
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006)
Thomas Stahovich and Mario Costa Sousa (Editors)

Parsing Ink Annotations on Heterogeneous Documents

Xin Wang1 and Michael Shilman2 and Sashi Raghupathy1

1Ink Parsing Team, TabletPC, Microsoft Corp, One Microsoft Way, RedMond, WA 98052, USA
2Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Abstract
Annotation is an integral part of reading, comprehending, commenting, and authoring notes and documents. In this
paper we present a system for recognizing annotations in a flexible digital notebook that may contain a variety of
content ranging from text, to images, to handwritten notes. To accomplish the recognition task in real-time makes
the complicated annotation parsing problem more difficult.
Our approach differs from previous approaches in several ways. First, our approach handles annotations on ink
notes, which are significantly more ambiguous than annotations on printed documents and hence more difficult
to recognize. Second, our approach is entirely learned from data, so it is easy to adapt to other scenarios. Third,
our approach is more thoroughly evaluated than previous systems. On a test set of real user notes, the system has
achieved an average recall of0.9258on all annotation types. Finally, the implementation of the approach will be
commercially available as an API in the upcoming release of WindowsR© VistaR© and Office 12R©.

Categories and Subject Descriptors(according to ACM CCS): I.7.m [Computing Methodologies]: Document and
Text Processing; I.5.4 [Computing Technology]: Pattern Recognition

1. Introduction

A Holy Grail of personal information management is a dig-
ital notebook application that simplifies storage, sharing, re-
trieval, and manipulation of a user’s notes, diagrams, web
clippings, and so on. This application should be able to flex-
ibly incorporate a wide variety of data types and deal with
them reasonably. One approach, as exemplified by Microsoft
OneNoteR©, is to explicitly represent different data types in
a single application, and let users capture and fluidly manip-
ulate text, digital ink, and images in data type-specific ways.
The application becomes more powerful when ink is intelli-
gently interpreted and given appropriate behaviors according
to the type. For instance, hierarchical lists in digital ink notes
should be able to expand and collapse just like hierarchical
lists in text-based note-taking tools.

Annotations are an important part of a user’s interaction
with both paper and digital documents, and can be used in
numerous ways within the digital notebook. Users anno-
tate documents for comprehension, authoring, editing, note-
taking, author feedback, and so on.

When annotations are recognized, they become a form
of structured content that semantically decorates any of the

Figure 1: A OneNote 12R© file with a mixture of ink, text and
images. The fist section of the file is a regular text region. The
second section consists of two images with ink annotations.
The last section is an ink-drawing with ink annotations sur-
rounding it.

other data types in a digital notebook. Recognized annota-
tions can be anchored to document content, so that the an-
notations can be reflowed as the document layout changes.
They can assist in information retrieval, marking places in

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


Xin Wang & Michael Shilman & Sashi Raghupathy / Parsing Ink Annotation

the document of particular interest or importance. Editing
marks such as deletion or insertion can be invoked as actions
on the underlying document. Users annotate documents by
habit; recognizing those annotations increases their value in
the lifecycle of the digital document.

In this paper, we present a set of techniques for recog-
nizing an assortment of digital ink annotations against a va-
riety of underlying document content, including other digi-
tal notes and diagrams. Unlike previous work that heuristi-
cally recognizes, anchors, and reflows digital ink annotations
against text documents [SW04], our approach works on doc-
ument with heterogeneous content types. In particular, rec-
ognizing digital ink annotations in the context of other dig-
ital ink notes is highly ambiguous, and therefore extremely
difficult. With the real–time requirement of an API to be in-
tegrated into commerical note taking softwares such as One
Note, the problem is even more complicated.

Furthermore, our method is based entirely on learning
from training data, so if new annotation types or new content
types are added, the system can be retrained to incorporate
these new types. This flexibility in the system design allows
us to recognize more annotation types when moving from
our Beta–1 version to Beta–2.

Finally, the technique we describe achieves reasonable
accuracy on real user notes. It will be shipping with
Windows VistaR©† andOneNoteR© 2007‡.

Recognizing ink annotations that occur in ink notes is sig-
nificantly more difficult than in printed documents. On a
printed document, every ink stroke must belong to an anno-
tation of some type. For example, a strikethrough is identifi-
able if it is crosses through a printed line of text and aligns
with its baseline. However, in an ink note it is not always
clear which strokes should be grouped into lines, or, given a
hypothesized line and a potential annotation stroke, whether
the stroke is a strikethrough or perhaps merely a long cross-
ing stroke on the letter “t”. Numerous such problems make it
difficult for the computer to accurately discriminate between
the handwritten notes and the annotations that modify those
notes.

In Section 2, we give an introduction to the terminology.
We also introduce several important user scenarios of the an-
notation system as part of an introduction to the scope of the
system. In Section3, we describe the functional details of
our ink annotation parsing system: its tasks, its architecture,
and its integration with the rest of our ink parsing system.
We also cover the algorithmic aspects of the system: its clas-
sification, segmentation, and annotation anchoring. In Sec-
tion 5, we present the evaluation results of our system. In
Section??, we describe future work.

† http://www.microsoft.com/windowsvista/
‡ http://office.microsoft.com/onenote/

2. Definitions and User Scenarios

2.1. Annotation

An ink annotation on such a document consists of a group
of semantically and spatially related ink strokes that anno-
tate the main content of the document. They provide supple-
mentary information to the main body and sometimes estab-
lish relationships between different parts of the document. In
this paper, we will focus on annotations formed by drawing
strokes, which do not group with the rest of the text the user
has written.

As pointed out by [Mar97], there are many different types
of annotation. Each serves a different type of marking or
editing activity. There are two major classes of annotations:

• Non-Actionable annotations: annotations that just ex-
plain, summarize, emphasize or comment on the main
content, see Figure2;

• Actionable annotations: annotations that denote edito-
rial actions such as insertion, deletion, transposition, and
movement.

Figure 2: Non-actionable annotations. Instead of specifying
an special editorial actions on the main content, these an-
notations explain, summarize, emphasize, and comment on
them.

No matter whether it specifies an action or not, an annota-
tion involves two types of information, thegeometric infor-
mation and thesemantic information. In this paper, we use
geometric information to refer to what kind of ink-strokes
the annotation has, how the strokes form a geometric shape,
and how the shape relates (both temporally and spatially) to
other ink-strokes in the file. For all the annotation types sup-
ported by our system, we allow multiple-to-multiple map-
ping between the shapes of an annotation and their types.
Without restricting the system to handle only the situation
where a set of shapes are reserved for one annotation type
only, this introduces additional difficulty into the parsing
task.

We use semantic information to refer to the meaning or
the function of the annotation, and how it relates to other
semantic objects in the document—words, lines, and blocks
of text, or images.

c© The Eurographics Association 2006.

http://www.microsoft.com/windowsvista/
http://office.microsoft.com/onenote/
http://www.microsoft.com/windowsvista/
http://office.microsoft.com/onenote/


Xin Wang & Michael Shilman & Sashi Raghupathy / Parsing Ink Annotation

2.2. Supported Annotation Types

As shown in Figure3, our system supports four categories
and eight types of annotation according to both the semantic
and the geometric information they carry.

Curved Vertical Range

Annotation

Horizontal Range Callout
Enclosure

Vertical Range

Underline

Scratchout
Strike−through

CalloutWithArrow
CalloutWithout Arrow

Vertical Bars

Figure 3: Class hierarchy supported by our ink annotation
system.

The four categories we support are: horizontal ranges, ver-
tical ranges, enclosures, and callouts. For horizontal ranges,
we support three subtypes, underlines, strike-throughs, and
scratch-outs of different shapes. For vertical ranges, to im-

Figure 4: Samples for annotation types that are currently
supported by the annotation parsing system. For each type,
only one example of shape is shown, even though in our sys-
tem they are not restricted to take only one shape.

prove recognition accuracy, we divide the category into two
subtypes, vertical range in general (brace, bracket, paranthe-
ses and etc), and vertical bar in particular (both single and
double vertical bars).

For enclosure, we recognize blobs of different shapes:
rectangle, ellipse, and other regular or irregular shapes. Our
system can even recognize partial enclosures or enclosures
that overlap more than once.

For callouts, we support both straight line callouts with or
without arrowheads, curved callouts with or without arrow-
heads, and elbow callouts with or without arrowheads.

2.3. Anchoring

No matter what geometric shape it takes, an annotation al-
ways establishes a semantic relationship among parts of a
document. The parts can be regions orspansin the docu-
ment, such as part of a line, a paragraph, an ink or text re-
gion, or an image. The annotation can also denote a specific
position in the document such as before or after a word, on
top of an image and so on. We call these relationships an-
chors, and in addition to identifying the type of annotation
for a set of strokes, the annotation parser must also identify
its anchors.

3. Parsing System

3.1. System Overview

Our ink parsing system consists of a stack of engines as
shown in5. Each engine works on a specific semantic prob-
lem and enriches or improves upon the partial parsing results
that are passed to it. For example, the writing-drawing clas-
sification engine classifies all the incoming ink strokes into
writing or drawing [BSH04], and the line finding engine
groups ink strokes into lines of writing [YSR∗05]. The an-
notation engine is a new engine added to the end of the stack.
It identifies groups of ink strokes that are annotations, their
types, and their corresponding anchors.

Anybody who has tried to interpret full pages of ink notes
from real user data knows that ink is locally ambiguous, and
can only be accurately interpreted in a global context. There-
fore it is not obvious how our feed-forward architecture can
work on real notes. In some sense, each engine is responsible
for its own task, plus some subset of the tasks before it in the
stack. For example, the annotation engine will often second
guess earlier writing-drawing decisions, examining writing
strokes at the end of connectors to try to find arrowheads
that have been misclassified. This increases the responsibil-
ity and reduces the modularity of each engine, but allows us
to optimize each stage for accuracy and performance with-
out resorting to a global optimization strategy which will be
difficult to complete in real time on today’s computers.

Our annotation parsing approach is an evolution of the an-
notation parser presented in [SW04] and the symbol group-
ing and classification approach of [SVC04]. [SW04] iden-
tified annotations and their anchors using a complex set of
heuristics. [SVC04] simultaneously optimized over a set
of segmentation and recognition hypotheses and was en-
tirely learned from data. We first present an adaptation of
[SVC04] to the problem of annotation parsing and anchor-
ing. We then heuristically and greedily refine this adaptation
to operate in close to real-time.

3.2. Optimal Annotation Parsing

The job of the annotation parser is to segment, recognize,
and anchor ink strokes against a background document. We

c© The Eurographics Association 2006.



Xin Wang & Michael Shilman & Sashi Raghupathy / Parsing Ink Annotation

can perform all of these functions simultaneously using a
variant of the technique described in [SVC04].

Assume a trained recognizerR, which, given a candidate
set of strokes, anchors, and background, can reasonably hy-
pothesize the candidate as an annotation of a specific type,
or as garbage. Given such a recognizer, one merely needs to
enumerate over a reasonable set of candidates. One method
is to connect all of the strokes into a neighborhood graph.
Two strokes are connected in the graph if the Euclidian dis-
tance between their convex hulls is less than a threshold, as
shown in Figure Y. This threshold can be empirically de-
termined based on the maximum distance between any two
strokes that fall into the same labeled symbol in training
data. Assuming some maximum number of strokes per sym-
bol,K, [SVC04] presents an efficient way to enumerate con-
nected subsets of this graph, which form symbol candidates.

Given the recognizerR, and a candidate enumeration
method, it is possible to solve for an optimal grouping,
recognition over all the strokes through dynamic program-
ming on the recurrence equation in [SVC04].

Unfortunately, in consumer user interfaces we must of-
ten sacrifice optimality and simplicity for performance. Our
entire stack of engines, including writing-drawing classifi-
cation, line grouping, annotations parsing, and so on, must
complete in approximately 1msper stroke. If we budget 10%
of this time for annotations parsing, this means our annota-
tion engine must process a 500 stroke page, including seg-
mentation and recognition, in 100ms! Therefore, we employ
a greedy optimization and a set of heuristics to approximate
this optimization. In the next section, we describe the fea-
tures and training procedure for R, and the heuristic acceler-
ations of this optimization.

Flat Parse Tree

Annotation Engine

Block Grouping

Line Grouping

Writing/Drawing Classification

Core Temporal Grouping

Core Processor

Strokes

Preliminary Temporal
Based Segmentation of Strokes

Parse Tree
Annotations

Writing Region Structure

Line Structure

Writing/Drawing Stroke Info

Figure 5: The engine stack of ink parser. Partial parsing re-
sults, represented as parsing trees, are passed from one en-
gine to another.

3.3. Implementation

As one of the last engines at the engine stack in Fig.5, in
addition to the original ink, text and image information, it
can also access the rich temporal and spatial information the
other engines generated and their analysis results. For exam-
ple, the annotation parser can use previous parsing results on
ink type property of a stroke (writing/drawing). It can also
use the previously parsed word, line, paragraph and block
layout structure of the underlying document. As shown in

Results

Generate
Annotation
Hypotheses

Compute
Image
Based
Features

Compute

Features
Geometric

Compute
Context−based
Features

Classify
Annotation
Hypotheses

Stroke
Information

Original

Annotations:
Grouped
Typed
Linked

Writing/Drawing

Results
Classification

Layout Analysis

Figure 6: Architecture of the annotation parser.

Fig. 6, the annotation parser iterates through the following
three steps: hypothesis generation, feature computation and
hypothesis evaluation.

3.3.1. Generate Hypothesis

The first step is to generate hypothesis. Ideally, we want to
generate a hypothesis for each possible stroke grouping, an-
notation type, and anchor set, but this is not feasible for
a real-time system. Aggressive heuristic pruning has to be
adopted to parse within the system’s time limits. In practice,
we found that spatial and temporal heuristics are not suffi-
cient to achieve acceptable recognition results. Instead, it is
necessary to use heuristics based on knowledge of previous
parsing results.

For stroke grouping, we can prune the set of all possible
annotation stroke group candidates greatly based on previ-
ous writing/drawing classification results.§

If we know the type of the underlying and surrouding re-
gions of a stroke group candidate, we can limit its set of
feasible annotation types to a subset of all annotation types
supported by the system. For example, if we know a line seg-
ment goes from an image region to a text region, it is more

§ Since the writing/drawing classification engine makes mistakes,
we can not limit our choices to drawing strokes only.

c© The Eurographics Association 2006.



Xin Wang & Michael Shilman & Sashi Raghupathy / Parsing Ink Annotation

likely to be a callout without arrow or a vertical range than a
strike-through.

Similarly if we know the type of an annotation, we can
also reduce the set of possible anchors. For a vertical range,
its anchor can only be on its left or right side, and for an
underline, its anchor can only be above it.

With carefully designed heurisitcs, we are able to signifi-
cantly reduce the number of hypotheses generated.

3.4. Feature Computation

For each hypothesis we enumerate through, we compute a
combined set of shape and context features. We use two
types of shape features—the cheap image-based Viola-Jones
filters and the more expensive features based on the geomet-
ric properties of its polyline and convex hull. For the geo-
metric features, we use both features that are general enough
to work across a variety of shapes and annotation types and
features designed to discriminate two or more specific anno-
tation types. More details can be found in Section4.

3.5. Feature Selection and Hypothesis Evaluation

The annotation parser uses anAdaBoost.M1 [FS97] based
classifier system to evaluate each hypothesis. If the hypoth-
esis is accepted, it can be used to generate more annota-
tion hypotheses, or to compute features for the classifica-
tion other annotation hypotheses. By the end, the annotation
parser produces annotations that are grouped, typed and an-
chored to its context.

4. Annotation Features

For each hypothesis, the annotation parser computes both
shape features, and contextual features. We use two types
of shape features. The first group consists of inexpensive
image-based shape features as introduced by Viola and Jones
in [VJ01]. The second group of features are similar to the
carefully designed geometric feautures by Fonseca et al in
[FPJ02]. The third group of features are the context-based
features.

4.1. Geometric Features

All these geometric features are shape-related. Shape is an
important clue to what the type of annotation could be. The
following are examples of the geometric features used in the
annotation engine:

1. Aspect Ratio: the aspect ratio of the minimal enclosed
rectangle is used as a feature to estimate the “likelihood”
of a shape being a line segement.

2. Total Curvature: the sum of curvature changes of the
stroke(s) as it (they) forms the geometric shape.

3. Total Turning Angle: the sum of angle changes of the
vertices in relinked polyline (in Radian).

4. Curvature Profiles: we divide the baseline (the major
axis) of the geometric shape formed by the stroke into
two or three buckets and compute the change of curva-
tures in each bucket.

5. Horizontal Density: The ratio between theabsolute hor-
izontal movementand the width of the minimal enclosed
rectangle.

6. Start-End Distance Ratio: The ratio between the dis-
tance between the start and the end vertices and the
width of the minimal enclosed rectangle–to measure the
“closedness” of the shape.

7. Shape Open Sided: an heuristic binary feature, true
when the polyline is open to a side (like for a paranthesis,
a brace, or bracket)

8. Open To Left Side: a binary feature, heuristic, true when
the polyline is open to the left side

9. Side-Center Distance Ratio: The distance between the
mid-point of the open side and the center of the baseline,
normalized by the width of the baseline.

10. Maximal Inscribed Triangle Area Ratio: Area of the
maximal inscribed triangle of the convex hull of a stroke,
divided by the area of its convex hull.

4.2. Context Features

As in [SW04], the annotation parser not only evaluates each
hypothesis according to its geometric shape, but also accord-
ing to its spatial context. However, unlike in [SW04], the
context also contains ink strokes parsed from engines earlier
in the stack. The ink context contains writing grouped into
words, lines, and paragraphs that earlier engine has parsed
with high confidence. It is the annotation parser’s job to de-
termine whether ambiguous strokes from the previous stages
are actually annotations or are simply part of the notes.

All of the previous parsing results can be used to reduce
the hypothesis space. For example, a straight line segment
that is nowhere near a writing region is very unlikely to be a
horizontal range. A straight line segment that is to the right
and to the left of a writing region, and is perpenticular to its
major axis, is very likely to a vertical bar than a horizon-
tal range. In the annotation parser, these important contex-
tual clues are captured through carefully designed contextual
features, and fed into the classifier system, let it to determine
the relative importance of each feature, and arbitrate between
each hypothesis.

There are four different types of contextual feature. For
each of the four categories of annotations we support, we de-
signed a set of contextual features that are specific to the cat-
egory. For example, if a stroke or a group of strokes form an
enclosure, one important information is that how much “con-
text” it contains. Since we have the structure of the underly-
ing document, so we can search through the partial parse
tree, and determine how many words, lines, or paragraphs in
the tree fall into the polygon shape formed by the strokes.

As an illustration, Section4.2.1and Section4.2.2list the

c© The Eurographics Association 2006.



Xin Wang & Michael Shilman & Sashi Raghupathy / Parsing Ink Annotation

contextual features designed for horizontal ranges and verti-
cal ranges respectively.

4.2.1. Context Features for Horizontal Ranges

For horizontal ranges, we use two different groups of con-
textual features, one group with respect to the line above the
horizontal range, and one group with respect to the line lying
under the horizontal ranges. For each group, we compute the
following features:

1. Existence of context line: true if there is an anchor
line—an underlying line or an above line, respectively.

2. Angle Difference: the angle difference between the
baseline of theEnclosures anchor line, and the baseline
of the annotation, rounded to

(

−
π
2 ,

π
2

]

.
3. Anchor Line Center to Baseline Distance Ratio: The

distance between the center of the anchor line to the base-
line of the annotation, normalized by the height of the
anchor line.

4. Baseline Center to Anchor Line Distance Ratio: The
distance between the center of the annotation’s baseline
to the baseline of the anchor line, normalized by the
height of the anchor line.

5. Anchor Line to Baseline Width Projection Ratio:
Project the baseline of the anchor line to the baseline of
the annotation, and compute the ratio of the length be-
tween the projected line segment, and the length of the
baseline it is projected to.

6. BaseLine to Anchor Line Width Projection Ratio:
Same as above except the baseline of the annotation is
projected to the baseline of the anchor line.

4.2.2. Context Features for Vertical Ranges

For common vertical ranges such as parantheses, braces and
brackets, the shape itself is often a sufficient clue for deter-
mining its type. But for vertical bars as in Figure4, it is very
difficult to differentiate them from vertical dividers (as the
vertical green line in Figure7, without using context infor-
mation such as which words, lines or paragraphs they refer
to.

Frequently, a vertical range has lines of context on both
sides. For vertical ranges such as braces, brackets, and paran-
theses, most of times, it is easy to determine which side is the
open side, and which side is the back side, and thus which
set of lines to anchor to. But for vertical bars, it is very diffi-
cult to determine which set to anchor to, without looking at
context features that are computed with respect to both sets
of lines.

1. Number of Overlapped Lines: Number of lines in the
set that is vertically overlapped with the baseline of the
vertical range

2. Angle Difference with Anchor Block: The angle differ-
ence between the baseline of vertical range and the verti-
cal axis of the neighboring block

Figure 7: With only “shape” information and no context in-
formation, it is very difficult to differentiate a vertical divider
from a vertical bar.

3. Average Line Distance Ratio: The average of distance
from the start or end side of each vertically overlapped
line in the set to the baseline of the vertical range.

4. Sum of Vertical Overlap: The sum of the vertical over-
lap of each neighboring line, normalized by the length of
the baseline of the vertical range.

4.3. Context Feature Computation and Errors of
Previous Engine

As shown in Section4.2, the computation of context fea-
tures utilizes parsing results of previous engines in the en-
gine stack. But what if these engines make errors? Fed with
the wrong values of the features, can the classifier still make
the correct prediction? If we train our annotation parser with
only the correctly labeled files, it is very likely for the classi-
fication system to produce poor results, since they have never
seen these erratic configurations of feature values before.

The trick here is to train the annotation parser with par-
tial parsing results from the previous engines instead of the
correctly labeled files only. In fact, if we can predict the ex-
act distribution of the annotation scenarios that the annota-
tion parsing system will encounter when it is released to real
world users, and if we have an unlimited amount of training
data, it is better that we train with partial parsing results only.
But since we do not know what the actual distribution will
be, we train also with the labeled files, hopefully introduc-
ing a bias toward the more correct configurations of feature
values.

5. Results

The annotation parsing system described here will be ex-
posed through the Tablet PC Ink Analysis SDK for the de-
velopment of ink applications for Tablet PC. It will be avail-
able with Windows VistaR©. And in addition, it is also part

c© The Eurographics Association 2006.



Xin Wang & Michael Shilman & Sashi Raghupathy / Parsing Ink Annotation

of the entire ink parsing system that is used by the next ver-
sion of OneNoteR© also to analyze ink and mixed ink and
text documents.

5.1. Evaluation

To evaluate the system, we collected a large set of OneNote
files from Microsoft employees who use OneNote as part of
their day-to-day work. Many of these files contain annota-
tions as described in this paper. To increase the size of our
data set, we also had users create semi-natural annotations
on documents. By semi-natural we mean that we asked them
to perform natural tasks ("correct spelling errors in the third
paragraph", "indicate that the author should move Figure 3
to the top of the page") without telling them exactly which
annotations to use. Then for all these files, we labeled the
annotations and their anchors to generate a ground truth data
set of 1294 files. These files containing 6974 examples of
annotations. Out of these examples, 1413 examples are set
aside for cross-validation.

After training the engine, we tested its accuracy on an-
other test set of 138 files. Parsing result of an actual file is
shown in Fig8.

Figure 8: Parsed Real World Example.

To simplify the presentation of the results, we merge the
results on vertical range and vertical bar together, and the
results on callout with arrow and callout without arrow into
one. The distribution of examples in this set is given as:
(22.08%,34.59%,4.57%,3.82%,5.15%,13.4%,16.39%)
for non-annotation drawings, underlines, strike-throughs,
scratch-outs, enclosures, vertical ranges, and callouts
respectively.

Table2 shows the confusion matrix on the test set. The
rows represent the labeled annotations, and the columns rep-
resent the parsed annotation results. For example, the cell
(1,1) shows the percentage of examples of non-annotation
drawings correctly classified as non-annotation drawings.

Table 1: Semantic Recall Results.

File Type Priority 1 Priority 2
Lightly Annotated 96.34 92.00
Highly Annotated 91.67 84.75
Mixed Ink and Text 91.30 76.87

The cell at(2,3) shows the percentage of examples of under-
line misclassified as strike-through. The black-fonted num-
ber in each row is the recall number for that type of annota-
tion. For example, the recall of underline is 98.02%.

On the average, the annotation parser has achieved an av-
erage recall of 0.9258 on all annotation types. Unlike many
research findings in this area, which report accuracy num-
bers on a predefined set of pre-segmented symbols, these
numbers are based on real user notes. Real users do not obey
any fixed conventions when they take notes, and can be arbi-
trarily messy. Furthermore, the numbers reported here are a
function not just of the annotation recognizer, but of the en-
tire stack of engines that come before it. Given today’s state
of the art, a learning-based system that performs with 92.5%
accuracy across a wide set of user notes is remarkable.

The errors shown here are not surprising. The largest
number of misclassifications is between strike-through and
scratch-out. Since both annotations indicate deletion, this
error would actually not affect any user experience. The
second largest confusion is underlines misrecognized as
strikethroughs and vice versa. Such confusion is natural for
a human reading an annotated paper, and is disambiguated
using the underlying semantics of the document, or using
higher-level context then we employ.

The worst-looking number in the confusion matrix is the
54% of drawing strokes that are misinterpreted as annota-
tions. This number is poor but it is also misleading. Because
only 4drawings, the actual number of errors is minor relative
to the overall number of annotations processed.

6. Future Work

While we believe this system significantly advances the state
of the art in processing handwritten annotations, it also
opens new problems. On the recognition side, we would
like to recognize increasingly more sophisticated annotation
structures, including linkages between containers, callouts,
ranges, and so on. By performing these linkages as part of
the optimization strategy, we should be able to improve the
system accuracy. We also believe that in the long-term, our
feed-forward, greedy, multiple engine recognition strategy
limits accuracy, but see no obvious ways to get around this
without significantly reducing system performance. Another
set of issues that we do not address in this paper is appropri-
ate user interfaces for exposing and mediating the recogni-
tion results. In this work we present our best effort at provid-

c© The Eurographics Association 2006.



Xin Wang & Michael Shilman & Sashi Raghupathy / Parsing Ink Annotation

Table 2: Recognition Results on the Test Set.

Labeled Drawing Underline Strike-through Scratch-out Enclosure Vertical Range Callout
Underline 0.0099 0.9802 0.0035 0.0023 0.0006 0 0.0035
Strike-through 0.0176 0.0441 0.8062 0.1101 0.0132 0 0.0088
Scratch-out 0.0211 0.0053 0 0.9474 0.0053 0 0.0211
Enclosure 0.0078 0 0 0.0117 0.9688 0 0.0117
Vertical Range 0.0180 0 0.0015 0 0 0.9099 0.0706
Callout 0.0172 0.0147 0.0037 0.0025 0 0.0196 0.9423
Drawing 0.4572 0.1202 0.2996 0.0592 0.0082 0.0118 0.0437

ing a real-time recognition, but do not address the system’s
usability in the presence of errors.

.

Aknowledgement

The authors thank Dr. Paul Viola of MSR for many of his
insightful discussions; Dr. Herry Sutanto, Dr. Ming Ye and
Manoj Biswas for great discussions on the design and de-
velopment of the system; Dr. Peter Slavik for discussion on
Gestures; Benoit Jurion and Marie Millet for many discus-
sions on the definition and user scenarios of annotations and
their efforts on data collection; Forrest Oswald, Chengyang
Li and especially Amber Pace for their efforts in setting up
the testing sets and the manual and automatic testing of the
annotation parser.

References

[AD05] A LVARADO C., DAVIS R.: Dynamically constructed
bayes nets for multi-domain sketch understanding. InProceed-
ings of IJCAI-05(San Francisco, California, August 1 2005),
pp. 1407–1412.

[AVK93] A PTE A., VO V., K IMURA T. D.: Recognizing mul-
tistroke geometric shapes: An experimental evaluation. InACM
Symposium on User Interface Software and Technology(1993),
pp. 121–128.

[BMP02] BELONGIE S., MALIK J., PUZICHA J.: Shape match-
ing and object recognition using shape contexts.IEEE Trans.
Pattern Anal. Mach. Intell. 24, 4 (2002), 509–522.

[BSH04] BISHOP C. M., SVENSEN M., HINTON G. E.: Dis-
tinguishing text from graphics in on-line handwritten ink.iwfhr
(2004), 142–147.

[CSKK02] CALHOUN C., STAHOVICH T. F., KURTOGLU T.,
KARA L. B.: Recognizing multi-stroke symbols. InAAAI Spring
Symposium, Sketch Understanding(2002), pp. 15–23.

[FPJ02] FONSECA M. J., PIMENTEL C., , JORGE J. A.: Cali:
An online scribble recognizer for calligraphic interfaces. InAAAI
Spring Symposium, Sketch Understanding(2002), pp. 51–58.

[FS97] FREUND Y., SCHAPIRER. E.: A decision-theoretic gen-
eralization of on-line learning and an application to boosting.J.
Comput. Syst. Sci. 55, 1 (1997), 119–139.

[HD03] HAMMOND T., DAVIS R.: LADDER: A language to de-
scribe drawing, display, and editing in sketch recognition.Pro-
ceedings of the 2003 Internaltional Joint Conference on Artificial
Intelligence (IJCAI)(2003), 461–467.

[Kar04] KARA L. B.: Automatic Parsing And Recognition Of
Hand-Drawn Sketches For Pen-Based Computer Interfaces. PhD
thesis, Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburg, PA, 2004.

[Mar97] MARSHALL C.: Annotation: from paper books to the
digital library. InProceedings of the ACM Digital Libraries Con-
ference(1997).

[ÖÖT∗01] ÖZER Ö. F., ÖZÜN O., TÜZEL C. Ö., ATALAY V.,
ÇETIN A. E.: Vision-based single-stroke character recognition
for wearable computing.IEEE Intelligent Systems 16, 3 (2001),
33–37.

[PdFJ02] PIMENTEL C. F., DA FONSECA M. J., JORGE J. A.:
Experimental evaluation of a trainable scribble recognizer for
calligraphic interfaces. InLecture Notes in Computer Science:
Graphics Recognition, Algortihms and Applications : 4th Inter-
national Workshop, GREC 2001,(2002), vol. 2390, pp. 81–91.

[SV04] SHILMAN M., V IOLA P.: Spatial recognition and group-
ing of text and graphics. In1st Eurographics Workshop on
Sketch-Based Interfaces and Modeling(2004).

[SVC04] SHILMAN M., V IOLA P., CHELLAPILLA K.: Recog-
nition and grouping of handwritten text in diagrams and equa-
tions. In Ninth International Workshop on Frontiers in Hand-
writing Recognition (IWFHR’04)(2004), pp. 569–574.

[SW04] SHILMAN M., WEI Z.: Recognizing freeform digital ink
annotations. InDocument Analysis Systems VI(2004), pp. 322–
331.

[SWR∗03] SHILMAN M., WEI Z., RAGHUPATHY S., SIMARD

P., JONES D.: Discerning structure from freeform handwritten
notes. InICDAR(2003), pp. 60–65.

[VJ01] VIOLA P. A., JONESM. J.: Robust real-time face detec-
tion. In ICCV (2001), p. 747.

[Wen03] WENYIN L.: On-line graphics recognition: State-of-the-
art. InGREC(2003), pp. 291–304.

[YSR∗05] YE M., SUTANTO H., RAGHUPATHY S., LI C.,
SHILMAN M.: Grouping text lines in freeform handwritten notes.
In ICDAR(2005), pp. 367–373.

[YV04] Y E M., V IOLA P.: Learning to parse hierarchical lists
and outlines using conditional random fields.iwfhr (2004), 154–
159.

c© The Eurographics Association 2006.


