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Abstract

Sketch-based modeling shares many of the difficulties of the branch of computer vision that deals with single image
interpretation. Most obviously, they must both identify the parts observed in a given 2D drawing or image. We draw
on constellation models first proposed in the computer vision literature to develop probabilistic models for object
sketches, based on multiple example drawings. These models are then applied to estimate the most-likely labels
for a new sketch. A multi-pass branch-and-bound algorithm allows well-formed sketches to be quickly labelled,
while still supporting the recognition of more ambiguous sketches. Results are presented for five classes of objects.

1. Introduction

A large-class of sketch-based modeling systems, specifically
those involving drawings of objects, diagrams, or maps,
must solve a recognition problem. What did the user draw
and what does each stroke correspond to? In many cases,
this is solved with the help of domain knowledge, such as
knowing that a sailboat has a mast and a hull. This recogni-
tion problem has a strong parallel with the goals of single-
image interpretation in computer vision, an area which has
seen significant progress over the past few years.

We apply a constellation or ‘pictorial structure’ model to
the recognition of strokes in sketches of particular classes
of objects. The model is designed to capture the structure
of a particular class of object and is based on local fea-
tures, such as the shape or size of a stroke, and pairwise
features, such as distances to other known parts. We learn
a probabilistic model from example sketches with known
stroke labelings. The recognition algorithm determines a
maximum-likelihood labeling for an unlabelled sketch by
searching through the space of possible label assignments
using a multi-pass branch and bound algorithm. Our tech-
nique supports flexible object structure by allowing for op-
tional parts. By applying a recognition threshold, extraneous
strokes can also be readily identified.

Figure 1 shows an example result for the recognition of
parts in face sketches. A subset of the training examples are
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shown, along with a set of successfully labeled free-form
sketches and trace-over sketches. A specific contribution of
our method is to cope with objects that exhibit considerable
variability in the way they are drawn and that allow a vari-
able number of part instantiations.

The output of our algorithm is a set of labels assigned to
the strokes. This can then be utilized by a variety of appli-
cations. Labelled strokes can be used to construct parame-
terized 3D models as in [YSvdP05]. Furthermore, they can
help to instance models in a 2D or 3D scene, or serve as a
partial interpretation of a larger sketched diagram. Sketches
can also be used to retrieve images or 3D models from a
database and can, in general, provide an intuitive alternative
interface to models with complex internal parameterizations
such as faces [fac].

Our system makes two particularly strong assumptions.
First, it assumes that similar parts are drawn with similar
strokes. For example, a flowerpot that is drawn with four
separate strokes instead of one stroke is not easily modelled
as part of the same object class. Second, object parts which
are deemed mandatory in a sketch must have exactly one
instance in the sketch. Optional parts may have multiple in-
stances in a given sketch.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of related work. Section 3 describes
the details of the probabilistic constellation model. Sec-
tion 4 then describes our algorithms for finding maximum-
likelihood interpretations of images using the model. Results
are presented and discussed in Section 5, including various
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(a)

(b)

Figure 1: (a) Face sketch training examples. The manda-
tory labels are head, left-eye, right-eye, mouth, nose; the
optional labels are left-pupil, right-pupil, left-ear, right-
ear, left-eyebrow, right-eyebrow, left-eyelash, right-eyelash,
moustache, beard. (b) Face sketches recognized using our
system..

modes of use and examples of failure cases. Lastly, Section 6
provides conclusions and future work.

2. Related Work

In this paper we address the problem of understanding com-
pleted sketches with a known stroke structure and an un-
known stroke ordering. Stroke information is assumed to be
collected at the time of drawing creation or it can be ex-
tracted using image analysis of a raster drawing using mor-
phology methods (erosion/dilation) and smooth continuation
methods.

Recognizing single strokes in isolation is perhaps the sim-

plest version of sketch understanding and can be used to sup-
port interfaces that use pen gestures as commands [Rub91].
Recognizing multi-stroke visual structure is significantly
more complex, given that the interpretation of strokes is de-
pendant on its local context. Many algorithms use some type
of ‘parse tree’ to search through the space of possible stroke
labelings in order to find the most consistent interpretation of
a given set of strokes. For applications that involve diagram
interpretation, the search is often anchored by first finding
well-defined symbols, such as drawn characters or electri-
cal component symbols [KS04]. The search is then further
constrained by exploiting the known structure of the given
application domain or object classes.

Matching can be treated as a graph isomorphism prob-
lem [MF02], where it is applied to the recognition of human
stick figures using a known model of connectivity. The work
of [YSvdP05] applies a flexible form of hierarchical graph
matching. For example, it first looks for the best subgraph
representing a cup body before then proceeding to look for
optional parts such as cup handles. Curve shape feature vec-
tors are used to quantify the best match and stochastic search
is used to explore the space of possible matches. Both of
these graph-based models rely heavily on connectivity be-
tween parts. They are thus weak at recognizing drawings
with disjoint parts, such as a nose or an airplane window.

A probabilistic approach to sketch stroke interpretation is
proposed in [AD04]. This uses domain-specific libraries of
‘Bayesian network fragments’ that describe shapes and do-
main patterns. Several mechanisms to control the size of the
space of hypotheses are presented, and the technique is ap-
plied to the domain of electrical circuit diagram recognition.
[QSM05] proposes the use of conditional random fields for
labeling box-and-line diagrams for particularly difficult am-
biguous examples where constraints must propagate in or-
der to find the most-likely interpretation. Perceptually-based
shape descriptions are used to help infer the the recognition
of image structure in [SMF∗02]. Our work looks at recogni-
tion problems that do not require connectivity between parts
and considers object sketches that can exhibit considerable
variability.

Image-based techniques can also be used to help iden-
tify sketches or parts of sketches. Shape contexts [BM02]
can be used to match sketch images to a fixed set of pro-
totype template images. Image-based classifiers are applied
in [SV04] in order to determine likely interpretations for
subsets of strokes. An A* search procedure is used to search
among the space of possible subset of strokes in order to find
a maximum-likelihood interpretation for the image. This is
applied to a graphic symbol set of 13 symbols.

Constellation models, also known as pictorial structure
models, are composed of a set of local parts, each of which
has an appearance model, and a geometry model that defines
preferred relative locations or distances of the parts [FE73].
They are well suited to applications such as face recog-
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nition, where features such as the nose, eyes, and mouth
have particular local features and also have relatively well-
defined distances to each other. The model is further devel-
oped in [FH05], where it is applied to identify both faces
and body configurations from images. The model continues
to be extended, with an emphasis on learning pictorial struc-
ture models automatically from example images of object
classes. More generally, this can be viewed as an example of
statistical relational learning.

An agent-based approach is presented in [MA03], al-
though this relies on a predefined grammar for the descrip-
tion of the components. The work of [KLP05] is similar to
ours in that it uses a constellation-type model and a proba-
bilistic framework. Our work differs in a number of respects,
including application to a different domain, using differ-
ent and larger individual and pairwise feature sets, support-
ing flexible object classes with optional parts, and a staged
search strategy.

Our approach for sketch recognition is uniquely charac-
terized by: (a) support for model definitions derived directly
from a set of drawn training examples; (b) a probabilistic
framework; (c) support for optional parts; (d) a constella-
tion model with features specifically suited for sketch recog-
nition; and (e) an efficient multi-stage search strategy. We
demonstrate our approach on five classes of objects and mul-
tiple modes of use (drawing and tracing).

3. The Constellation Model

We represent an object using a constellation model, consist-
ing of features of individual object parts, as well as features
of pairs of parts. Individual features capture shape and global
positions of parts, whereas pairwise features summarize rel-
ative positions of parts. An example constellation model of
a face object is shown in Figure 2.

We define a four-element feature vector for individual ob-
ject parts: F = [x y d β] where (x,y) are the location of the
center of the axis-aligned bounding-box (AABB) of a stroke,
as measured in image coordinates normalized to x,y ∈ [0,1];
d is the normalized-coordinate length of the AABB diago-
nal; and β = cos(φ), with φ being the angle of the AABB
diagonal with respect to the x-axis.

Similarly, we choose a four-element feature vector for
part pairs defined by Gab = [∆xab ∆yab Dab Dba], where
∆x = xa−xb and ∆y = ya−yb define the relative positions of
the AABB centers of strokes a and b in normalized coordi-
nates, Dab is the minimum distance between the endpoints of
stroke a and any point on stroke b, and Dba is the minimum
distance between the endpoints of stroke b and any point on
stroke a. In general, Gab 6= Gba.

Full constellation models do not scale well with the num-
ber of parts, n, since they result in O(n2) pairwise features.
We choose to alleviate this by characterizing each label as

Figure 2: Example constellation model for a sketched face,
showing the pairwise interactions. In this example, the left-
eye, right-eye, mouth, and nose are mandatory and thus have
complete pairwise interactions. The left-ear and right-ear
are optional and thus have pairwise interactions with all
mandatory parts but not with each other.

mandatory or optional. Individual features are computed for
both mandatory and optional parts. However, pairwise fea-
tures are only computed if one or both of the labels in the
pair corresponds to a mandatory part. We note that it may be
possible to further reduce the number of pairwise features
by searching for subsets that yield good recognition perfor-
mance [CFH05].

The sketch recognition process has two phases, the first
which searches the space of possible mandatory label assign-
ments, and the second which searches for optional labels for
the remaining unlabelled strokes. In this way the mandatory
labels provide contextual location information necessary for
assigning appropriate labels to the potentially large number
of optional parts. We describe the search algorithm in the
following section.

3.1. Learning the Model

An object class model is represented using a probability dis-
tribution over features in object constellation models. This
function is learned from a set of example labelled sketches.
A straightforward choice of object class model is to use mul-
tivariate Gaussian distributions. However, in order to sup-
port recognition from a small number of training examples,
we opt for a diagonal covariance matrix. Thus we indepen-
dently compute the mean and covariance of each element of
the feature vectors F and G for the set of labelled sketches
that serve as training data. More explicitly, the probabilistic
model for the f th element in the feature vector of a label `

is given by θ f
` and consists of the mean value for the feature

element, µ f
` , as well as the standard deviation, σ f

` . Similarly,
a pair feature model, θ f

` j , is given by < µ f
` j,σ

f
` j >.
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3.2. Labeling Likelihood

The quality of a particular matching between labels and
strokes is scored using a cost function. In early constella-
tion models, the match quality is defined in terms of an en-
ergy that is a function of both the individual feature matches
and the pairwise feature match. As in other recent work
[CFH05], we cast the problem in a probabilistic framework
and search for the most likely interpretation. The probability
of a given labeling L is given by the product of the individual
stroke labeling likelihoods, further multiplied by the product
of all labelled stroke pair likelihoods. This can be expressed
as:

P(L|θ) =
N

∏
i=1

M

∏̀
=1

P(Fi|θ`)
δi`

m

∏
j=1

N

∏
k=1

P(Gik|θ` j)
δk j (1)

In the above expression, the interior of the first term,
P(Fi|θ`)

δi` , represents the probability of stroke i having la-
bel `. This is computed for all strokes, as given by the outside
product. The inside product is a notational convenience for
expressing the stroke-label assignment.

The interior of the second term, P(Gik|θ` j)
δk j , represents

the probability of stroke i in relation to all the mandatory
parts, as measured by the pairwise feature vectors. Thus if
a stroke is labelled as right ear but it is located below the
mouth, then it is this term that will give that labeling a low
likelihood. Pairwise relations are computed with respect to
all mandatory parts, as given by the outside product. The
inside product is a notational convenience for expressing the
stroke-label assignment for the mandatory strokes.

The assignment of strokes to labels is modelled as a label-
assignment matrix δ, with δi` = 1 if stroke i is assigned label
`, and δi` = 0 otherwise. The exponentiation using the δ val-
ues is a notational convenience for compactly representing
stroke-label assignments. All terms having an exponent of
δ = 0 evaluate to 1 and thus effectively drop out of the like-
lihood computation. The label-assignment matrix has im-
posed upon it the appropriate restriction that each stroke can
be assigned only one label, and that mandatory labels should
map to a unique stroke. N is the number of strokes, M is the
number of labels, and m is the number of mandatory labels.
P(Fi|θ`) models the likelihood of stroke i having label `.
Similarly, P(Gik|θ` j) models the likelihood of the stroke pair
(i,k) having the labeling (`, j). The above omits the normal-
izing constant P(θ), which does not affect the ML solution.
We assume a uniform prior on the likelihood of parts appear-
ing in a sketch.

4. Maximum Likelihood Search

A maximum likelihood (ML) search procedure finds the
most plausible labelling for all strokes that appear in the im-
age. For a simple application of a constellation model hav-
ing n strokes and m independent object part labels, there

are mn possible assignments that could in principle be ex-
plored, and each assignment configuration requires evaluat-
ing O(n2) pairwise interactions. Further complications arise
because some strokes may not have plausible labels, and
some object parts (i.e., labels) may not be found in a given
sketch, or may have multiple instances. In order to allow
for these complications, and to alleviate the computational
cost associated with the exponential number of matches, the
search over possible label assignments has two phases.

The first search phase involves labelling strokes that cor-
respond only to the mandatory object parts and then com-
miting to those labels. This is followed by a linear search
through the optional labels for the recognition of the remain-
ing unlabelled strokes. Both search phases use the same ob-
jective function, namely the likelihood as described in the
previous section.

The search over possible label assignments is carried out
using a branch-and-bound search tree. Each node in the
search tree represents a partial labeling of the sketch. A node
at depth i in the tree has found corresponding strokes for la-
bels 1 through i. Each node in the tree has a current assigned
likelihood which is determined from the product of individ-
ual stroke-label likelihoods for the i assigned labels, as well
as all the pairwise interaction likelihoods among all labelled
parts.

To advance the search, a node is extended by evaluating
all possible assignments of mandatory label i + 1 to unla-
belled strokes. During the search, the algorithm tracks the
cost of the best (most likely) known complete assignment of
mandatory labels. The cost is used to bound branches of the
search. Each completed search branch can potentially result
in a better bound to restrict the remaining search.

Branches of the search tree can only be bounded once a
complete assignment of mandatory labels is found. If the
number of strokes or mandatory labels is high, finding com-
plete assignments is prohibitively slow. We employ two ap-
proaches to further constrain the search: multipass thresh-
olding and hard constraints.

With multipass thresholding, we bound branches of the
search before encountering a full labelling. If a node’s like-
lihood, as computed by its current partial set of label as-
signments, is lower than a specified threshold α, that search
branch is terminated. We use multiple passes, beginning with
an optimistic threshold. That is, at first, we assume all fea-
ture likelihoods in a match will be very high. This can result
in an overly restrictive search that may lead to no complete
labelings being found. However, this is quick to compute in
comparison to a full search, or a search with a more pes-
simistic bound.

Upon failure to find a successful complete label assign-
ment, each successive pass of the branch-and-bound search
uses a progressively more pessimistic assumption until com-
plete solutions are found. The first complete solutions found
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are then used as a good bound for a final search pass wherein
the threshold can be as pessimistic as is desired. We be-
gin with a threshold corresponding to P(µ + 1.3σ) for each
feature element likelihood, and on each successive pass we
scale this by 2/3. Multi-pass thresholding makes the search
feasible for a large number of strokes and mandatory labels
and also results in fast labeling for ‘good’ sketches while
supporting more extensive searches through the hypothesis
space for assigning labels to more ambiguous sketches.

In lieu of a threshold based on the likelihood-to-date for
the partial assignments, an alternative that we have found to
be equally successful is to threshold based on individual part
and pair likelihoods. Thus, a branch is terminated when it in-
volves any individual likelihood that falls below a threshold
β. For the examples shown in the paper, this is the type of
multi-pass thresholding that we apply.

Hard constraints can be seen as a variant on the type of
thresholding just described. For a particular object class, it
may be the case that one feature label should always satisfy
a particular relation with respect to another. For example, the
nose could be required to always be located above the mouth
in a face sketch. For our implementation, we infer above, be-
low, left, and right relationships from the example sketches
wherever they can be found. Thus, if the nose AABB cen-
ter appears above the mouth AABB center in all the exam-
ple sketches, this will be added as a hard constraint. An ob-
ject class may have many such constraints between labelled
parts.

5. Results and Discussion

We have tested the method on the 5 classes of objects listed
in Table 1. These have 7–15 labels and have been tested
on drawings having 3–200 strokes. We use on the order of
20-60 training examples for each class. Figures 1, 3, 4, 5,
and 6 show training sketches and successful test sketches.
The recognition time is typically 0.01-2.5s for the shown ex-
amples, with most of this time being spent on initialization.
During initialization, a feature vector F is pre-computed for
all strokes and another feature vector G for all stroke pairs of
the input sketch. As an example, consider the bottom left
face sketch in Figure 1, which contains 171 strokes. The
recognition takes a total of 1.97 seconds, with 80% of the
computation time spent on initialization, 18% on searching
for mandatory labels, and 2% on finding labels for the op-
tional parts. Spurious strokes can be rejected by placing a
threshold on the fit of optional stroke labels.

The hard constraints discussed in Section 4 may signif-
icantly reduce recognition times. However, when they are
automatically inferred from training data, the system may
falsely register the existence of a hard constraint. For exam-
ple, few training sketches may result in the system falsely be-
lieving that the left eye is always below a right eyelash. How-
ever, such a situation could easily occur in a cartoon-style

face sketch or a somewhat asymetric sketch. This could be
viewed as an indication that more training data is required.

Figure 7 shows a set of failure examples, meaning that
one or more strokes are mislabeled. Recognition can go
wrong in several ways: (1) inability to find suitable manda-
tory strokes because of the hard constraints; (2) mislabeling
of a mandatory stroke, leading to havoc with the remaining
strokes; (3) mislabeling of optional strokes. In practice, er-
rors of type (1) are rare and imply a lack of training data.
Errors of type (2) can occur if unusual strokes occur that af-
fect the overall bounding box and therefore result in atypical
normalized coordinates. This might occur for adding overly
long or bushy hair in face sketches, or certain atypical stems
in flower sketches. Errors of type (3) most commonly oc-
cur when there are few mandatory strokes, such as for the
sailboats or flowers. The model does not currently give any
consideration to relationships between optional parts. Lastly,
other mislabelings can be attributed to impoverished proba-
bility distribution models and inadequate feature vectors.

mandatory optional
class labels labels
faces 5 10
flowers 2 5
sailboats 3 5
airplanes 3 4
characters 7 8

Table 1: Object classes.

In order to evaluate the utility of the multipass thresh-
olding technique, we test the recognition of sketches with
and without thresholding. Table 2 shows the results of this
experiment. In all cases, the multipass thresholding results
in significantly lower computation times. Most notable is a
103-stroke face sketch which took only 1.242 seconds to rec-
ognize with thresholding, yet without thresholding, failed to
find a labeling within 9 hours.

num with without
class strokes multipass (s) multipass (s)
face 103 1.242 > 9 hours
flower 54 0.46 0.98
sailboat 8 0.02 0.03
airplane 21 0.08 0.1
character 18 0.12 126.69

Table 2: Computation times for recognition algorithm with
and without the multi-pass technique.

Our system assumes a uniform prior for the a priori likeli-
hood of optional parts. This decision stems in part from our
expectation that a small number of training sketches will not
necessarily reflect the probability of parts appearing in fu-
ture sketches. Thus, the identity of parts depends solely on
their shape and fit as modeled by the constellation model.
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(a)

(b)

Figure 3: (a) Flower sketch training examples. The manda-
tory labels are pot, stem, stigma; the optional labels are
sacuer, petal, leaf, and sepal. (b) Flower sketches recognized
using our system.

We define the recognition of a sketch to be the labeling
of the individual parts of a sketch that is of a known object
class. If the class of the input sketch is unknown, the max-
imum likelihood fit could be determined for each of a list
of object classes in order to provide information about the
object class. The ML log-likelihoods that come from each
class are not directly comparable, however, because object
classes differ in their number of mandatory parts. Manda-
tory parts have fully-connected pairwise likelihoods while
optional parts only have pairwise likelihoods in relation with
mandatory parts. An appropriate normalization can be con-
structed to deal with this, although we have yet to investigate
this. We believe that there are likely better discriminative
object-classification methods that do not rely on complete
part labeling.

It may be possible to further improve on the mean search
time for the branch-and-bound algorithm by using variants
of the A* algorithm. This involves expanding non-terminal
nodes in the search in an order sorted by their cost-to-date.
However, much of the leverage of A* comes from the abil-
ity to generate a suitable always-optimistic cost-to-go func-
tion. Unfortunately this provides little leverage given that it
is possible that the remaining unlabelled strokes could per-
fectly match the mean features.

6. Conclusions

We have presented a system that adapts constellation or pic-
torial structure models from the computer vision literature

Figure 4: (a) Sailboat sketch training examples. The manda-
tory labels are hull, main-sail, mast; the optional labels are
jib, boom, keel, rudder, tiller.(b) Sailboat sketches recog-
nized using our system.

for flexible sketch recognition. Adaptations include support
for optional parts, the use of an efficient multi-pass branch
and bound search for exploring the space of possible inter-
pretations, and the construction of individual and pairwise
features suitable for sketch recognition.

There remain a number of open directions for future work.
The most significant limitation of the current system is the
requirement to have one label per stroke. Thus, an eye or
plane wing always needs to be drawing with a single stroke
in our system. The ideas presented in [MA03] could be used
to dynamically instantiate ‘part hypotheses’, which provide
a path for top-down knowledge to help assemble multiple
local strokes into a single primitive. Local stroke proximity
information [SV04] may also be useful in determining likely
groupings of strokes that represent a single part. It may also
be possible to encode the most common stroke patterns used
to construct a part into multiple part templates that are all as-
sociated with the same label. Lastly, a gestalt-based bottom-
up grouping process may provide a significant speedup when
assigning identical labels to large groups of strokes.

The current recognition process is largely top-down: the
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(b)

Figure 5: Character sketch training examples. The manda-
tory labels are head, torso, thigh, shin, foot, upper-arm,
lower-arm; the optional labels are hat, neck, hand, nose, eye,
pupil, mouth, ear. (b) Character sketches recognized using
our system.

diagram is searched for mandatory labels in a fixed order in
order to construct the search tree. This ignores bottom-up
information that could be used to reorder the search to be-
gin with the strokes which have likely bindings to particular
labels, thereby strongly constraining the search early on.

In the current system we have only experimented with
a limited number of individual and pairwise features. It is
likely that features other than those we have proposed will
be useful in producing a more robust system. Given a large
set of possible features and appropriate datasets, it should be

(a)

(b)

Figure 6: (a) Airplane sketch examples. The mandatory la-
bels are fuselage, left-wing, right-wing; the optional labels
are left-stabilizer, right-stabilizer, left-engine, right-engine,
propellor, window, tail-fin. (b) Airplane sketches recognized
using our system.

Figure 7: Failure modes of our system. Mislabelling can be
caused by lack of training sketches and inadequate features.

possible to run an offline process that determines the k most
informative features (individual and pairwise). How to best
represent the probability distributions for a given set of fea-
tures is a further open problem. Our model of independent,
normally-distributed features is well suited for systems rely-
ing on only a small set of example labelled sketches. How-
ever, multi-variate Gaussian models or mixtures of Gaus-
sians may provide better results for larger data sets, at the
expense of requiring a larger number of labelled examples.
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