is not possible to apply the construction process to a different
basic shape, like a circle, to create a round teapot. Translat-
ing selections into rules is essential for more involved pro-

67

M. Bein & S. Havemann & A. Stork & D. Fellner / Sketching Subdivision Surfaces

Figure 15: Examples of confusing results.

cedural models. Another promising challenge is including
flow control like if-else conditions or loops. One way to re-
alize these features is implementing an intelligent user inter-
face that visualizes procedural rules and dependencies, and
offers gizmos for entering rules, attaching parameters, creat-
ing functions, and for flow control.

Another promising area for extensions is high-quality
surface reconstruction. In many industrial applications,
e.g., car design, the NURBS model must be “better” than
the scanned surface, which is possible only if the reconstruc-
tion is controlled by an experienced human operator. With
current technology, building a freeform model on top of a
scan is very, very tedious. With specialized sketch model-
ing functions it may be possible to generate a subdivision
control mesh interactively from a given triangulated surface.
The user might sketch on the surface of the object while
the approximation generates control polygons and meshes.
The benefit would be a great reduction of surface complex-
ity and the generation of semantically meaningful meshes.
The goal is to obtain a coarse but accurate control mesh, be-
cause fewer polygons would increase the re-usability of a
mesh and ease its further processing.

Acknowledgement

We gratefully acknowledge the generous support from
the European Commission for the research project 3D-
COFORM (3D COllection FORMation, 3D-coform.eu)
under grant number FP7 ICT 231809.

References

[BPCB08] BERNHARDT A., PIHUIT A., CANI M.-P., BARTHE

L.: Matisse: Painting 2d regions for modeling free-form shapes.
In Eurographics Workshop on Sketch-Based Interfaces and Mod-
eling (SBIM) (Annecy, France, june 2008), Alvarado C., Cani M.-
P., (Eds.), pp. 57–64.

[CE78] CATMULL E. C. J.: Recursively generated b-spline sur-
faces on arbitrary topological meshes. Computer Aided Design
10 (1978), 350–355.

[Ham09] HAMMOND T.: Introduction to sketch recognition. In
Eurographics 2009 Tutorial (April 2009), Eurographics Associ-
ation.

[Hav05] HAVEMANN S.: Generative Mesh Modeling. PhD thesis,
Braunschweig Technical University, Germany, November 2005.

[HF08] HAVEMANN S., FELLNER D.: Progressive combined b-
reps - multi-resolution meshes for interactive real-time shape de-
sign. Journal of WSCG 16, 1-3 (2008), 121–135.

[HL07] HUI K. C., LAI Y. H.: Generating subdivision surfaces
from profile curves. Comput. Aided Des. 39, 9 (2007), 783–793.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A
sketching interface for 3d freeform design. In Proceedings of
SIGGRAPH 99 (Aug. 1999), Computer Graphics Proceedings,
Annual Conference Series, pp. 409–416.

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: designing freeform surfaces with 3d curves. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 papers (New York, NY,
USA, 2007), ACM, p. 41.

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-
OR D.: A sketch-based interface for detail-preserving mesh edit-
ing. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (New
York, NY, USA, 2005), ACM, pp. 1142–1147.

[OSSJ09] OLSEN L., SAMAVATI F. F., SOUSA M. C., JORGE
J. A.: Technical section: Sketch-based modeling: A survey. Com-
put. Graph. 33, 1 (2009), 85–103.

[PC08] PUSHKAR J., CARR N. A.: Répousse: Automatic infla-
tion of 3d artwork. In Eurographics Workshop on Sketch-Based
Interfaces and Modeling (SBIM) (Annecy, France, june 2008),
Alvarado C., Cani M.-P., (Eds.), pp. 49–55.

[Sch06] SCHKOLNE S.: Making digital shapes by hand. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Courses (New York, NY,
USA, 2006), ACM, pp. 84–93.

[SdGWS08] SUGIHARA M., DE GROOT E., WYVILL B.,
SCHMIDT R.: A sketch-based method to control deformation in a
skeletal implicit surface modeler. In Eurographics Workshop on
Sketch-Based Interfaces and Modeling (SBIM) (Annecy, France,
june 2008), Alvarado C., Cani M.-P., (Eds.), pp. 65–72.

[WD00] WESCHE G., DROSKE M.: Conceptual free-form styling
on the responsive workbench. In VRST ’00: Proceedings of
the ACM symposium on Virtual reality software and technology
(New York, NY, USA, 2000), ACM, pp. 83–91.

[WS01] WESCHE G., SEIDEL H.-P.: Freedrawer: a free-form
sketching system on the responsive workbench. In VRST ’01:
Proceedings of the ACM symposium on Virtual reality software
and technology (New York, NY, USA, 2001), ACM, pp. 167–
174.

[ZNA08] ZIMMERMANN J., NEALEN A., ALEXA M.: Sketch-
based interfaces: Sketching contours. Comput. Graph. 32, 5
(2008), 486–499.

68

http:www.3D-coform.eu

