EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006)

Thomas Stahovich and Mario Costa Sousa (Editors)

An Efficient Graph-Based Symbol Recognizer

WeeSan Lee,1 Levent Burak Kara,2 and Thomas F. Stahovich?

1Department of Computer Science, University of California, Riverside, CA 92521
2Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213
3Mechanical Engineering Department, University of California, Riverside, CA 92521

Abstract

We describe a trainable symbol recognizer for pen-based user interfaces. Symbols are represented internally as
attributed relational graphs that describe both the geometry and topology of the symbols. Symbol recognition
reduces to the task of finding the definition symbol whose attributed relational graph best matches that of the
unknown symbol. One challenge addressed in the current work is how to perform this graph matching in an effi-
cient fashion so as to achieve interactive performance. We present four approximate graph matching techniques:
Stochastic Matching, which is based on stochastic search; Error-driven Matching, which uses local matching er-
rors to drive the solution to an optimal match; Greedy Matching, which uses greedy search; and Sort Matching,
which relies on geometric information to accelerate the matching. Finally, we present promising results of initial
user studies, and discuss the tradeoffs between the various matching techniques.

Categories and Subject Descriptors (according to ACM CCS): 1.5.2 [Pattern Recognition]: Classifier Design and

Evaluation

1. Introduction

Researchers have developed a variety of approaches for rec-
ognizing hand-drawn shapes and symbols. However, many
of the current approaches have important limitations. For
example, some methods are limited to single-stroke shapes
drawn in preferred orientations [Rub91]. Others consider
only aggregate properties of a shape and can confuse dissim-
ilar shapes that have similar aggregate properties [FPJO2].
Other approaches require shapes to be drawn with a consis-
tent pen stroke order [SDOS5].

Our work is aimed at overcoming some of these limi-
tations. Our goal is to create an efficient, trainable, multi-
stroke symbol recognizer that is insensitive to orientation,
scaling, and drawing order. This is achieved via a graphi-
cal representation. Specifically, a symbol is represented with
an attributed relational graph (ARG) describing its geometry
and topology. The nodes in the graph represent the geomet-
ric primitives, and the edges represent the geometric rela-
tionships between them. Representing a symbol in terms of
its topology allows us to achieve invariance to rotation and
scaling, including non-uniform scaling. Because of the later
capability, our approach is particularly tolerant of large vari-
ations in the shape of a hand-drawn symbol.

(© The Eurographics Association 2006.

With our approach, symbol recognition reduces to the task
of graph matching. During recognition, the ARG of the un-
known symbol is matched against the ARG of each defini-
tion symbol to find the best match. The unknown is classi-
fied by whichever definition matches best. Graph matching,
or sub-graph isomorphism [Ul176, DPZ01], is known to be
NP-complete [GJ79]. Here, the problem is made more diffi-
cult because of noise. Noise comes from variations in how
the symbols are drawn as well as from processing errors.
For example, it is not uncommon for a symbol to have extra
or missing geometric primitives, and thus extra or missing
nodes in its ARG.

There has been considerable research in developing ef-
ficient graph matching techniques for a variety of applica-
tions [CFSV04]. Here we present and evaluate four new
techniques specifically designed for recognizing hand-drawn
shapes. These techniques are designed to be efficient enough
for interactive performance, and to be tolerant of the noise
inherent in hand-drawn symbols.

Our recognizer assumes that the individual symbols in a
sketch have been located prior to recognition. In other work,
we have developed sketch parsers for locating the symbols
in a sketch [KS04, GKSS05].

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

12 WeeSan Lee & Levent Burak Kara & Thomas F. Stahovich / An Efficient Graph-Based Symbol Recognizer

The next section places this work in context by describing
related work. This is followed by the details of our approach.
Finally, results of a user study and conclusions are presented.

2. Related Work

Symbol recognition is an active area of research. An exten-
sive overview of the literature can be found in [LVSMO02].
Here, we present a representative sample of the literature.

Lee [Lee92] developed a graph-based recognizer in which
the graph represents the precise geometry of the object. The
approach is suitable for precisely drawn symbols with uni-
form scaling. For example, the approach has been used to
recognize machine drawn symbols, symbols drawn using
templates, and precise hand-drawn symbols. Lee’s approach
requires manual selection of key vertices during training.

Calhoun et al. [CSKKO02] developed an approach in which
the graph encodes topology, rather than geometry, so as to be
more tolerant of variations in hand-drawn sketches. When
learning definitions, thresholds are used to decide when a
continuous property, such as intersection angle, should be
included in the graph. If a property is included in the graph,
it is represented by a single numerical value. In our work, at-
tributes are described statistically, making our approach sig-
nificantly more robust to pen stroke segmentation errors and
drawing variations. Furthermore, to achieve interactive per-
formance, Calhoun’s approach requires the user to maintain
a consistent drawing order. The system does have a mode
that allows for variable drawing order. In that case, how-
ever, best-first search, which is computationally expensive,
is used to do matching. The graph matching techniques we
present are significantly more efficient. Likewise, Calhoun’s
approach requires the training examples to have a consistent
drawing order, but this is not required for our approach.

In addition to symbol recognition, graph-based techniques
have been used for a variety of other pattern recognition
problems. Conte et al. [CFSV04] provides an extensive
overview of graph matching techniques and their appli-
cations. According to the taxonomy presented there, our
stochastic, error-driven, and greedy matching techniques can
be considered approximate matching techniques based on
continuous optimization.

Many existing approaches to symbol recognition rely on
feature-based representations. Fonseca et al. [FPJO2] use
features such as the smallest convex hull that can be cir-
cumscribed around the shape, the largest triangle that can
be inscribed in the hull, and the largest quadrilateral that can
be inscribed. Because their classification relies on aggregate
features of the pen strokes, it might be difficult to differen-
tiate between similar shapes. Rubine [Rub91] describes a
trainable gesture recognizer designed for gesture-based in-
terfaces. The recognizer is applicable only to single-stroke
symbols, and is sensitive to the drawing direction and ori-
entation. Pereira et al. [PBS*04] have extended Rubine’s
method to multi-stroke symbols. However, such symbols

must be drawn with a consistent set of strokes. Addition-
ally, they have developed a graph-based symbol recognizer,
but it is not trainable. Matsakis [Mat99] describes a system
for converting handwritten mathematical expressions into a
machine-interpretable typesetting command language. Each
symbol requires a multitude of training examples, where
each example must to be preprocessed to eliminate varia-
tions in drawing directions and stroke orderings. However,
the preprocessing makes their approach sensitive to rota-
tions. Gennari et al. [GKSS05] describe a trainable recog-
nizer that uses nine geometric features to construct concise
probabilistic models of input symbols. The approach is suit-
able for multi-stroke symbols with arbitrary drawing orders
and orientations. The features are an abstraction of the topol-
ogy, thus is possible for shapes with different topologies
to have the same features. Hse and Newton [HNO04] devel-
oped a recognizer based on Zernike moments. The method
is insensitive to rotation and uniform scaling. However, be-
cause the moments are essentially properties of a bitmap, the
method is intolerant of non-uniform scaling.

In addition to graph-based and feature-based methods,
researchers have also explored a variety of other repre-
sentations and approaches. For example, Sezgin and Davis
[SDO5] present a technique based on hidden markov mod-
els. The approach requires shapes to be drawn with a con-
sistent pen stroke ordering. Hammond and Davis [HD04]
developed a recognizer that relies on hand-coded shape de-
scriptions. Their representation is similar to ours in that both
contain topological information. However, their descriptions
are hand-coded while ours are learned from training exam-
ples. Gross’ [Gro94] approach relies on a 3x3 grid inscribed
in the symbol’s bounding box. The sequence of grid cells
visited by the pen distinguishes each symbol. Because of the
coarse resolution of a 3x3 grid, this approach may not be
able to handle symbols with small features. Kara and Sta-
hovich [KSO05] developed a recognizer based on a bitmap
representation. One advantage of the approach is that it is
tolerant of over-stroking and variations in line styles. How-
ever, the approach is sensitive to non-uniform scaling.

Parametric methods such as polygon, B-spline, and Bezier
curve fitting techniques have also been considered in shape
representation and classification [HC96, RVR02]. A bene-
fit of these approaches is that there is no need to segment
the pen stroke into geometric primitives such as lines and
arcs. Additionally, since only a few parameters are needed
for shape description, these methods are computationally ef-
ficient. Similar to the Rubine’s method, however, these meth-
ods are primarily applicable to single-stroke symbols or ges-
tural commands.

3. Representation

We represent a symbol with an attributed relational graph
(ARG) describing its geometry and topology. The nodes in
the graph represent the geometric primitives, and the edges
represent the geometric relationships between them.

(© The Eurographics Association 2006.

WeeSan Lee & Levent Burak Kara & Thomas F. Stahovich / An Efficient Graph-Based Symbol Recognizer 13

Each node is characterized by the type of the primitive
— line or arc — and its relative length. The primitives are
obtained from the raw pen strokes via a speed-based seg-
menter [Sta04]. The relative length of a primitive is defined
as the ratio of its length (in pixels) to the total length of the
primitives comprising the symbol. For example, each of the
four line segments in a perfect square would have a relative
length of 0.25. Defining length on a relative basis results in
a scale-independent recognizer.

The edges in a graph represent the geometric relationships
between the primitives. Each pair of primitives is character-
ized by the number of intersections between them; the rela-
tive locations of the intersections; and for lines, the angle of
intersection. When extracting intersections from a sketch, a
tolerance of 10% of the length of the segments is used to al-
low for cases in which an intersection was intended but one
of the segments was a little too short. Intersection locations
are measured relative to the lengths of the two primitives.
For example, if the beginning of one line segment intersects
the middle of another, the location is described by the coor-
dinates (0%, 50%). The intersection angle is defined as the
acute angle between two line segments. It is defined for both
intersecting and non-intersecting line segments. Defining an
intersection angle for non-intersecting segments allows the
program to represent the topology of disconnected symbols,
such as the dashpot in Figure 5. Intersection angle is not de-
fined for an intersection between an arc and another segment.

Figure 1 shows an example of an ARG for an ideal square.
Each side of the square has a relative length of 0.25 and in-
tersects two other sides with an intersection angle of 90°.
Because of the drawing directions used, all intersections are
located at the end of one segment and the beginning of an-
other.

A definition for a symbol is created by constructing an
“average” ARG from a set of training examples. (Additional
details of the training process are described in Section 6.)
Each node in the average ARG is assigned the primitive type
that occurred most frequently for that node in the training
data. The number of intersections assigned to a pair of prim-
itives is determined in an analogous fashion. A pair of prim-
itives is assigned two intersections if at least 70% of the ex-
amples had two. If less than 70% had two intersections, but
there was at least one intersection 70% of the time, the pair is
assigned one. Otherwise, the pair is assigned zero intersec-
tions. The remaining properties of the ARG — relative length,
intersection angle, and intersection location — are continuous
valued properties. These are characterized by the means and
standard deviations of the values from the training examples.

4. Measuring Similarity

During recognition, it is necessary to compare the ARG of
the unknown symbol to the ARG of each definition sym-
bol to find the best match. The unknown is classified by
whichever definition matches best. The match between an

(© The Eurographics Association 2006.

3
0 2
\ >
1
Line 0
=1 R=0.25 =1
A=90 A=90
L=(100%,0%) 1=0 L=(100%,0%)
A=0
=0 L=N/A
A=
Line 1 L=N/A Line 3
R=0.25 R=0.25
I=1
I=1
A=90 A=90

L=(100%,0%)

L=(100%,0%) Line 2
R=0.25

Figure 1: Top: An ideal square drawn with a single, counter-
clockwise pen stroke. Arrows show the direction of drawing.
Bottom: The corresponding ARG. I = number of intersec-
tions, A = intersection angle, L = intersection location, R =
relative length.

Error Metrics (E;) Weight (w;)
E|: Primitive count error 20%
E5: Primitive type error 20%
E5: Relative length error 20%
E4: Number of intersections error | 15%
Ej5: Intersection angle error 15%
Eg: Intersection location error 10%

Table 1: Error metrics and corresponding weights.

unknown and a definition is quantified in terms of a dissim-
ilarity score, which is computed using an ensemble of error
metrics. These metrics consider both the intrinsic properties
of the geometric primitives and the relationships between
them. The former are encoded in the nodes of the ARG, the
latter in the edges.

Table 1 lists our six error metrics and the weights ap-
plied to them when computing the dissimilarity score. The
weights, which are based on empirical studies, reflect the
relative importance of the various error metrics for discrim-
inating between symbols. For the purposes of recognition,
the dissimilarity score is converted to a Similarity Score as
follows:

6
Similarity Score =1 — Z wiE; (D)

i=1

14 WeeSan Lee & Levent Burak Kara & Thomas F. Stahovich / An Efficient Graph-Based Symbol Recognizer

“., Gaussian ——
0.9 & %, Modified]

0.8 £ kY

0.7 £ Y
0.6] ;
0.5
0.4

s N
«//\

/ N\

Probability

Figure 2: Gaussian Probability Density Function and Mod-
ified Probability Density Function for u=0and 6 = 1.

where the E; are the error metrics, and the w; are the weights
listed in Table 1.

The error metrics for relative length, intersection angle,
and intersection location involve comparing properties of the
unknown to distributions of those properties encoded in a
definition. For example, it is necessary to compare the rela-
tive length of each primitive in the unknown to the mean and
standard deviation of the relative length of the correspond-
ing primitive in the definition. Ordinarily, this is done with
a Gaussian probability density function. As an alternative,
we have developed a modified probability density function
(MPDF) that is better suited to our recognition task:

4
PL) = expl—gs -)

@
Here p and ¢ are the mean and standard deviation of the
observed features learned from the training examples. This
function was designed empirically such that its top is flat-
ter than the Gaussian probability density function with the
same u and . This makes it easier to detect matches that
are in the “vicinity.” Additionally, we have found that the
Gaussian distribution dies off too quickly towards its tails,
which decreases its usefulness for recognition. For compar-
ison, Figure 2 shows both the Gaussian probability density
function and our modified probability density function for
pu=0ando=1.

The six error metrics used for computing the similarity
score are described in the following sections. Here we use
the term “unknown” to refer to the symbol to be recognized,
or equivalently, the ARG of that symbol. Likewise, the term
“definition” refers to the ARG of a definition symbol. Note
also that each metric is normalized to the range [0, 1] so that
the weights in Table 1 have predictable influences.

4.1. Primitive Count Error

This metric compares the number of nodes in the unknown
to the number in the definition. The error is defined as:

|Ny —Np|

E1 =min(1.0,
(Nmin

) (3)
where Ny and Np are the numbers of nodes in the unknown

and the definition ARGs, respectively, and N, is the mini-
mum of Ny and Np.

4.2. Primitive Type Error

This error metric accounts for differences between the prim-
itive types of the corresponding nodes in the two ARGs. The
error is defined as:

Nin
Niin —) 8(Type(Ui), Type(D;))
=1

E, = : 4
2 Ny 4

where U; is a node from the unknown, D; is the correspond-
ing node from the definition, Type(X) is a function that re-
turns the primitive type (arc or line) of node X, and 8(p,q)
is one when p = ¢, and zero otherwise.

4.3. Relative Length Error

This error metric compares the relative lengths of the primi-
tives of the unknown to those of the definition. Correspond-
ing primitives should have similar relative lengths. If not,
an error is assigned. Here, similarity is measured using the
MPDF defined in Equation 2. The error is computed as:

(1—P(Ug)]

E3="1 (5)

Niin

where U,ie represents the relative length encoded in the i
node of the unknown ARG. P(x) is evaluated using the mean
and standard deviation from the corresponding node in the
definition.

4.4. Number of Intersections Error

This error metric compares the intersections of the unknown
with those of the definition. A pair of primitives in the un-
known should have the same number of intersections as the
corresponding pair in the definition. If not, an error is as-
signed. The total error is computed as:

Niin Npin
Y Y I, -1(D;, D))
i=1 j=i+1
Ej=" 6
4 min(My,Mp) ©)

(© The Eurographics Association 2006.

WeeSan Lee & Levent Burak Kara & Thomas F. Stahovich / An Efficient Graph-Based Symbol Recognizer 15

where /(X,Y) returns the number of intersections between
the primitives in nodes X and Y, and My and Mp are the
numbers of edges in the unknown and definition ARGs, re-
spectively. A pair of primitives can intersect as many as two
times. Ef‘ thus has a range of [0, 2]. So that all error metrics
have the same range of [0, 1], the value of Efl is “squashed”
with the following function:

S() !

= T expl6(1—2)] ™

As a result, the “Number of Intersections Error” is defined
as:

E; = S(E}) ®)

4.5. Intersection Angle Error

This error metric compares the intersection angles of the un-
known with those of the definition. The intersection angle
of a pair of lines in the unknown should be similar to that of
the corresponding pair of lines in the definition. (Intersection
angle is defined only for pairs of lines.) If not, an error is as-
signed. Here, similarity is again measured using the MPDF
defined in Equation 2. The total error is computed as:

Nin - Nyin
Y Y [1-P@Ay)
=1 sl
Es = Niin - Npin — ©)
T(Line(U,-,Uj),Line(DhDj))
i=1 j=i+l

where A;; is the angle at which the primitive from node i
of the unknown intersects the primitive from node j of the
unknown. P(A;;) is evaluated using the mean and standard
deviation from the corresponding pair of primitives from the
definition. Note that if the two primitives are not lines, A;;
is undefined and P(A;;) is taken to be one. Line(X,Y) is one
when the nodes X and Y are both lines, and zero otherwise.
T(p,q) equals one if p and g are both one, and zero other-
wise (i.e., T is the logical “and” operator). The numerator
normalizes the error by the total number of intersections.

4.6. Intersection Location Error

This error metric compares the intersection locations of the
unknown with those of the definition. The locations of the
intersections between a pair of primitives from the unknown
should be similar to those of the corresponding pair of prim-
itives in the definition. If not, an error is assigned. Here, sim-
ilarity is again measured using the MPDF defined in Equa-
tion 2. Because intersection location is defined by two co-
ordinates, the MPDF is applied twice for each intersection.
The total error is computed as:

Nuin Nain 1(Di-D;) ‘ P
Y Y Y (-rah+ -
Y Y 21D

i=1 j=it+1

(© The Eurographics Association 2006.

where (L, L’J‘-) is the coordinates of the k'™ intersection be-
tween the primitives from nodes i and j of the unknown.
I(D;, D) is the number of intersections between the primi-
tives from nodes i and j of the definition. In cases where a
pair of primitives intersect in the unknown but not in the def-
inition, or vice versa, both P(L¥) and P(L’j‘») are set to zero.

5. Graph Matching

The previous section described how to compute the similar-
ity between two graphs. This assumed that each node in the
unknown ARG was assigned to a specific node in the defini-
tion ARG. This section describes how these assignments are
obtained. This is a graph matching, or graph isomorphism
problem. If the user always draws each symbol with a con-
sistent number of segments and a consistent drawing order,
the graph matching problem is trivial. In that case, drawing
order would directly provide the correct node-pair assign-
ments. In practice, however, users do not always maintain a
consistent drawing order. Furthermore, the problem is made
more difficult because of noise. Noise comes from variations
in how the symbols are drawn as well as from processing er-
rors. For example, it is not uncommon for there to be extra
or missing nodes in the unknown (i.e., extra or missing geo-
metric primitives). Likewise, a segment that was intended to
be a line can be misinterpreted, either through ambiguity or
processing errors, as an arc, or vice versa.

We have developed four efficient, approximate matching
techniques to find the best match between two ARGs. These
are: Stochastic Matching, Error-driven Matching, Greedy
Matching, and Sort Matching. The first three methods are
based on search. The fourth method avoids search by assum-
ing a consistent orientation.

The search-based methods make initial node-pair as-
signments based on drawing order. Assignments are then
swapped until the best match is obtained. The quality of
the match at each iteration is determined using the similarity
score defined in the previous section. Our three search-based
approaches differ in the way they select the assignments to
swap at each iteration.

If the two graphs being matched do not have the same
number of nodes, the smaller one is “padded” with empty
nodes. This ensures that every node in one graph has a match
with a unique node in the other, and hence that every node
is considered by the swapping process. When evaluating the
error metrics, a pairing with an empty node produces the
maximum possible local error. For example, the addition of
empty nodes does not reduce the primitive count error, E| .

Figure 3 illustrates the typical search-based process. For
ease of explanation, the figure shows hypothetical symbols
rather than ARGs. Finding the correct node-pair assignments
is equivalent to finding the correct assignment of the seg-
ments of the unknown to the segments of the definition.
Here, the segments of the definition symbol are numbered

16 WeeSan Lee & Levent Burak Kara & Thomas F. Stahovich / An Efficient Graph-Based Symbol Recognizer

Unknown symbol

1
a
d c
b 2 4
3

Unknown:

Definition:

Figure 3: Graph matching: assignments b-2 and c-3 are cor-
rect, while a-1 and d-4 are not.

Definition symbol

according to a typical drawing order. Likewise, the segments
of the unknown are labeled with letters indicating the order
in which they were actually drawn. Based on drawing order,
segment a of the unknown is initially assigned to segment
1 of the definition, b is assigned to 2, and so on. It is clear
that assignments b-2 and ¢-3 are correct, while a-1 and d-4
are not. Swapping the latter to produce the assignments d-1
and a-4 is what is needed. The success of this swap can be
measured by the resulting increase in the similarity score.

The following sections describe our four matching tech-
niques in detail.

5.1. Stochastic Matching

This approach is based on stochastic search. To begin, the
initial node-pair assignments are saved as the current best.
Then, three node-pair assignments, which we will call A, B,
and C, are randomly selected. A and B are swapped produc-
ing assignments A’ and B’. B’ is then swapped with C. If
the new similarity score is better than the current best score,
the new assignments are saved as the new current best. This
process is repeated 100 times, and the current best node-pair
assignments are returned as the best match. As this method
is applied for a fixed number of iterations, the only cost that
varies with problem size is the cost of evaluating the sim-
ilarity score. This cost is O(n”), where n is the number of
nodes.

5.2. Error-Driven Matching

With this approach, a local matching error determines the
probability that a node-pair assignment will be selected to
be swapped. For example, if a node from the unknown was
a line primitive, and the corresponding node from the def-
inition was an arc, there would be a relatively high local
matching error, and correspondingly high probability that
the node-pair would be selected for swapping. The local

matching error of a node-pair is defined as the portion of the
dissimilarity score related to that node-pair. This includes all
intersection angle, intersection number, and intersection lo-
cation errors involving the primitives in that node-pair. Like-
wise, the local error also includes segment type and relative
length errors.

At each iteration, the local error of each node-pair is
computed and selection probabilities are assigned. Based on
these probabilities, two node-pairs are selected and swapped.
If the similarity score improves, the new assignments are
kept. Otherwise, the swap is rejected. This continues un-
til there are 20 consecutive iterations with no improvement,
or until 100 iterations have been performed. The computa-
tional complexity of this approach is similar to that of the
Stochastic Matching approach, but this approach typically
takes fewer iterations, and thus has lower cost.

5.3. Greedy Matching

This approach uses greedy search to find good node-pair as-
signments. The program first considers the best assignment
for the first node of the unknown. If there are n nodes, the
program considers all n — 1 cases in which the first node-pair
is swapped with another. Whichever assignment produces
the best similarity score is selected for the first node, and
this node-pair is removed from further consideration. This is
repeated for the second node-pair and so on. In all, O(nz)
sets of node-pair assignments are considered. For symbols
with less than about 10 nodes, this approach is less expen-
sive than the previous two.

5.4. Sort Matching

This approach does not rely on search. Instead, the nodes
are sorted based on the locations of their primitives. Each
line segment is characterized by its minimum x and y-
coordinates. Each arc is characterized by the coordinates of
its center. The primitives are then sorted in ascending order
of their x-values. Ties are broken using the y-values. The
sorted order of the nodes determines the node-pair assign-
ments.

This approach is useful only when the drawing orienta-
tion is fixed. Likewise, variations in drawing can result in
different sorted orders. Nevertheless, as Section 7 describes,
the approach often works reasonably well in practice. Addi-
tionally, because this approach is particularly efficient, it is
suitable for devices with little computational power, such as
PDAs.

6. Training

The recognizer is trained by providing a set of training ex-
amples for each symbol class. As described in Section 3,
the program constructs an “average” ARG for each class.
This entails another graph matching problem. To learn a def-
inition, the program must match the ARGs of the various
training examples to one another. This task is different from

(© The Eurographics Association 2006.

WeeSan Lee & Levent Burak Kara & Thomas F. Stahovich / An Efficient Graph-Based Symbol Recognizer 17

the previous matching problem because a similarity score
cannot yet be computed. For example, the primitive type er-
ror cannot yet be determined because the expected primitive
type of each node is yet to be determined.

We have explored two solutions to this problem. The first
is to require the training examples to be drawn with a con-
sistent drawing order. In this case, the matching problem is
avoided as the drawing order uniquely identifies the nodes
in an ARG. The second approach requires the user to draw
symbols with a consistent orientation. In this case, geometric
information is used for the matching. The training examples
are scaled to have unit bounding boxes. The scaled symbols
are then overlayed on top of one another. Finally, geomet-
ric proximity of the primitives is used to determine corre-
spondence of the nodes. In particular, when two symbols are
overlayed, each line or arc in one symbol is matched to the
nearest line or arc in the other.

7. Results

We conducted a user study to evaluate the performance of
our four matching techniques. The study involved nine par-
ticipants. Each was asked to provide 15 examples of each of
the 23 symbol classes shown in Figure 4. Data was collected
using a Tablet PC. Figure 5 shows typical examples of the
symbols drawn by the study participants.

Stochastic | Error-driven | Greedy | Sort
Time (ms) 67.8 48.3 134 2.0
Top 1 (%) 93.7 93.5 92.3 78.5
Top 3 (%) 97.9 98.8 96.7 93.0

Table 2: Results of user study: average time to classify a
symbol and the top-one and top-three accuracies.

arrow beam brackets cantilever capacitor current
— --—.\. =
_| 777 (o o) | ‘ ‘ | -
£ L) /
moment pi piston

dashpot ground link

pivot pound pulley sqrt square

PN P
7N —_
.

sum throttle triangle turbine voltage

Figure 4: Symbols used in the user study.

(© The Eurographics Association 2006.

[(4=
L . /1 —_— —
| VA NRVAN /| |
o 3 — 1]
arrow beam brackets cantilever capacitor current
—
\
Pir Y i J
o 7
dashpot ground link moment pivot voltage

Figure 5: Typical examples of symbols drawn in the user
study.

After the data was collected, recognition accuracy was
determined offline. The participants received no feedback
about the program’s performance. To provide a good test
of the matching ability of the four methods, the drawing
order of each example was randomized after the data was
collected. The system was tested in a user-dependent set-
ting. For each experiment, the training and testing data were
selected from a particular user. The results were then aver-
aged across all users. Table 2 shows the recognition results
when 14 examples were used for training. The training ex-
amples were randomly selected from the 15 examples pro-
vided by the particular user. This was repeated 10 times, us-
ing a cross-validation approach. The results in Table 2 are
thus an average across 9 participants and 10 iterations of
cross-validation.

The Stochastic, Error-driven, and Greedy methods all
achieved similar performance of about 92% for top-one ac-
curacy, and about 97% for top-three accuracy. Top-one accu-
racy is the rate at which the symbols were correctly classi-
fied. Top-three accuracy is the rate at which the correct class
was one of the three highest ranked classes. The Error-driven
approach took about 28% less time to recognize a symbol
than the Stochastic approach. This is a result of using lo-
cal matching error to guide the search to the best match.
The Greedy approach worked well and took about 80% less
time to recognize a symbol than the Stochastic approach. We
expected that this approach would suffer from local max-
ima, but the results suggested otherwise. The Sort method
achieved less accuracy than the other methods, but was sig-
nificantly faster. This method worked reasonably well in
these experiments because the participants drew the exam-
ples with a consistent orientation.

8. Conclusion

We have presented a trainable symbol recognizer for pen-
based user interfaces. Symbols are represented internally as
attributed relational graphs that describe both the geome-
try and topology of the symbols. Symbol recognition re-
duces to the task of finding the definition symbol whose at-
tributed relational graph best matches that of the unknown
symbol. One challenge addressed in the current work is how
to perform this graph matching in an efficient fashion so as
to achieve interactive performance. We presented four ap-
proximate graph matching techniques: Stochastic Matching,

18 WeeSan Lee & Levent Burak Kara & Thomas F. Stahovich / An Efficient Graph-Based Symbol Recognizer

which is based on stochastic search; Error-driven Matching,
which uses local matching errors to drive the solution to an
optimal match; Greedy Matching, which uses greedy search;
and Sort Matching, which relies on geometric information to
accelerate the matching.

Our initial experiments provided promising results. The
Stochastic, Error-driven, and Greedy graph matching tech-
niques all achieved at least 92% accuracy in a user-
dependent setting with only 14 training examples. The top-
three accuracy under the same conditions was 97%. While
all three methods achieved similar accuracy, the Greedy ap-
proach was significantly faster than the others. The Sort
Matching technique is less accurate than the others, and re-
quires consistent drawing orientation. However, this tech-
nique is an order of magnitude faster than the others.

While more testing is needed to understand all of the
tradeoffs between these approaches, our initial results sug-
gest that Greedy Matching provides the best combination
of speed and accuracy. However, when computational re-
sources are constrained, such as with a PDA, Sort Matching
is a good solution.

References

[CFSV04] CONTE D., FOGGIA P., SANSONE C., VENTO
M.: Thirty years of graph matching in pattern recognition.
IJPRAI 18, 3 (2004), 265-298.

[CSKK02] CALHOUN C., STAHOVICH T. F., KURTOGLU
T., KARA L. B.: Recognizing multi-stroke symbols.
In AAAI Spring Symposium on Sketch Understanding
(2002), pp. 15-23.

[DPZ01] DICKINSON S., PELILLO M., ZABIH R.: Intro-
duction to the special section on graph algorithms in com-
puter science. IEEE Transactions on Pattern Analysis and
Machine Intelligence 23, 10 (2001), 1049-1052.

[FPJO2] FONSECA M. J., PIMENTEL C., JORGE J. A.:
CALI- an online scribble recognizer for calligraphic in-
terfaces. In AAAI Spring Symposium on Sketch Under-
standing (2002), pp. 51-58.

[GJ79] GAREY M., JOHNSON D.: Computers and In-
tractability: A guide to the Theory of NP-Completeness.
Freeman and Company, 1979.

[GKSS05] GENNARIL., KARA L. B., STAHOVICHT. F.,
SHIMADA K.: Combining geometry and domain knowl-
edge to interpret hand-drawn diagrams. Computers &
Graphics 29, 4 (2005), 547-562.

[Gro94] GRosS M. D.: Recognizing and interpreting dia-
grams in design. In ACM Conference on Advanced Visual
Interfaces. (1994), pp. 88-94.

[HC96] HUANG Z., COHEN F.: Affine-invariant b-spline
moments for curve matching. IEEE Transactions on Im-
age Processing. 5, 10 (1996), 1473—-1480.

[HD0O4] HAMMOND T., DAVIS R.: Automatically trans-
forming symbolic shape descriptions for use in sketch
recognition. In AAAI-2004 (2004).

[HNO4] HsE H., NEwWTON A. R.: Sketched symbol
recognition using zernike moments. icpr 01 (2004), 367—
370.

[KS04] KARA L. B., STAHOVICH T. F.: Hierarchical
parsing and recognition of hand-sketched diagrams. In
UIST (2004), pp. 13-22.

[KS05] KARAL.B., STAHOVICH T. F.: An image-based,
trainable symbol recognizer for hand-drawn sketches.
Computers & Graphics 29, 4 (2005), 501-517.

[Lee92] LEE S.-W.: Recognizing hand-drawn electrical
circuit symbols with attributed graph matching. In Struc-
tured Document Image Analysis, Baird H. S., Bunke H.,
Yamamoto K., (Eds.). Springer-Verlag, 1992, pp. 340—
358.

[LVSMO02] LLADOS J., VALVENY E., SANCHEZ G.,
MARTI E.: Symbol recognition: Current advances and
perspectives. In GREC ’'01: Selected Papers from the
Fourth International Workshop on Graphics Recogni-
tion Algorithms and Applications (London, UK, 2002),
Springer-Verlag, pp. 104-127.

[Mat99] MATSAKIS N. E.: Recognition of Handwritten
Mathematical Expressions. Master thesis, MIT, 1999.

[PBS*04] PEREIRA J. P., BRANCO V. A., SILVA N. F.,
CARDOSO T. D., FERREIRA F. N.: Cascading recogniz-
ers for ambiguous calligraphic interaction. pp. 63-72.

[Rub91] RUBINE D.: Specifying gestures by example.
Computer Graphics 25 (1991), 329-337.

[RVR02] RAYMAEKERS C., VANSICHEM G., REETH
F. V.. Improving sketching by utilizing haptic feed-
back. In AAAI Spring Symposium on Sketch Understand-
ing (2002), AAAI Press, pp. 113-117.

[SDO5] SEzGIN T. M., DAvVIs R.: HMM-based efficient
sketch recognition. In International Conference on Intel-
ligent User Interfaces (IUI’05). (New York, 2005).

[StaO4] StAHOVICH T. F.: Segmentation of pen strokes
using pen speed. AAAI 2004 Fall Symposium: Making
Pen-Based Interaction Intelligent and Natural (2004).

[UllI76] ULLMANN J. R.: An algorithm for subgraph iso-
morphism. Journal of the ACM 23, 1 (1976), 31-42.

(© The Eurographics Association 2006.

