
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2005)
Takeo Igarashi, Joaquim A. Jorge (Editors)

Sketching Free-form Surfaces Using Network of Curves

Koel Das Pablo Diaz-Gutierrez M. Gopi
Department of Computer Science,

University of California, Irvine

Abstract
This work addresses the issue of generating free-form surfaces using a 2D sketch interface. As the first step in
this process, we develop a methodology to sketch 3D space curves from 2D sketches. Since the inverse projection
from 2D sketches to 3D curve or surface is a one to many function, there is no unique solution. Hence we propose
to interpret the given 2D curve to be the projection of the 3D curve that has minimum curvature among all the
candidates in 3D. We present an algorithm to efficiently find a close approximation of this minimum curvature
3D space curve. In the second step, this network of curves along with the boundary information are given to the
surface fitting method to generate free-form surfaces.

1. Introduction

Modeling by sketching has a fundamental problem of in-
terpreting the 2D sketches of curves and surfaces as a 3D
entity. Most of the real world objects have non-planar 3D
curves and these curves are the fundamental component of
surface generation [IMT99, ZHH96] for 3D models. Space
curves are also used as input for specifying implicit surfaces
and also for manipulating and modifying object deforma-
tions [SF98, IH03]. The problem of finding the 3D space
curve from a 2D sketch is mathematically indeterminable,
as it has many possible solutions; It is well known that the
fundamental difficulty is in choosing the appropriate one.
Most of the sketch-based modeling tools try to avoid ad-
dressing this fundamental problem directly due to its com-
plexity. These systems provide a fixed canvas to the user to
draw the 2D curve, thus fixing the 3D curve to be on the
canvas. They provide tools to change the shape of the can-
vas to enable the user to draw non-planar curves [IITS04].
One of the clever uses of this canvas method was by Igarashi
et al. [IMT99] where the system provides a planar canvas
first and the user starts with a planar closed curve. A ro-
tund object is generated using that planar closed curve and
from then on, the generated object becomes the canvas for
all future curve drawings. Often, curves that are not drawn
on the canvas are interpreted as gestural inputs for viewpoint
or object manipulation. In spite of all the successes that have
been achieved in the field of sketch based modeling, the fun-
damental problem of space curve determination still remains
to be a challenging one.

In our paper, we attempt to provide an intuitive and math-
ematically sound insight into this problem of 3D space curve

Figure 1: A sample model generated by the system.

determination from a 2D curve. We propose that the 3D
curve corresponding to the given 2D curve to be the one
that minimizes the maximum normal curvature in 3D. Cur-

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org


Das,Diaz-Gutierrez, Gopi / Sketching Free-Form Surfaces

vature minimizing interpolation approaches have been previ-
ously used in the study of visual perception to create seam-
less color smoothing for overlapping multi-projector dis-
plays [MS05], indicating a relationship between curvature
minimization and perception of desirability and intuitive-
ness. In this paper we take a similar approach to address the
following problem: given a 2D curve, the projection param-
eters, and the depth range, find the 3D space curve within
the given depth range that has the minimum curvature and
matches with the 2D curve under the given projection.

The second issue we address in this paper is the genera-
tion of surfaces using the above curvature minimizing space
curves. We sketch the network of planar and non-planar in-
put curves and specify the patch connectivity. Our system
automatically generates a free form surface that fits these
network of curves. Once an initial 3D model, based on the
input sketch is presented, the user could modify it to get
the desired shape. In our current exposition, we stress more
on the proof-of-concept implementation of geometric prin-
ciples and less on the user-interface design.

Specifically, following are the main contributions of this
paper:

1. We prove the existence of the curvature minimizing space
curve for an orthographic 2D projection of a polynomial
curve.

2. Given only a sequence of 2D curve points as input, we
present an efficient algorithm to best approximate the
curvature minimizing 3D space curve, from that view-
point. We use Laplacian filter effectively along with our
approach to achieve the desired result of curvature mini-
mizing depth interpolation.

3. We generate smooth free form surfaces using minimal
user input using an iterative method having fast conver-
gence. We present a proof-of-concept system that fits
a smooth surface given the boundary curves that are
sketched using our system.

2. Related Work

There has been a lot of ongoing research on generating 3D
models using a sketching interface. The different endeavors
in the field of 3D curves focus either oncurve manipulation
methods or on 2D to 3D curve generation methods. The ap-
proach mentioned in this paper belongs to the latter category.

Existing space curves can be manipulated indirectly in
many commercial packages like Maya, 3DStudioMax and
most other CAD tools, by modifying the curve parameters
such as spline control points or knot values. Spline curves
can also be manipulated directly as described in [FB93,
GA98]. Modifying existing curves by over-sketching was
initially presented by Baudel [Bau94]. This approach has
been adopted for curve modification and manipulation by
several other researchers in this field [CMZ∗99, FRSS04].
Cohen et al. [CMZ∗99] used the correlation between the

curve and its shadow as a visual cue to help the user com-
pute and modify the shape of the 3D curve. Karpenko et
al. [KHR04] take a multi-view sketching approach using
epipolar lines as cues to deduce shape information. Their
method uses perspective projection and can determine the
3D values only when drawn from two different view points.
The epipolar geometry approach works for simple cases but
fails to give desirable results for more complex objects due
to the nature of their algorithm.

In the recent past, there has been some research devoted
to extract depth information from 2D curves and strokes di-
rectly. Most of the existing literature on space curve gen-
eration relies on the domain specific knowledge. The edge-
vertex graph method has been utilized to extract the depth
information in systems best suited for architectural de-
signs and CAD type applications in [LS96, SC04]. Fur-
thermore, [LS02] use an interesting domain specific learn-
ing based approach using geometric correlation to deduce
the 3D model that is again more suitable for CAD tools.
The underlying assumption behind this learning technique
is that the input sketch comprises of straight lines and thus
does not account for free-from curves. It also follows from
the paper that the human ability to perceive the 3D infor-
mation from 2D sketch is based on prior knowledge about
the drawn object or scene and human perception fails to re-
construct random objects. Learning based methods are also
non-interactive and are computationally expensive.

One of the earliest example of constructing free-form
space curves is the 3-Draw system [SRS91] that extracts the
3D coordinate information by using a tracker-based system.
A curvature minimizing approach was followed by [PK89].
Ijiri et al. [IITS04] utilize the input sketch to generate a
curved canvas where the drawn curve essentially becomes an
extruded surface from a given viewpoint providing the user
the capability of drawing non-planar curves on that surface.
Tolba et al. [TDM99] use the approach of oriented projec-
tive representations of 2D points. This allows “3D-like” per-
spective viewing, object manipulation and rendering of the
2D points, but they do not generate actual 3D values from
2D points.

To the best of our knowledge, there is no literature on re-
search that performs domain independent mathematical trea-
tise to generate intuitive free form space curve. Our paper
attempts to address this issue by using curvature minimizing
depth interpolation. We present an interpolation method to
generate an artistic and expressive 3D curve from asingle
2D curve input. It is obvious that one cannot provide the ex-
act curve that user has in mind, just from a single 2D sketch.
Hence, any curvemanipulationtechnique can be used there-
after to modify our computed 3D curve. The method dis-
cussed tries to empower the user by simplifying the user-
interface, and shortening the system learning time of the user
as well as the and overall time to sketch the object.

Recently, some papers have been presented on fitting sur-

c© The Eurographics Association 2005.

128



Das,Diaz-Gutierrez, Gopi / Sketching Free-Form Surfaces

faces to a network of curves. Teddy [IMT99] is one of the
exemplary works in the field of free-form surface generation
using polygonal representation. Michalik et al. [MKB02], on
the other hand used a parametric representation of surface
using a constraint based design. Volumetric representation is
also used effectively by researchers [ONNI03] which has the
advantage of relaxing the topological limitations on surface
generation. Furthermore, recent research on surface genera-
tion techniques use implicit surface representation. Notably,
Tai et al. [TZF05] obtain an analytical convolution surface
from sketched silhouettes. In [SWZ04], Schaefer et al. make
clever use of lofting techniques to create subdivision sur-
faces from curve network.

Our system generates free form surfaces from sketched
network of curves by using a simpletopological triangula-
tion followed by surface fairing.

3. Curves and Networks of Curves

We repeat the problem statement for the sake of completion.
Given a 2D curve, the orthographic projection parameters,
and the depth range, the problem is to find from all the pos-
sible 3D space curves within the given depth range and that
matches with the 2D curve under the given projection, the
curve that minimizes the maximum curvature.The given 2D
curve is assumed to be a polynomial curve. Since any poly-
nomial basis can be converted to and from a Bernstein basis,
we can convert the given polynomial curve into a 2D Bezier
curve. We state, prove and use a theorem given in the ap-
pendix involving the control points of Bezier curves to come
up with a solution for the stated problem.

Theorem 1 Given a 2D Bezier curve with a known depth
range, the depth of the control points of curvature minimiz-
ing 3D Bezier curve is monotonically and equally spaced
within the given depth range.

Using this theorem to construct the 3D curve from the 2D
sketch has seemingly a drawback: It can produce only mono-
tonic, low curvature curves. As we go from 2D to 3D, we
must constrain the problem to be able to choose one solution
from an infinite number of possibilities. Monotonicity from a
given view point is a required constraint for finding a curva-
ture minimizing curve. At the same time, the generated curve
can be non-monotonic in every other viewing direction and
hence this is not a limitation. Further, curvature is minimized
within certain constraints - the given depth range and the 2D
projection of the curve. Smaller depth ranges provide less
space to reduce the curvature. Hence arbitrarily high curva-
ture curves can be created by using appropriately small depth
ranges (see Figure 3, top right image).

3.1. From 2D curves to 3D curves

The 2D curves drawn in sketching applications are not usu-
ally Bezier curves, but a sequence of edge connected points.

Hence, we have to adapt our stated theorem for the depth ex-
traction for a generic 2D curve. One way to adapt our result
on curvature minimizing depth interpolation is to fit a Bezier
curve to the input point sequence and interpolate the depth
of this 2D Bezier curve. This is a computationally expensive
operation and most importantly, the error in curve fitting will
provide a distracting and unexpected feedback to the user.

In this section we provide an alternative method for find-
ing the depth of the sketched 2D curve points that approx-
imates the minimum curvature 3D curve. We use the fol-
lowing fundamental observation of the 3D Bezier curve
chosen in the previous section (but not true in a generic
Bezier curve): since the depth values of the control points
are equally spaced, the closest point on the curve from any
control point has the same depth value as the control point.
Hence if we identify thesekey pointson the curve that are
closest to the control points and space their depth values
equally, we will have the first approximation of the space
curve. Since we do not have these 3D Bezier curve control
points and hence of its 2D projection, identifying even the
correctnumber of key pointsis difficult, let alone the actual
key points. Even though we do not have an explicit Bezier
representation of the 2D sketched curve, the number of crit-
ical points in the curve is the lower bound on the number
of control points of the hypothetical Bezier representation
of the same curve. The critical point need not be the closest
curve point (key point) to the corresponding control point.
The fundamental source ofapproximationin our algorithm
for curvature minimizing depth interpolation comes from the
fact that we assume that these critical points are key points.

The second source of approximation comes from the fact
that, there need not be a critical point corresponding to every
control point. Hence all the required control points cannot
be found by just one sequence of critical points. We solve
this issue by subdividing the original 2D curve at the ini-
tial critical point (key point) locations. If we perform a de-
Casteljau subdivision of the Bezier curve at thekey points,
the above theorem still holds good for each of the subdivided
curve segments. In this process, we increase the total num-
ber of control points (sum of the control points of the sub-
divided curve segments) and hence the possibility of more
critical points. Using this observation, we repeat the process
of finding the critical points recursively within each 2D seg-
ment between the initial sequence of critical points up till a
threshold in terms of linearity of the curve segment. Since
we assume that all these critical points are representatives
of key points, we assign equally spaced depth values within
the range to the critical points. The depth of all other points
on the 2D curve is computed by linearly interpolating the
depth between the critical points based on the curve length
parameterization.

The resulting 3D space curve, though a very close approx-
imation of the curvature minimizing curve, has non-smooth,
high frequency transitions of the depth values across the

c© The Eurographics Association 2005.

129



Das,Diaz-Gutierrez, Gopi / Sketching Free-Form Surfaces

Figure 2: Illustration of our approximation algorithm to generate curvature minimizing space curve. At every iteration the
critical points of the distance function from the line joining the first and last points of the curve segment is chosen for further
curve subdivision. The recursion ends when the curve segment can be approximated well by the line joining its end points.

Figure 3: (Top left) Effect of filtering. Blue curve shows
the interpolation before filtering and the red curve shows
the curve after filtering.(Top right) Reconstruction of space
curves using our approximate method for different Bezier
curves. The actual curvature minimizing Bezier curve as
suggested in Theorem 1 is shown in gray. Our approximate
curve follows the actual curve closely. Notice in that even
from a viewpoint where projections are self intersecting in
2D, the reconstructed curvature minimizing curve follows
the actual Bezier curve.(Bottom)High curvature curve ob-
tained with our system.

critical points. We use the Laplacian filter to obtain a final
smooth space curve. This filter is extremely fast and simple,
as required by interactive sketching applications. But it is a
known fact that it produces a shrinkage effect for geometric
primitives. In our algorithm, the shrinking of curves is pre-
vented by keeping the depth at the curve end points constant.
We apply a few iterations of this smoothening filteronly to
the interpolated depth values of all the interior points on the
curve, aszi ′= zi +λ(∆zi) where∆zi = ((zi−1 +zi+1)/2)−zi
andλ < 1.0 for a low-pass filter, . This produces an excellent
approximation of the curvature minimizing curve Figure 3.

The summary of the algorithm for finding the curvature
minimizing curve is given as pseudo-codes in Algorithms 1
and 2. An illustration of this algorithm is shown in Figure 2.

Algorithm 1 ReturnCriticalPoints(Curve C)
{Function: Find the Critical Points of the 2D curve C.}
{Given: Sample points of a 2D curve C}
L = Line between the first and the last sample points ofC.
CS = Sequence of all the critical points of the distance
function ofC from L.
R = Subset ofCS, that is within a user-defined threshold
distance fromL.
CS= CS−R.
if CS== φ then

return; {Terminating condition.}
end if
CriticalList = CS
CheckList= {First point of C} ∪ CS∪ {Last point of C}
for every curve segmentCi between consecutive points in
CheckListdo

CriticalList = CriticalList∪ ReturnCriticalPoints(Ci) {
Insert into CriticalList, the critical points ofCi in order
of their appearance inC.}

end for
return CriticalList;

3.2. Generation of Curve Networks

Our system can be used to generate network of curves com-
prising of both planar and non-planar space curves, using the
curvature minimizing curve interpolation as explained in the
previous section. Let the end points of a curve be called the
reference points. Two important interface/capabilities of our
system are key to enable users to draw a network. First is
the ability to delete a curve and the second is the fact that
any point on a (already drawn) curve or a plane (normal to
the viewing direction) can be marked as a reference point to
draw other curves. Thus any curve drawn can be part of the
network and/or specify the reference points for other curves
to be drawn. Curves that are not part of the network are later
deleted. We briefly discuss the procedure to use these two
features to draw a network of curves.

c© The Eurographics Association 2005.

130



Das,Diaz-Gutierrez, Gopi / Sketching Free-Form Surfaces

Algorithm 2 CurvatureMinimizingCurve(Curve C, Depth
z0, Depth z1)

{Function: Curvature Minimizing Interpolation of Depth}
{Given: Sample points of a 2D curve C; depth values of
the first and the last points of C, z0 and z1. }
CriticalList = {First point of C} ∪ ReturnCritical-
Points(C)∪ {Last point of C}
Let DepthInterpC be the points in C with unset depth val-
ues.
Interpolate the depth value linearly between z0 and z1
among all points ofCriticalList and set their values in
DepthInterpC.
for every curve segmentCi between consecutive points in
CriticalList do

Interpolate the depth value based on curve length pa-
rameterization and set their values in DepthInterpC.

end for
CurvMinC = LaplacianFilter(DepthInterpC)
return CurvMinC

As the first step, the user draws a curve on the plane per-
pendicular to the viewing direction. This curve can be ro-
tated so that every point on the curve has different depths
from the new viewpoint. Reference points can be specified
on this rotated curve and a new space curve can be drawn
connecting these reference points from any viewpoint. Since
the end points and hence their depths from the given view
point are known, these curves which are drawn in 2D, are
interpolated in 3D using our curvature minimizing curve in-
terpolation. The new curve can be part of the network and/or
can be further used to specify more reference points. Later,
all the curves that were used only to specify the reference
points are deleted.

Thus the user interface is designed to accentuate the sim-
plicity of the sketching environment where the user keeps
drawing, rotates the plane and continues drawing till the de-
sired set of curves are sketched. We still have not included
the sanity check of the requirement of closed models. This
will be integrated with the automated patch identification as
a future work. The resulting curve network is the input to
the surface generation technique described in the following
section.

4. Surface Generation

Our system generates free form surfaces from a network of
input curves. In our current implementation, once the user
sketches the desired shape of the object in the form of outline
curves, the connectivity of the lines that form surface patches
must be given. Although this is currently done manually,
we intend to automate the process of patch identification.
Once the patch boundary connectivity is known, our system
then generates a smooth free-form surface based on the given
boundary curve network. In order to maximize the number

of regular vertices (here degree 5) we first find the additional
vertices in the interior of the patch and their connectivity
and then calculate the geometric coordinates for these ver-
tices. As an outline, our surface generation method consists
of three steps: normal computation and interpolation, topo-
logical triangulation, in which we find the connectivity of the
triangles in the surface patches, and finally surface fairing,
where we compute the position of the introduced vertices.
We briefly describe each of these steps below.

Normal Computation and Interpolation: Every corner
vertex in the input closed boundary curve sequence has at
least degree three. Hence a normal vector with a local co-
ordinate system can be computed at these corner vertices.
Then these coordinate systems are interpolated using quater-
nions at intermediate vertices along the curve. We use spher-
ical linear interpolation (SLERP[Sho85]) to smoothly in-
terpolate these local coordinate systems between the curve
endpoints. In order to reduce the noise in the normals,
the input segments which suffer from sharp transitions are
smoothened.

Topological Triangulation: The input to this step is the
boundary of a future surface patch, identified as a closed
sequence of connected curves. Curves are represented as
piecewise linear segments, or polylines. The output is a
topology of the triangulation that consists of input vertices
on the curve and the newly introduced vertices in the interior
of the patch. Since only the connectivity is important here,
the actual position of the vertices is not relevant; Hence the
nametopological triangulation. The iterative algorithm, il-
lustrated in Figure 4, considers the sequence of curves as one
single piecewise linear closed (boundary) curve. The goal at
each step is to create a new piecewise linear closed curve in-
side the patch, such that this new curve has half the number
of vertices than the previous one. Then the space between the
previous curve and the new curve is triangulated. We repeat
this process, and stop when the number of vertices in the in-
ner curve reduces to three or fewer vertices. Then a triangle
fan fills the remaining hole and finishes the procedure. The
number of new interior closed curves will be in the order of
the logarithm of the patch boundary size.

One iteration of the process is as follows: the given curve
is projected onto a plane that best approximates the curve
points. A new vertex is introduced for every alternate ver-
tex on the boundary, and the new vertex is connected to its
corresponding boundary vertex and its two neighbors. Two
new vertices are connected to each other, if they have a com-
mon boundary neighbor. The sequence of new vertices form
the new boundary curve. The above mentioned connectiv-
ity triangulates the space between the previous and the new
curves. Although not relevant, the initial coordinate of the
new vertex is computed as the centroid of four points: the
three implied boundary vertices and the centroidP of the
points on the boundary of the original input curve. The point
P is fixed and does not change over iterations. This approach

c© The Eurographics Association 2005.

131



Das,Diaz-Gutierrez, Gopi / Sketching Free-Form Surfaces

a b c d

Figure 4: Illustration of the topological triangulation procedure. Changes in each step are drawn thick:(a) Original patch to
be triangulated. Notice the vertices in the corners and along the lines that form the patch.(b) A layer of triangle pairs is laid
adjacent to pairs of segments. Since there is an odd number of segments, one segment remains without a triangle.(c) The new
vertices are connected with a polyline.(d) Each iteration of stepsb andc reduces the number of boundary segments by a half.
Ween this number is small enough (our limit was 10 segments), a triangle fan closes the hole.

to compute coordinates can be improved by taking into ac-
count the number of closed inner curves that will be com-
puted.

Surface Fairing: Once topological structure for patch is
generated, final geometric positions of the new vertices are
computed to make the limit surface fair. For every internal
vertex, in the order in which they were found in the topolog-
ical triangulation step, we use its initially assigned coordi-
nates and the tangent planes at its neighbors in the bound-
ary, to find the final position of this new vertex. We take
the line defined by the position of the internal vertex and
its normal, and find the intersection of this line with each
neighboring tangent plane. The median position of these in-
tersection points is the new position of the vertex. Similar to
the topological triangulation step, the surface fairing step is
iterated to find the final positions of all the newly introduced
vertices. Further iterations of this algorithm reduce the noise
in the result.

Our approach to surface fitting to the network of curves
provides a large number of internal vertices having degree
five, except for those in the last layer of the triangulation. It
is simple, has fast convergence, and runs at interactive speed
for the tested models. It can handle models with any arbi-
trary genus and works for convex patches and those with
soft concavities.

5. Implementation and Results

We have tested our approach generating a number of simple
models (see Figure 5), with typically six to ten curves, pro-
ducing a proportional number of patches. It took an average
of about one minute for the users to sketch simple models us-
ing our system, and the automatic generation was executed
at interactive rates on a 2.4 Ghz Pentium 4 processor with
512 MB RAM. Our system provides a simple interface (see
Figure 6) where the user can draw lines, rotate the view and
continue drawing until the desired shape is achieved. Basic

utilities like picking, copying and moving curves, or indicat-
ing corner points, are part of the interface.The identification
of surface patches is currently manual but will be automated
in future. In order to reduce the effect of the possible out-
liers in the surface fairing procedure, we damp the migration
of vertices, only allowing displacements proportional to the
length of surrounding edges. This way the relative move-
ment of vertices is controlled by a user-defined parameter.
The surface generated gives a coarse representation of the
object and can be further refined using subdivision surfaces
or any other 3D modelling tool.

6. Conclusion and Future Work

In this paper we have addressed the problem of generating a
free form surface from a network of curves which are in turn
generated using 2D sketches. The 3D space curve generation
technique uses a single view information about a 2D curve
to find the curvature minimizing 3D curve. We believe that
the mathematical rigor used to explain the intuitive space
curve generation would find its use in perceptual studies.
The 3D surface generation algorithm using the network of
curves is simple and efficient that is required for interactive
applications like sketch based modeling. The generated sur-
face might not be the final surface that the user intends to
keep. Hence, once the initial surface is generated, users can
modify the shape of the model interactively thus making the
system analogous to a virtual sculpting tool.

Planned future work in our sketch-based free-form mod-
eling system includes automatic patch identification for sur-
face generation, reduction of identified numerical stability
issues, generation of models with boundary, experimenta-
tion with non-iterative vertex location procedures for the sur-
face fairing, and improvement of the basic sketch interface
to provide more utilities to the user, thereby making a sim-
ple, easy-to-use sketch-based free-form modeling system for
generation of intuitive free-form objects.

c© The Eurographics Association 2005.

132



Das,Diaz-Gutierrez, Gopi / Sketching Free-Form Surfaces

Figure 5: Simple models generated by our system along
with the input sketch

References

[Bau94] BAUDEL T.: A mark-based interaction paradigm
for free-hand drawing. InProceedings of 7th annual ACM
Symposium on User Interface Software and Technology
(1994), ACM Press, pp. 185–192.

[CMZ∗99] COHEN J. M., MARKOSIAN L., ZELEZNIK

Figure 6: User interface showing one of the sketch inputs
for generated models.

R. C., HUGHES J. F., BARZEL R.: An interface for
sketching 3d curves. InProceedings of the Symposium on
Interactive 3D graphics(1999), ACM Press, pp. 17–21.

[FB93] FOWLER B., BARTELS R.: Constraint-based
curve manipulation.IEEE Computer Graphics and Ap-
plications 13, 5 (1993), 43–49.

[FRSS04] FLEISCH T., RECHEL F., SANTOS P., STORK

A.: Constraint stroke-based oversketching for 3d curves.
In Proceedings of the Eurographics Workshop on Sketch-
Based Interfaces and Modeling (SBM-04)(August 2004),
Eurographics Association, pp. 161–166.

[GA98] GRIMM C., AYERS M.: A framework for syn-
chronized editing of multiple curve representations. In
Proceedings of the EUROGRAPHICS(1998), vol. 17,
pp. C31–C40.

[IH03] I GARASHI T., HUGHES J. F.: Smooth meshes
for sketch-based freeform modeling. InProceedings of
the Symposium on Interactive 3D graphics(2003), ACM
Press, pp. 139–142.

[IITS04] IJIRI T., IGARASHI T., TAKAHASHI S.,
SHIBAYAMA E.: Sketch interface for 3d modeling of
flowers. Technical Sketch at ACM SIGGRAPH, August
2004.

[IMT99] I GARASHI T., MATSUOKA S., TANAKA H.:
Teddy: A sketching interface for 3d freeform design. In
Proceedings of ACM SIGGRAPH(August 1999), ACM
Press, pp. 409–416.

[KHR04] KARPENKO O., HUGHES J. F., RASKAR R.:
Epipolar methods for multi-view sketching. InProceed-
ings of the Eurographics Workshop on Sketch-Based In-
terfaces and Modeling (SBM-04)(August 2004), Euro-
graphics Association, pp. 167–174.

[LS96] LIPSONH., SHPITALNI M.: Identification of faces

c© The Eurographics Association 2005.

133



Das,Diaz-Gutierrez, Gopi / Sketching Free-Form Surfaces

in a 2d line drawing projection of a wireframe object.
IEEE Transactions on Pattern Analysis and Machine In-
telligence (PAMI) 18, 10 (1996), 1000–1012.

[LS02] LIPSONH., SHPITALNI M.: Correlation-based re-
construction of a 3d object from a single freehand sketch.
In AAAI Spring Symposium on Sketch Understanding
(2002), pp. 99–104.

[MKB02] M ICHALIK P., KIM D. H., BRUDERLIN B. D.:
Sketch- and constraint-based design of b-spline surfaces.
In SMA ’02: Proceedings of the seventh ACM symposium
on Solid modeling and applications(New York, NY, USA,
2002), ACM Press, pp. 297–304.

[MS05] MAJUMDER A., STEVENS R.: Perceptual pho-
tometric seamlessness in projection-based tiled displays.
ACM Transactions on Graphics 24, 1 (2005), 118–139.

[ONNI03] OWADA S., NIELSEN F., NAKAZAWA K.,
IGARASHI T.: A sketching interface for modeling the in-
ternal structures of 3d shapes. 49–57.

[PK89] PENTLAND A., KUO J.: The Artist at the Inter-
face. Vision and Modeling. Tech. Rep. 114, MIT media
lab, 1989.

[SC04] SHESH A., CHEN B.: Smartpaper–an interactive
and easy-to-use sketching system. InProceedings of Eu-
rographics(August 30-September 2 2004), pp. 409–416.

[SF98] SINGH K., FIUME E.: Wires: a geometric defor-
mation technique. InProceedings of ACM SIGGRAPH
(1998), ACM Press, pp. 405–414.

[Sho85] SHOEMAKER K.: Animating rotation with
quaternion curves. InProceedings of ACM SIGGRAPH
(July 1985), vol. 19, ACM Press, pp. 245–254.

[SRS91] SACHS E., ROBERTS A., STOOPSD.: 3-draw:
A tool for designing 3d shapes.IEEE Computer Graphics
and Applications 11, 6 (1991), 18–26.

[SWZ04] SCHAEFER S., WARREN J., ZORIN D.: Loft-
ing curve networks using subdivision surfaces. InSGP
’04: Proceedings of the 2004 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing(New York,
NY, USA, 2004), ACM Press, pp. 103–114.

[TDM99] TOLBA O., DORSEY J., MCMILLAN L.:
Sketching with projective 2d strokes. InProceedings of
the 12th annual ACM symposium on User interface soft-
ware and technology(1999), ACM Press, pp. 149–157.

[TZF05] TAI C.-L., ZHANG H., FONG J. C.-K.: Proto-
type modeling from sketched silhouettes based on convo-
lution surfaces. 071–183.

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES

J. F.: Sketch: An interface for sketching 3d scenes. In
Proceedings of ACM SIGGRAPH(August 1996), ACM
Press, pp. 163–170.

Appendix: Proof of Theorem

Theorem 1: Given a 2D Bezier curve with a known depth
range, the depth of the control points of curvature minimiz-
ing 3D Bezier curve is monotonically and equally spaced
within the given depth range.

Proof (Sketch) For the sake of simplicity of mathematical
proof, we assume that the given plane is parallel to the XY
plane and the viewing direction is the Z axis. Let us also
assume that the range denotes the depth value of the first
and the last control point of the Bezier curve.
Let the control points of the 2D Bezier curve be denoted by
Pi = (xi ,yi), 0≤ i ≤ n, wheren is the order of the curve. The
Bezier curves are orthographic projection invariant. Hence
the 3D curve will have the same number of control points
as its 2D projection, and the control points of the 2D curve
are actually the projection of the 3D curve control points.
Since it is an orthographic projection, the control points of
all the candidate 3D space curves will have the samex and
y coordinates. Let the 3D control points beQi = (xi ,yi ,zi).
The curve is,

Q(u) = Σn
i=0

n!
i!(n− i)!

Qiu
i(1−u)n−i

Differentiating, we get

Q′(u) = nΣn−1
i=0

(n−1)!
i!(n−1− i)!

[Qi+1−Qi ]u
i(1−u)(n−1−i)

and the second derivative is given by,

Q′′(u) = (n)(n−1)Σn−2
i=0

(n−2)!
i!(n−2−i)! [Qi+2−2Qi+1 +Qi ]ui(1−u)(n−2−i)

The normal curvatureκ is given by |Q
′×Q′′|
|Q′|3 . Intuitively, to

minimize the maximum curvature, we need to minimize the
maximum value ofQ′′ and maximize the minimum value of
Q′.
With respect toQ′, larger the differences in depth values of
the control points, larger the denominator and hence the min-
imum value has no maxima. Hence, minimizing curvature
depends only on the magnitude ofQ′′. This can also be seen
from the fact that since curvature is an implicit characteris-
tic of a curve, for an equivalent arc-length parameterization,
the curvature is controlled by its second derivative. Based on
the above argument, our goal is to minimize the magnitude
of the 3D vectors(Qi+2− 2Qi+1 + Qi) for all i. Since the
x andy coordinates ofQi are fixed by the input 2D Bezier
control points, and thezcoordinates of the first and last con-
trol points are fixed by the given depth range, the only free
parameters are thez coordinates of the intermediate control
points Qi , 1≤ i ≤ (n− 1). Minimizing |zi+2 − 2zi+1 + zi |
would minimize the magnitude of the required vector. Since
thez0 andzn are known, settingzi+2−2zi+1 +zi = 0 for all
i provides a set of recurrence equations. The solution for this
set of equations is

zi = z0 +
zn−z0

n
i.

c© The Eurographics Association 2005.

134


