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Abstract
In this paper we propose a combinatorial model for sketch recognition. Two fundamental problems, the evaluation
of individual symbols and the interpretation of a complete sketch scene possibly containing several symbols, are
expressed as combinatorial optimization problems. We settle the computational complexity of the combinatorial
problems and present a branch and bound algorithm for computing optimal symbol confidences. To handle sketch
scenes in practice we propose a modest restriction of drawing freedom and present an algorithm which only needs
to compute a polynomial number of symbol confidences.

Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document and Text Processing]: Graphics
Recognition and Interpretation

1. Introduction

The history of pen-based computer systems begins in the 60s
when Ivan Sutherland presented SketchPad [Sut63]. Today
the idea has materialized in devices with different form fac-
tors. The most prominent example is probably the Tablet PC.
But they all have in common that pen-interaction should
serve for better usability. For example, the computer should
recognize handwritten text, sketches, diagrams, etc. This
yields a real added value compared to traditional pen and
paper interaction. In this paper we focus on the problem
of recognizing multi-domain sketch scenes of hand-drawn
symbols.

There has been a growing interest in this area, partly due
to the now readily available pen-based hardware. Recently,
several research groups have attempted to tackle the sketch
recognition problem by following a similar basic line of ap-
proach [Alv04, HD03, HD05, SD05, SPRN02]: a sketch do-
main (e.g., user interfaces) is described by a set of symbols
which may occur (e.g., button, text field, window). Each
symbol can be seen as a template with placeholders for user
drawn strokes. The placeholders are referred to as compo-
nents and are usually associated with a certain geometric
type, such as line, circle, or arc. Constraints describe the re-
lationships between components, e.g., perpendicular, paral-
lel, of equal length. The generic approach for multi-domain

sketch recognition lends itself to the use of a language for
describing symbols. For this purpose we developed the sym-
bol description language SDL on the basis of existing lan-
guages. SDL makes moderate use of XML tags for better
readability. As an example Figure 1 shows a possible SDL
description for a perpendicular trapezoid.

The sketch recognition problem can be stated abstractly
as follows. The input is given by a sketch domain (i.e., in
our case a set of symbols described in SDL) and a sketch
scene which consists of a set of strokes drawn by the user.
A good interpretation is sought for such a sketch scene, i.e.,
a selection of symbols and an assignment of the strokes to
these symbols. The obvious goal is that this interpretation
reflects as closely as possible the symbols which the user
intended to draw.

L1

L2

L3

L4

<symbol name="PTrapezoid">
<components>

L1, L2, L3, L4: Line
</components>
<constraints>

Parallel(L1,L3)
Perpendicular(L1,L2)
PolyLineClosed(L1,L2,L3,L4)

</constraints>
</symbol>

Figure 1: Symbol PTrapezoid: Drawn example with compo-
nents specified and related SDL description.

http://www.eg.org
http://diglib.eg.org
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Note that it is common to preprocess the user’s pen in-
put by segmenting it into strokes with associated geometric
types (line, circle, arc, etc.). Applying this preprocessing is
quite helpful, since it simplifies the problem without restrict-
ing the user. For example, a user may draw the four compo-
nents for the symbol PTrapezoid in Figure 1 with one single
pen movement, or with two movements, or with even more
movements. The segmentation process will always provide
four strokes representing the four components. In this paper
we assume that the strokes have been segmented appropri-
ately and focus on the sketch recognition problem.

From this common starting point various different direc-
tions have been taken in the literature. For instance, sketch
recognition is considered in [SPRN02] as a statistical pars-
ing problem or in [Alv04] as a probabilistic inference prob-
lem based on dynamically constructed Bayesian networks.
We propose to study sketch recognition as a combinatorial
optimization problem. To the best of our knowledge this is a
novelty and at first sight it may seem somewhat surprising,
since recognition problems are usually tackled by methods
developed in the areas of machine learning, computer vi-
sion, or artificial intelligence. But in fact, since finding an
assignment of strokes to symbols is a purely combinatorial
problem, the described setting lends itself to this approach.
In order to consider it as an optimization problem we only
need to define an appropriate objective function. This objec-
tive function must be able to assess the quality of any pos-
sible assignment in form of a confidence value. We derive
such an objective function, motivating it heuristically.

In previous work often the descriptions of the solution ap-
proach, the actually considered search space and the objec-
tive function have been intermingled and not clearly sepa-
rated. An explicitly stated and comparatively simple objec-
tive function within a concise model as ours has its merits.
For one, the actual goal becomes more transparent. As an im-
mediate consequence, it is easier to reason about the chances
of success of various possible search methods. Moreover,
this approach enables the quantitative comparison of the out-
comes of completely different methods on the same scene.

Our contributions and outline. In Section 2 we give a
brief overview of related work. This is followed by the def-
inition of our combinatorial model in Section 3. The model
is an abstract, mathematical description which forms the ba-
sis of a flexible multi-domain sketch recognition system.
Two combinatorial problems arise: the optimal assignment
of strokes to a single symbol, and the optimal assignment
of strokes from a complete sketch scene to possibly many
symbols. We discuss the complexity of these problems by
identifying which variants are NP-hard and which are poly-
nomially solvable. Furthermore, we propose algorithms for
the most general versions (see Sections 4 and ??). We solve
the first problem called MAXSYMBCONF optimally with a
branch and bound algorithm which in the worst case has ex-
ponential running time, but performs well in practice. Under

a commonly made restriction of drawing freedom (strokes
of one symbol must be drawn consecutively) we are able
to give an optimal algorithm for MAXSCENECONF which
only needs to invoke the algorithm for MAXSYMBCONF a
polynomial number of times. The algorithms have been im-
plemented and tested within a framework for sketch recogni-
tion called SketchWork. The easy to use and powerful symbol
description language SDL allows the realization of sketch
recognition applications in a variety of domains. A prelim-
inary experimental analysis with promising results is pre-
sented in Section 6. Due to space limitations we omit proofs
or discussions, e.g., on the combination of confidence val-
ues or on speeding-up techniques for branch and bound. All
these details can be found in the PhD thesis [Pom06].

2. Related Work

Many sketch-based systems allow only gestures for simplic-
ity. Such one-stroke symbols can be classified with the ap-
proach in [Rub91]. Rubine extracts features from training
samples of a gesture and derives a statistics-based recog-
nizer. He uses 13 features, e.g. the distance between first and
last sampling point or the length of the bounding box diago-
nal. The approach is not suitable for multi-stroke symbols as
they are not appropriately characterized by these features.

Segmentation is a well studied problem to normalize the
input strokes for approaches which deal with multi-stroke
symbols. Powerful approaches have been presented in the lit-
erature, see, e.g., [HSN04,ZSDL06]. Although we are aware
that the quality of the segmentation process can heavily in-
fluence the usability of a sketch recognition system we as-
sume that the strokes have been segmented appropriately and
focus on the actual recognition step.

Multi-domain approaches generally make use of sym-
bol description languages to enable a flexible specifica-
tion of sketch domains. Pasternak [Pas94] proposes a de-
scription language to recognize CAD-drawings. Shilman et
al. [SPRN02] use a small set of relations for statistical pars-
ing of sketched scenes. Hammond and Davis [HD03,HD05]
develop LADDER as a dedicated language for sketching.
Our description language SDL was based on the primitives
and constraints of LADDER.

Graph-based approaches are standard in the pattern recog-
nition community. Naturally, these methods apply also for
recognizing hand-drawn sketches. The idea is to encode
geometry, topology or other features of a sketch scene
with a graph. Then, recognizing a symbol means solving a
subgraph-graph isomorphism problem. In [MF02, LMV01]
such approaches are presented. See also [LMV01] for a good
overview of other graph matching methods, e.g. a linear
programming approach [AD93]. [SPRN02] considers sketch
recognition as a statistical parsing problem. Hierarchical
symbols may be defined via a context free grammar. The
basic shapes are one-stroke symbols which are recognized
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with a method described in [Rub91]. Only a small set of con-
straints is supported and the system may not scale very well
to scenes with a large number of strokes (> 500). A multi-
domain sketch recognition framework including the sym-
bol description language LADDER is described in [HD03].
The recognition itself is built upon the rule-based system
Jess. Jess implements the so-called Rete-Algorithm which
requires exponential running time and space in the worst
case [For82]. In [HD05] it is stated that the system may slow
down exponentially with an increasing number of shapes to
be evaluated by Jess. Alvarado [Alv04] presents a frame-
work for multi-domain sketch recognition which also uses
LADDER. Input strokes are used to generate symbol hy-
potheses within a Bayesian network. The hypotheses with
highest probabilities lead to an interpretation of the sketch
scene. With a growing number of strokes the system does
no longer reply in real-time. In [KS04] a hierarchical pars-
ing approach is proposed. The mark-group-recognize strat-
egy is conducted in three steps: First, certain delimiter pat-
terns, so-called markers, are identified. Second, these mark-
ers are used for a spatial analysis of the sketch scene to clus-
ter strokes. Third, each stroke cluster is processed separately
and assigned to a symbol. To apply this method a sketch do-
main must have marker symbols which are easy to identify,
e.g., arrows in a graph, or else recognition quality will suffer.
In particular, it is not clear how stroke clustering works if we
chose a sketch domain without markers.

The work in [SD05] is most closely related to our ap-
proach for interpreting a complete sketch scene as it makes
use of the order in which a user draws the strokes of a sym-
bol. A study has shown that many people draw a given sym-
bol always in exactly the same way. This behavior is used
to train Hidden Markov Models for recognizing sketches.
The approach is polynomial in time. In contrast to our ap-
proach, a training phase is needed before the system can be
used. Sharon and van de Panne [SvdP06] present a model to
recognize sketches which only contain a single symbol. Mo-
tivated within a probabilistic framework they derive an ob-
jective function to perform a maximum likelihood search by
branch and bound. In our model, we do not use a probabilis-
tic background. Instead, we heuristically motivate our ob-
jective function for symbol evaluation and design it without
biases towards symbols with few components or few con-
straints (see 3.3). This is important when considering symbol
evaluation as a subproblem in scenes with many symbols.

Multi-domain sketch recognition approaches like above
are difficult to compare in their performance because there
is so far no standardized test corpus of annotated sketches as
for pattern recognition; for a first attempt see [OAD04].

3. The Combinatorial Model

3.1. Strokes, Primitives, and Constraints

Pen-based systems use sampling points and strokes to rep-
resent the user’s pen input. Sampling points discretize the

user’s pen movement. A stroke consists of a sequence of
sampling points and represents the input from a single pen-
down, pen-move and pen-up action of the user. Formally,
a sampling point a is a triple (x,y, t) with real coordinates
x,y ∈ [0,1] and time component t ∈ [0,∞). A stroke q is a
tuple (a1,a2, . . . ,an) of |q| = n ∈ N sampling points with
t1 < t2 < · · · < tn. By STROKES we denote the set of all pos-
sible strokes.

In the introduction we have shown how a symbol is de-
scribed by means of basic geometric elements and their re-
lations to each other. These basic elements of a symbol are
called components. Components may be chosen from a set of
available primitives. The relations between components of a
symbol are called component constraints and may be chosen
from a set of available constraints. For a set of useful con-
straints see [HD03, Pom06]. For our model we need not fix
which primitives and constraints we want to use in practice.
All we need is an evaluation function for every primitive and
every constraint. We use these functions to evaluate input
strokes with respect to a given symbol and compute an over-
all confidence value. We have decided to choose confidence
values from [0,1] with value 1 as best possible evaluation.

A primitive p is determined by a function αp which as-
signs to every stroke q ∈ STROKES a value from [0,1].
The function αp is called evaluation function of p. By
PRIMITIVES we denote the set of all possible primitives. It is
up to a good system design to choose reasonable evaluation
functions for the desired primitives. We only assume αp to
be efficiently computable. Typically, the function αp mea-
sures the approximation error e between an idealized primi-
tive shape and a given stroke.

The constraints of a symbol s serve to describe the rela-
tions between the components of s. For example, if a rectan-
gle is to be defined then the pairs of opposite sides must be
parallel. Thus, Parallel is a helpful constraint with two
arguments. In general the number of arguments may range
from 1, e.g. to determine an absolute length of a compo-
nent, to m, e.g. to define a polyline. Let ρ be a m-ary func-
tion which assigns a value from [0,1] to every m-tuple of
strokes (q1, . . . ,qm). The function ρ is called constraint. By
CONSTR[m] we denote the set {ρ : STROKESm → [0,1]} of
all possible constraints which accept an m-tuple of strokes
as input. Again, we assume the constraints to be efficiently
computable functions. Usually the functions evaluate basic
geometric properties of the given strokes such that efficiency
is not a problem.

3.2. Symbols

A symbol consists of all essential elements for evaluating
a set of strokes which are distributed to its components. A
symbol s = 〈P,R〉 = 〈(p1, . . . , pk),(r1, . . . ,rt)〉 consists of
|s| = k ∈N components and t ∈N0 component constraints.
Component i ∈ {1, . . . ,k} is of primitive type pi. Each com-
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ponent constraint ri, i ∈ {1, . . . , t}, is associated with a con-
straint ρi of cardinality mi and a tuple Ji = ( j1, . . . , jmi) ∈
{1, . . . ,k}mi . We define ri as follows: ri : STROKESk →
[0,1], ri(q1, . . . ,qk) �→ ρi(q j1 , . . . ,q jmi ). SYMBOLS is the set
of all possible symbols.

3.3. Combining the Confidence Values

The basic idea of our generic approach is to measure proper-
ties of drawn objects and translate these measurements into
an evaluation system. Our emphasis is to generate one con-
fidence value from all measured symbol properties. Reason-
ing about a scoring rule which combines several confidence
values, fuzzy logic and multi-criteria decision making sug-
gest that an appropriate rule for our problem is the geomet-
ric mean – see, e.g., [FW00] for a discussion of different
approaches. Alternatives like the arithmetic mean, the me-
dian, or probabilistically motivated approaches do not match
our needs properly. In particular, outliers (e.g., one constraint
with very low score) strongly influence the total confidence
as compared to other types of means, which is desirable. In
probabilistic approaches the score is usually computed as the
product of all individual component and constraint scores.
This introduces a bias towards symbols with few compo-
nents and few constraints, which is avoided with the geo-
metric mean. Further, we realize that a good balance of eval-
uating the components and evaluating the constraints is im-
portant. Hence, we determine scores from components and
constraints separately and then compute from these scores
the final confidence value.

3.3.1. Symbol Confidence

Given k user drawn strokes we want to evaluate the confi-
dence of an assignment of these strokes to the components
of a symbol s, with |s| = k. We describe such an assignment
by a permutation π ∈ Sk, where Sk denotes the set of all per-
mutations of (1, . . . ,k).

Definition. Let s = 〈P,R〉 be a symbol with k components.
For a given set of strokes Q = {q1, . . . ,qk} and for a given
assignment π ∈ Sk of strokes to components the expression√√√√[

k

∏
i=1

αpi(qπ(i))

] 1
k

·
[
t

∏
i=1
ri(qπ(1), . . . ,qπ(k))

] 1
t

denotes the symbol confidence SymbConf(s,Q,π).

From this definition we can derive a combinatorial prob-
lem where one aims to find the best possible confidence
value for a given symbol and a set of given strokes.

Problem MAXSYMBCONF. Given a symbol s = 〈P,R〉
with k components and a set Q of k strokes. Find an as-
signment π ∈ Sk, such that SymbConf(s,Q,π) is maximized.
MAXSymb(s,Q) denotes the maximum value.

3.3.2. Scene Confidence

The interpretation of a sketch scene is based on the computa-
tion of symbol confidences. We regard the scene confidence
of a sketch scene as a combination of maximum symbol con-
fidences of possible symbols. A sketch domain S is a set of
symbols, i.e. S = {s1, . . . ,sz} ⊂ SYMBOLS, z ∈N.

Definition. Given a sketch domain S and a set of strokes
Q. Further, given a partition P = Q1, . . . ,Q� of Q, i.e. Q =
Q1∪̇ . . . ∪̇Q�, and a tuple of symbols S = (s1, . . . ,s�) ∈ S�.
Let |si| = |Qi| hold for all symbols si with i ∈ {1, . . . , �}. The
scene confidence is defined as

SceneConf(Q,P,S) =

[
�

∏
i=1
MAXSymb(si,Qi)

] 1
�

.

The set Q is denoted as sketch scene. The partition and the
related tuple of symbols 〈P,S〉 is denoted as interpretation
of the sketch scene.

Based on the scene confidence we may formulate the in-
terpretation of a sketch scene as follows.

Problem MAXSCENECONF. Given a sketch domain S and
a set of strokes Q. Find an interpretation 〈P,S〉 of Q, such
that the scene confidence SceneConf(Q,P,S) is maximized.
The maximum value is denoted byMAXScene(Q).

4. Evaluation of Symbols

4.1. Complexity

We proved that MAXSYMBCONF is NP-hard and even in-
approximable if P 	= NP, already for binary constraints. The
basic idea is to reduce the well known NP-hard Hamilto-
nian circuit problem. For unary constraints there is a polyno-
mial time algorithm based on weighted bipartite matching.
But symbol descriptions with only unary constraints are very
limited. A reasonable expressiveness of symbol descriptions
is only assured if we use at least binary constraints.

Theorem 1 MAXSYMBCONF is NP-hard and not approx-
imable if P 	= NP, already for binary constraints.

Theorem 2 MAXSYMBCONF can be solved in polynomial
time, if all constraints have only one argument.

4.2. A Branch and Bound Algorithm

As the computation of the maximum symbol confidence is
an NP-hard problem, we may not expect a polynomial-time
algorithm. But for practical computation there are many bet-
ter approaches than simply going through all possible as-
signments of strokes and components. In the following we
propose a branch and bound algorithm which finds an op-
timal solution for MAXSYMBCONF. The general idea is to
recursively construct partial solutions by assigning one com-
ponent after the other. For each component we iterate over
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the remaining strokes. We try assigning each of these strokes
to the current component, evaluate the obtained partial solu-
tion, and if we cannot immediately discard this partial solu-
tion we recur.

Description of partial solutions. Let π ∈ Sk be a
permutation of k elements; π is a possible solution of
MAXSYMBCONF. The set of all permutations which agree
from the first up to the m-th position with permutation π is
called a partial solution and denoted by π|m. For the special
case m= 0 we have π|0 = Sk.

Branching. Let π|m be a partial solution (the first m po-
sitions are fixed). The BRANCH method partitions π|m into
k−m sets, say, τ1|m+1, . . . , τk−m|m+1. The τ j|m+1 agree
on the first m positions with π|m and are pairwise distinct
on the (m+1)-th position. This position contains one of the
remaining values {1, . . . ,k}� {π(1), . . . ,π(m)}. In the cor-
responding search tree all permutations with all k positions
fixed are leaves. An inner node v corresponds to the partial
solution π|m if the nodes vm−1, . . . ,v0 on the path from v to
the root correspond to the partial solutions π|m−1, . . . , π|0.
If we traverse the tree and, e.g., visit a node on level 3, then
the corresponding permutation has fixed its first 3 positions.

Bounding. For a partial solution π|m we have to estimate
the value of SymbConf, although only the first m compo-
nents have strokes assigned to them. We get a simple upper
bound by assigning the value 1 to all evaluations which can-
not be computed so far. We can do better though, by treat-
ing the two factors of SymbConf separately. The first fac-

tor [∏k
i=1αpi(qπ(i))]

1/k
concerns only the evaluation func-

tions αpi of the primitives. Clearly, we know the correct
values for the first m components. For the remaining k−m
components we at least know which of the strokes will be
assigned to them. Thus, to obtain an upper bound for the
first part of SymbConf we may compute on optimal assign-
ment of remaining strokes to remaining components. Since
each αpi takes only one stroke as parameter, this can be done
in polynomial time by solving a derived weighted matching
problem. For the second factor [∏ti=1 ri(qπ(1), . . . ,qπ(k))]

1/t

of SymbConf the previous approach does not work since the
component constraints usually are functions with more than
one argument. Anyway, we can compute a bound which is
better than the trivial one by bounding each component con-
straint ri separately. If the number of unassigned arguments
of ri is less than some constant, we try all possible assign-
ments for the remaining k−m strokes. The largest resulting
confidence value is our upper bound. For constraints with
too many unassigned positions we can simply use 1 as up-
per bound. Constraints with no unassigned arguments can be
evaluated directly. One can develop heuristics to accelerate
the approach, e.g., it can be very helpful to choose a good
order in which the individual components are assigned. Due
to space limitations we refer to [Pom06] for details.
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(a) (b) (c)
Figure 2: (a) Sketch domain. (b),(c) Sketch scenes. The num-
bering resembles the drawing order. The symbols in (b) were
drawn consecutively, but not so in (c).

5. Interpretation of Sketch Scenes

The computation of maximum symbol confidences is re-
quired for finding the maximum scene confidence. Thus
Theorem 1 implies that problem MAXSCENECONF is in
general NP-hard. But even if MAXSCENECONF is consid-
ered independently from MAXSYMBCONF one can show
that different versions of the problem are NP-hard.

Theorem 3 MAXSCENECONF isNP-hard even if the sketch
domain consists of only one symbol with a (polynomially
computable) ternary constraint.

Theorem 4 MAXSCENECONF is NP-hard even if the con-
tained symbols have only binary constraints and the confi-
dences can be computed in polynomial time.

On the positive side we have the following theorem for a
very restricted version of MAXSCENECONF.

Theorem 5 If the sketch domain only contains symbols with
at most two components each, MAXSCENECONF can be
computed in polynomial time.

5.1. Consecutively Drawn Symbols

To overcome the problems that are imposed by the complex-
ity of MAXSCENECONF we propose a modest restriction of
drawing freedom: Symbols may only consist of consecutively
drawn strokes (consecutively-drawn property). This means a
symbol must have been drawn completely before the user
starts to draw another symbol. But all the strokes belonging
to one symbol may be drawn in arbitrary order – see Figure 2
for an example. In practice this restriction is not too hard for
users but it simplifies the assignment of strokes to symbols
dramatically.

Non-Overlapping in Time. If strokes q1,q2, . . . ,qk are
ordered by time, we write q1 
t q2 
t . . . 
t qk meaning
that q1 was drawn before stroke q2, etc. Our next step is to
extend the notion of such non-overlapping strokes from a set
of strokes to a partition of strokes.

Definition. Let Q be a set of strokes of a sketch scene and
let P = Q1, . . . ,Q� be a partition of Q. The partition P is
called non-overlapping in time if there holds for all subsets
Qi and Qj of P with i< j: p
t q for all strokes p ∈ Qi
and q ∈ Qj.
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Simplification of MAXSCENECONF. Clearly, if we en-
force the consecutively-drawn property, we only need to
consider partitions that are non-overlapping in time. This
yields the modified MAXSCENECONFconsec problem: Given
a sketch domain S and a set Q of strokes of a sketch
scene. Find an interpretation 〈P,S〉 of Q with a partition
P = Q1, . . . ,Q� of strokes from Q that is non-overlapping in
time such that the scene confidence SceneConf(Q,P,S) is
maximized. In this simplified version the partitioning is re-
stricted to find splitting points, i.e. to find in a set of strokes
q1 
t q2 
t . . . 
t qk, which is ordered by time, the posi-
tions where one subset ends and the other subset starts.

5.2. A Polynomial Time Algorithm

The consecutively-drawn property allows for an efficient ex-
haustive search. We consider all possible assignments of
strokes to available symbols and then find an assignment
which maximizes the scene confidence.

Symbol candidates. We denote a set of strokes as a
symbol candidate for a symbol si if these strokes possi-
bly could represent the symbol si. In particular, a symbol
candidate has to satisfy the consecutively-drawn property,
i.e. a symbol candidate may consist only of consecutively
drawn strokes. By (si,Qi) we denote a symbol candidate
which interprets the strokes Qi = {q1, . . . ,qk} with symbol
si. MAXSymb(si,Qi) is the natural criterion to compare the
confidence of the symbol candidate with other ones.

Example.We want to motivate our approach with an ex-
ample. Suppose we are given a sketch domain S = {s1,s2}
with |s1| = 2 and |s2| = 1. A sketch scene for this domain
is shown in Figure 2(b) where 8 Strokes have been drawn.
The following schema depicts symbols, strokes, and possi-
ble symbol candidates (gray bars).

s2

s1 (s1, {q1,q2}) (s1, {q3,q4}) (s1, {q5,q6}) (s1, {q7,q8})

(s1, {q2,q3}) (s1, {q4,q5}) (s1, {q6,q7})

(s2, {q1}) (s2, {q2}) (s2, {q3}) (s2, {q4}) (s2, {q5}) (s2, {q6}) (s2, {q7}) (s2, {q8})

q1 q2 q3 q4 q5 q6 q7 q8

Certain symbol candidates exclude each other, e.g.
(s1,{q1,q2}) and at the same time (s1,{q2,q3}) as symbol
candidates are not possible. Else stroke q2 would have to be
used for more than one symbol.

Scene graph. An algorithmic solution for our approach
can be found by coding the above schema into a graph. We
call this graph a scene graph. In a first step we translate the
above schema directly into a graph and leave a more compact
version to a second step. Additionally to the vertices which
represent symbol candidates the scene graph has a start and
an end vertex. The solution for MAXSCENECONFconsec con-
sists of using symbol confidences as edge weights in the

scene graph and finding the symbol candidates which con-
tribute to the overall best interpretation of a scene via a short-
est path search – see the scene graph in Figure 3 and the
corresponding sketch scene in Figure 2(b) for an example.

In general the scene graph G= (V,E) is generated as fol-
lows. The set of vertices V consists of a start vertex, an end
vertex and vertices for every possible symbol candidate for
every symbol. The vertices are directed from earlier vertices
to later vertices, i.e. there is an edge from v1 to v2 if the
strokes of the symbol candidate belonging to v1 were drawn
earlier than the strokes of the symbol candidate belonging to
v2. The start vertex has only outgoing edges, the end vertex
has only incoming edges. Edges from the start vertex con-
nect to all vertices of symbol candidates which use the first
stroke. If two symbol candidates which do not exclude each
other use subsequently following strokes, e.g. like the candi-
dates (s1,{q1,q2}) and (s1,{q3,q4}), then there is an edge
from the vertex of the earlier candidate to the vertex of the
latter one. All vertices of symbol candidates which use the
last stroke are connected with the end vertex.

Algorithm. A scene graph G is directed and contains
no cycles, i.e., G is a directed acyclic graph (DAG).
On a DAG a shortest path can be computed very effi-
ciently [CLRS01]. But shortest path algorithms minimize
the sum of weights of used edges. To be able to use the al-
gorithm, we transform the problem MAXSCENECONFconsec

into a minimization problem. Instead of maximizing the ob-
jective function [∏�

j=1MAXSymb(s j,Qj)]
1/� by taking the

logarithm, we minimize a transformed objective function
1
� ∑�

j=1(− logMAXSymb(s j,Qj)). The transformed values
are from the interval [0,∞) and assigned to the nodes as
weights. Note that we avoid applying the log function on 0-
valued symbol confidences by removing the corresponding
node from the graph because it will not contribute to a rea-
sonable interpretation of the scene.

More compact modeling. So far we have not concen-
trated on a representation of the scene graph which is par-
ticularly compact. The following version of the scene graph
will use only O(|Q|) vertices instead of O(|S| · |Q|) and only
O(|Q| · |S|) edges instead of O(|S| · |Q| · |S|). To achieve this
we modify the role of vertices and edges. Transformed sym-
bol confidence values and the related symbols are now coded
on edges. Vertices represent the points of time between two
strokes. Figure 4 shows the more compact version of the re-
cent scene graph shown in Figure 3.

s2

s1

q1 q2 q3 q4 q5 q6 q7 q8

Figure 3: Scene graph related to sketch from Figure 2(b).
The bold path represents a possible interpretation.
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s1, {q1,q2}

s2, {q1} s2, {q2} s2, {q3} s2, {q4} s2, {q5} s2, {q6} s2, {q7} s2, {q8}

s1, {q3,q4} s1, {q5,q6} s1, {q7,q8}

s1, {q2,q3} s1, {q4,q5} s1, {q6,q7}

q1 q2 q3 q4 q5 q6 q7 q8

Figure 4: Compact version of the scene graph for the sketch
scene in Figure 2(b).

For example, the edge with label s1,{q1,q2} represents
the corresponding symbol candidate. The weight of this edge
is the transformed symbol confidence of s1,{q1,q2}. If there
are more symbols which have the same number of compo-
nents, the symbol candidate is chosen as label which has
a maximum symbol confidence among all competing can-
didates. Now the scene graph consists of |Q|+ 1 vertices,
which is the start vertex v0 and |Q| further vertices vi. The
edges on the shortest path from v0 to the end vertex represent
an optimal solution of the sketch scene. If there are several
optimal paths then an arbitrary path among all possible opti-
mal interpretations is returned.

Theorem 6 Given a sketch domain S and a sketch scene Q,
the scene graph G of the sketch scene is a DAG. The shortest
path from the start vertex of G to the end vertex corresponds
to an interpretation which maximizes the scene confidence.
G contains O(|Q|) vertices and O(|Q| · |S|) edges. Hence the
shortest path can be found in time O(|Q| · |S|).

6. Experiments

We have implemented our model and the related algorithms
in SketchWork, a framework that provides sketch recogni-
tion for pen-based applications. Our symbol description lan-
guage SDL allows to define a broad range of symbols which
the system can recognize. For a preliminary experimental
analysis we have chosen graphs (4 symbols), geometry (20
symbols) and buttons (16 symbols) as domains – see Fig-
ure 5. Several users have contributed sketch scenes drawing
the symbols according to the consecutively-drawn property.
Additionally, the users were asked to draw each component
with a single stroke because segmentation was not the fo-
cus of our experiments. In total we had 20 scenes for test-
ing. We have labeled those scenes assigning stroke IDs and

(a)

(b)

(c)

Figure 5: Domains: (a) graphs, (b) geometry with special
symbol Tri-DoubleAngle (last symbol), (c) buttons.

symbol interpretations. We count a group of strokes as rec-
ognized if our labels agree with the recognizer’s labels. This
is a very simple but also strict scoring scheme because it
will not account for related symbols that were misclassified,
e.g. a square and a rectangle. We conducted our experiments
on a Tablet PC with a 1.6 GHz Intel Centrino processor, 768
MB RAM, and Windows XP (Tablet PC Edition 2005). We
are aware that our setting yields only a feeling for the sys-
tems’s performance. For a complete evaluation a more ex-
tensive setup is needed, with more users, test-cases, and a
comparison with existing approaches. Furthermore, it would
be of interest to check the system’s sensitivity towards the
choice of various evaluation functions and to see how well it
performs if segmentation is included as preprocessing.

6.1. Computing Maximum Symbol Confidences

Figure 5 shows all symbols in the three test domains. For
all of them the computation of the maximum symbol con-
fidence happened in real-time visiting up to 10.000 nodes
in the branch and bound tree (e.g. Square: 0.0012 – 0.0031
s; CheckBox: 0.0028 – 0.0061 s). The only exception was
the symbol Tri-DoubleAngle (see Figure 5(b)) which was
designed to challenge the algorithm. In this case the run-
ning time was between 0.41 and 9.76 seconds visiting be-
tween 3550 and 72195 nodes. The reason for that is the fact
that we used repeatedly the ternary constraint Opposite-
Side(.,.,.) to describe the symbol.

6.2. Interpretation of Sketch Scenes

Figure 6 lists the results of all 20 sketch scenes and shows
three examples. Text labels are defined as one sort of prim-
itives and thus integrate very well into our model. We
used the Tablet PC’s powerful handwriting recognition to
interpret the labels. But we observed that the execution
of handwriting recognition is quite expensive (c.f. graphs
with/without labels and especially buttons). Focusing on
graph scenes we notice an overall good recognition (∅82%
for graphs without labels, ∅88% in the other case). Mainly
the misinterpretation of vertices or edges as labels decreased
the recognition rate. The running times are acceptable for in-
teractive work (without labels: 44 to 158 strokes interpreted
within 1.64 to 6.31 s; with labels: 19 to 64 strokes interpreted
within 1.97 to 4.13 s), especially, when we take into account
that we can adopt a scene graph for dynamic updates. Then,
the response time after every stroke is only the time for com-
puting the incremental update, e.g. for scene GL8, roughly
4.138/64≈ 0.06 s.

7. Conclusion

This paper proposes a new approach for recognizing sketch
scenes. We presented a combinatorial model, optimization
problems and corresponding algorithms to solve the recog-
nition task. We have presented a new idea to both simplify
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Graphs without labels
Q |Q| Time in s Recogn. in %
G1 44 2.595 5/44 34
G2 73 3.834 31/33 94
G3 70 3.067 36/38 95
G4 59 1.644 26/31 84
G5 158 6.315 69/80 86
G6 90 2.019 90/90 100

Scene: G3
Graphs with labels

Q |Q| Time in s Recogn. in %
GL1 19 1.978 5/9 56
GL2 40 2.424 24/25 96
GL3 24 2.313 13/13 100
GL4 26 3.105 15/15 100
GL5 33 2.655 13/13 100
GL6 21 2.102 6/8 75
GL7 58 2.161 20/21 95
GL8 64 4.139 32/38 84

Scene: GL2

Scene: B1

Geometry
Q |Q| Time in s Recogn. in %
Geo1 80 2.464 18/20 90
Geo2 44 1.076 11/17 65
Geo3 20 0.562 5/7 71
Geo4 82 1.945 15/33 45

Buttons
Q |Q| Time in s Recogn. in %
B1 71 18.4 / 57.1 11/12 92
B2 78 15.7 / 86.6 16/18 89

Figure 6: Examples of collected scenes; tables of running
times and recognition results. Graphs with labels: Always
with handwriting recognition. Buttons: First/second running
time is without/with handwriting recognition.

the recognition of sketch scenes and at the same time not
restrict the user’s drawing freedom too much. A more exten-
sive experimental study is needed to thoroughly assess the
practical merits of our approach.
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