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Abstract

Freehand sketching is an important part of the conceptual design process, and the increasing number of recent
sketching applications shows a developing awareness of this importance. We aim to provide an automated tool
to turn engineers’ freehand sketches into CAD models. This would allow engineers to spend their time more
productively and to be more creative.
One natural component of such a tool would be a process for identifying axially-aligned planes implied by a
natural line drawing. We present an algorithm for identifying such planes. We illustrate its utility by presenting
two uses: identifying planes of mirror symmetry in objects and constructing the hidden topology of objects.

Categories and Subject Descriptors (according to ACM CCS): J.6 [Computer Aided Engineering]: Computer Aided
Design

1. Introduction

Freehand sketching is an important part of the conceptual
design process, and the increasing number of recent sketch-
ing applications [Gri97,Lip98,Mit99,SG00,Var03,FBC*04,
FOM*04,JLA04,SC04] shows a developing awareness of
this importance. Previous studies such as Jenkins [Jen92]
have shown that engineers and architects, when creating a
new design, start by sketching ideas freehand on paper, and
once a satisfactory concept has been found, manually en-
ter the design into a CAD package. Automating this process
would remove a bottleneck.

Thus, our eventual aim is an automated tool to turn engi-
neers’ freehand sketches into CAD models—ideally, bound-
ary representation solid models of the most plausible 3D in-
terpretations of the sketches. This would allow engineers to
spend their time more productively and to be more creative.

Reliance on manual intervention, using e.g. menus, is un-
desirable. Firstly, the details of using a complex computer in-
terface distract the designer from creating an idea. Secondly,
some applications of sketch understanding are unsuited to
such intervention—for example, the cameraphone applica-
tion of Ferrugia et al [FBC*04].

Two important stages in the process of constructing a
three-dimensional object from a two-dimensional natural
line drawing (i.e. hidden lines not shown) are (i) inferring
as much as possible about the three-dimensional structure
of the part of the object visible in the drawing, and (ii) de-
ducing a structure for the hidden part of the object. These
processes are based on clues: heuristics derived from the
drawing which lead to hypotheses about the object. Clues
may be small inferences, such as ‘this edge is likely to be
axis-aligned’, or larger inferences, such as ‘there is probably
a plane of mirror symmetry here’; they may be derived di-
rectly from the drawing or indirectly via other clues. Clues
may support one another or contradict one another. In gen-
eral it is those clues which support one another which are
used to reach conclusions about the object.

In previous papers, we have described various techniques
which can provide such clues, including heuristics inspired
by human perception [VMS05] and various assumptions
concerning perpendicularity [MVS05]. This paper describes
another such clue: the presence of axially-aligned planes.

One motivation for considering axially-aligned planes can
be illustrated by an example. See Figure 1. Previous work
has considered axially-aligned edges, but considering only
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edges, not planes, can lead to incorrect hypotheses. It is ev-

Figure 1: Line Drawing Figure 2: Bad Hypothesis

ident that the very short line terminating in a T -junction is
aligned with the k-axis (see Figure 3). It is also evident that
the uppermost vertex has existing edges aligned with the i-
and j-axes. It is certain that there is at least one hidden edge
at this vertex, and it is almost certain that this hidden edge
(or one of them) is aligned with the k-axis.

If we consider only edges, not planes, we might reason
as follows: we already know of one partially-visible edge
aligned with the k-axis, and we are reasonably certain that
we know of a vertex with a hidden edge also aligned with
the k-axes. Might these be one and the same? See Figure 2.
We could test this hypothesis by examining the geometry,
and if we did so, we might discover that the fit was not par-
ticularly good (its 2D angle differs from those of known k-
aligned edges by nearly 13◦). However, we must allow for
sketching errors, and although the fit does not look particu-
larly good, it may well be (and, in our implementation, is)
within the permitted tolerance—accumulated sketching er-
rors from one side of the object to the other could distort
things by this amount.

It is evident to a human that this hypothesis is unaccept-
able. The two vertices joined by our hypothetical edge lie in
different ik-planes. Determining the axially-aligned planes
gives us an algorithmic method for rejecting this hypothesis:
a k-axis-aligned edge cannot join vertices lying in different
ik-planes.

A second motivation for considering axis-aligned planes
is the need for identifying symmetry in natural line drawings.
Recent symmetry detection algorithms, such as that of Pi-
quer et al [PCM03], start by identifying lines of skewed 2D
symmetry in faces. Adapting such an algorithm for use with
natural line drawings is problematic when parts of a face
are occluded, and entirely inappropriate when (as is the case
with Figures 16 and 26) two or more regions correspond to
a single face. We present here an entirely different approach
which does not require knowledge of the correspondence be-
tween regions and faces.

1.1. Glossary

We first define terminology we need in the rest of the paper.
These and similar CAD/CAE concepts are described in more
detail in textbooks such as [Lee99].

A solid model of a 3D object describes the topology and
geometry of its faces, edges and vertices. Topology records
connectivity between e.g. vertices and edges; geometry gives
shape and positions e.g. the spatial coordinates of vertices.

A natural line drawing [Sug86] is a 2D drawing which
represents the object as viewed from some viewpoint, and
comprises lines (corresponding to visible or partially-visible
edges) and junctions (where lines meet—most, but not all,
junctions correspond to visible vertices of the object). Loops
of lines and junctions form regions, which correspond to vis-
ible or partially-visible faces of the object. Note the careful
distinction between 2D ideas (drawings, regions, lines, junc-
tions) and 3D ideas (objects, faces, edges, vertices).

The frontal geometry is an intermediate concept between
2D drawing and 3D object (and thus is sometimes called
‘2 1

2 D’). In a frontal geometry, everything visible in the nat-
ural line drawing is given a position in 3D space, but the oc-
cluded part of the object, not visible from the chosen view-
point, is not present.

Junctions of different shapes are identified by letter: junc-
tions where two lines meet are L-junctions, junctions of three
lines may be T-junctions, W-junctions or Y-junctions, and
junctions of four lines may be K-junctions, M-junctions or
X-junctions. Vertex shapes follow a similar convention: for
example, when all four edges of a K-vertex are visible, the
drawing has four lines meeting at a K-junction.

When reconstructing an object from a drawing, we take
the correct object to be the one which a human would decide
to be the most plausible interpretation of the drawing.

1.2. Assumptions

We make several assumptions which are standard for sketch
interpretation:

• The drawing is of one object only;
• The object is physically realisable (not a trick drawing);
• The object is polyhedral (no curved edges or faces);
• The object is manifold (there are no degenerate vertices

or edges);
• There are no ‘cracks’ (material discontinuities);
• The drawing is a natural line drawing (hidden edges are

not shown);
• The drawing shows only edges (no shading or shadows);
• The drawing is topologically correct;
• The object is drawn from its most informative viewpoint;
• The drawing is drawn from a general viewpoint (no acci-

dental coincidences);
• The drawing approximates to a parallel projection.

We do not make the following assumptions, sometimes
made elsewhere, but which we regard as overly restrictive:

• The drawing is geometrically perfect;
• The object is trihedral, i.e. exactly three faces meet at

each vertex.
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We also assume that the drawing is the only information
that we have. In particular, there is no opportunity to request
later user intervention (for example to select between alter-
native possible interpretations).

1.3. Structure of Paper

Section 2 describes axially-aligned planes and how they may
be identified. Section 3 describes some uses to which they
may be put. Section 4 shows some experimental results, and
Section 5 presents our conclusions to date and plans for fur-
ther work.

2. Axis-Aligned Planes

In typical engineering objects we often find that several ver-
tices lie in the same axially-aligned plane, so we have an
empirical reason for considering them to be a common and
important design feature. In this Section, we discuss axially-
aligned planes, and how we identify them.

2.1. Illustration

Using the assumptions that the drawing approximates a par-
allel projection from a general viewpoint, there exist three
object-relative perpendicular axes (i, j and k), none of which
is aligned with the 2D drawing x- and y-axes or the perpen-
dicular z-axis added by inflation to 2 1

2 D. See Figure 3, not-
ing in particular that the k-axis has a z-component and is not
aligned in 3D with the y-axis.

+k

-k

+i

-i

+j

-j

Figure 3: i jk-Axes

P

Q

R
C

Figure 4: A Boss

Provided (i) that we can identify which lines correspond
to edges aligned with these axes, and (ii) there are suf-
ficient such edges (which, in practice, there usually are),
we can obtain z-coordinates for each vertex of the draw-
ing [LB90,VMS04].

Extending the concept of axis-alignment from edges to
planes is straightforward. An axially-aligned plane is a plane
whose normal is aligned with one of the three object-relative
axes (i jk). Thus, e.g. the normal of an i j-aligned plane is par-
allel to k-aligned edges. The colour figure shows the axially-
aligned planes implied by the drawings in Figures 21 and 26:
in the latter, vertices of the same colour in the leftmost fig-
ure are in the same ik-aligned plane, in the middle figure the

same jk-aligned plane, and in the rightmost figure the same
i j-aligned plane.

It is clear from these examples that the existence of
axially-aligned planes is something which the human eye
rapidly detects when looking at drawings. For this reason,
we can consider them a useful clue to the meaning of the
drawing.

2.2. Identifying Axis-Aligned Planes

This Section describes an algorithmic approach for identify-
ing axis-aligned planes implied by drawings.

In previous work [VMS04,VMS05] we described meth-
ods for inflating natural line drawings to 2 1

2 D by finding and
using the three object-relative axes as in Figure 3. As part
of this process, we attempted to identify which lines in the
drawing correspond to edges aligned with the three object-
relative major axes (i jk). In this section, we do not discuss
the relative merits of the various methods we considered,
but just assume that this information can be determined with
reasonable reliability and present a self-contained technique
which makes use of it.

Given this information, identifying axis-aligned planes
is, in principle, straightforward. For example, two vertices
joined by an edge aligned with the i-axis must lie in a single
i j-plane and also a single ik-plane, but in different jk-planes.
Similarly observations hold for edges aligned with the j-axis
or k-axis.

Allowing for hole loops, where in the completed object
one loop of edges is contained entirely within another (such
as in the object portrayed in Figure 10), is straightforward
provided that they can be identified as such: the two loops
of edges lie in the same plane. See, for example, the boss
in Figure 4, where the loop of edges comprising the base of
the boss is contained within the loop of edges defining the
coplanar face. Clearly C is coplanar with PQR, so if e.g. the
edge PQ is i-aligned and the edge QR is j-aligned, the four
vertices CPQR all lie in the same i j-aligned plane.

A reasonably successful method for identifying hole
loops, and classifying them as bosses or pockets/holes, is
by means of cofacial configurations as presented in [Var03].
Briefly, we first identify the disjoint subgraphs in the ini-
tial drawing, treating T -junctions as subgraph boundaries,
and then look for pairs of vertices from different subgraphs
which are separated only by whitespace (such as C and Q in
Figure 4).

Our starting condition for identifying axially-aligned
planes is thus that we have the necessary information con-
cerning axially-aligned edges and possible cofacial configu-
rations.

In our algorithm we represent axially-aligned planes as
unordered lists of vertices; each vertex appears in exactly
three lists, one each for its i j-aligned plane, its ik-aligned
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plane, and its jk-aligned plane. Initially, we have no knowl-
edge concerning axially-aligned planes, so there are 3n un-
ordered lists (where n is the number of vertices), each con-
taining just one entry. The algorithm proceeds by merging
lists whenever it can be deduced that vertices lie in the same
axially-aligned plane. The algorithm for detecting axially-
aligned planes is thus:

• Inputs:

– A line drawing, inflated to 2 1
2 D,

– A list of edges identified as unequivocally aligned with
one of the object-relative (i jk) axes,

– A list of candidate cofacial configurations compatible
with the results of inflation;

• Initially, create 3n unordered lists (where n is the number
of vertices), allocating each vertex to its own i j-aligned,
ik-aligned and jk-aligned list;

• For each axis-aligned edge, determine the appropriate lists
(two of i j-aligned, ik-aligned and jk-aligned, depending
on the edge alignment as described above) corresponding
to the start and end vertices and merge them;

• For each cofacial configuration, determine the appropriate
lists containing vertices Q and C (i j-aligned, ik-aligned or
jk-aligned, depending on the alignment of edges PQ and
QR as described above) and merge them;

• Output the resulting lists of vertices.

We now consider three questions concerning how this al-
gorithm interacts with other components of a line drawing
interpretation system:

• Is it worthwhile repeating the inflation process after
knowledge of axially-aligned planes has been gained?

• What is the best approach to identifying coplanar faces
which are not linked topologically?

• What should be done with T -junctions? Although the hu-
man eye distinguishies easily between occluding and non-
occluding T -junctions (labelled O and N respectively in
Figure 8), no fully-reliable algorithm for distinguishing
them is known.

2.3. Repeating Inflation

Clearly, the knowledge that a group of vertices lies in the
same axis-aligned planes would be a useful input to the infla-
tion process. Is it worthwhile repeating the inflation process
with this new knowledge added? If so, is a second iteration
sufficient or should the process be repeated until the results
converge?

The results presented in Section 4 assume just one iter-
ation of the inflation process. Detection of axially-aligned
planes follows this. The analysis in Section 4 includes a dis-
cussion of the utility of adding extra iterations of inflation.

2.4. Geometric Coincidence

What is the best approach to identifying coplanar faces
which are not linked topologically? The instances where this
happens can be divided into two groups.

The first is where a face contains a hole loop—there is no
graph connection between the outer loop and inner loop(s) of
the face. Hole loops usually, but not always, correspond to
bosses or holes/pockets. For example, Figure 21 contains a
boss, and Figure 10 contains a pocket (or possibly a through
hole).

The second is where, although the coplanar faces are
graph-connected, coplanarity can only be deduced from ge-
ometric criteria, not from topological criteria. For example,
Figure 21 contains one such pair of faces (brown in the right-
most drawing of the colour figure) and Figure 26 contains
two such pairs of faces (green and brown in the central draw-
ing of the colour slide). Recall that in a drawing derived from
a sketch, the geometric coincidence will not be exact. If sep-
arate groups of vertices are identified as coplanar because
they are so to within any particular geometric tolerance, it
is possible that groups of vertices which a human could see
cannot be coplanar would be identified as coplanar because
they too are within that tolerance.

The results presented in Section 4 detect cofacial hole
loops by initialising cofacial hypotheses as described
in [Var03] and updating the merit of these hypotheses during
the inflation process as described in [VMS05]. We have not,
as yet, investigated methods for evaluating whether geomet-
ric coincidence (or near-coincidence) of planes is or is not
intentional.

2.5. T -Junctions

How, if at all, should T -junctions be grouped in axially-
aligned planes?

A T -junction occurs when one line terminates at a mid-
point of another line; the resulting shape resembles a capi-
tal T . Essentially, there are two types of T -junctions: non-
occluding T -junctions, which correspond to the three vis-
ible edges meeting at a vertex with four or more edges,
and occluding T -junctions, which are simply the points at
which one edge occludes another; the latter do not corre-
spond to vertices at all. The implications of non-occluding
T -junctions are no different from any other junction type,
and need no separate discussion.

The implications of occluding T -junctions are different.
The tail of the T -junction, the point on the occluded line
where it disappears from view, does not have the same z-
coordinate as the same 2D point on the occluding line. It
is possible (and not uncommon) for the occluding and oc-
cluded faces to be parallel, and when this is the case they
obviously cannot be coplanar.
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The question arises: is it better to treat T -junctions as po-
tentially lying in either one or two planes, to attempt to dis-
tinguish occluding and non-occluding T -junctions and make
use of the corresponding inferences, or to ignore them alto-
gether, when determining axis-aligned planes?

To illustrate the problem, consider, first, the i j-planes
(object-relative horizontal planes) in Figure 12. Clearly,
there are three such planes, and any algorithm for finding
planes should find three of them. However, if we follow pre-
vious work (such as the algorithm in [Var03] for determining
subgraphs) by assuming that T -junction tails are propagation
boundaries, we have a problem. Either we consider only the
through lines at the T -junction, in which case we find that
we have five i j-planes—the points on the occluding edges at
the two T -junctions are not in the same i j-plane as any true
vertex, or we consider only the T -junction tails, in which
case we find that we have five ik-planes and five jk-planes—
the points on the occluded edges also do not correspond to
true vertices, and introduce spurious planes. In neither case
do we obtain the result that we want, and this suggests that
we must approach T -junctions in some other way.

Consider next the non-occluding T -junctions at the tops
of the bosses in Figures 22 and 16. These correspond to
true vertices, and ideally we should wish to include them
in their appropriate axially-aligned planes. These two non-
occluding T -junctions are particularly useful as they are an
important clue to the mirror symmetry of the two objects. If
we knew which T -junctions were occluding and which non-
occluding, we could make a sensible choice on this basis, but
unfortunately we know of no reliable method for determin-
ing this (neither the labelling method of [VMS04] nor the
geometric method of [VMS05] can determine this reliably
for these two drawings).

Since the algorithm we present in Section 3.1 should be
able to cope even without important vertices such as the non-
occluding T -junctions in Figures 22 and 16 being included
in its input, on the principle of doing least harm, it seems best
to ignore T -junctions entirely. Thus the results presented in
Section 4 effectively treat all T -junctions as if they were
occluding—axis-aligned planes are groups of vertices, and
occluding T -junctions do not correspond to vertices.

3. Using Axis-Aligned Planes

Having suggested that axis-aligned planes correspond to
something that humans readily identify in drawings, and
having given an algorithm for automatic identification of
such planes, we now consider what hypotheses can be made
on the basis of these clues. We suggest here two uses of
axially-aligned planes:

• Detection of planes of object mirror symmetry,
• Direct use in constructing hidden object topology.

3.1. Finding Planes of Mirror Symmetry

Martin and Dutta [MD94] identify several reasons why new
designs are often in some way symmetric. Aesthetically,
people find symmetrical shapes pleasing, and expect pres-
ence of asymmetries only when there is a need for them.
Practically, symmetrical components are often easier (and
thus cheaper) to make.

Identification of planes of mirror symmetry from a draw-
ing can be a particularly useful clue to the structure of the
entire object [Var03]. For example, if the plane of topologi-
cal mirror symmetry in Figure 21 can be identified correctly,
the entire topology of the object becomes known.

In those engineering objects where planes aligned with the
three orthogonal axes predominate, planes of mirror sym-
metry are also often axis-aligned. It should be possible to
identify such planes of mirror symmetry given knowledge
of visible axis-aligned planes.

Conceptually, we distinguish topological mirror symme-
try from geometric mirror symmetry. Formally, a polyhedron
has topological mirror symmetry if there is a non-trivial one-
to-one mapping of its vertices with isomorphic edge graphs;
less formally, a drawing has topological mirror symmetry if
its natural interpretation is an object with topological mir-
ror symmetry. Geometric mirror symmetry necessarily re-
quires topological mirror symmetry, but the converse is not
true—topological mirror symmetry can exist even without
geometric mirror symmetry. Note, for example, that the ob-
jects in Figures 21 and 26 have topological mirror symmetry
but not geometric mirror symmetry, and that the topological
mirror symmetry implied by the drawing is a useful clue to
the topology (and even the geometry) of the complete ob-
ject (simply adding those extra vertices required for a com-
plete one-to-one mapping enables us to construct most of the
hidden topology). This is true whether the absence of geo-
metric mirror symmetry is intentional (as it clearly is in Fig-
ure 26), or results from freehand sketching errors—indeed,
in Figure 21 it is not clear whether the absence of geometric
mirror symmetry is intentional. In general, we are only in-
terested in those topological mirror symmetries for which an
approximate geometric mirror symmetry exists.

In designing our algorithm, we make the assumption that
if a plane of geometric mirror symmetry exists, more of the
near side of the object is visible; hidden parts of the object
are mostly on the far side of the mirror plane. This assump-
tion can be used in two ways.

Firstly, it could determine which candidate planes we
should examine: we should start at the mid-point of known
planes, and work away from the viewer, analysing whether
or not such planes can be planes of mirror symmetry. Con-
sider Figure 24, where, if all axially-aligned planes are
found, there should be four along two of the axes and three
along the third. Since all axially-aligned planes are visible,
the mid-point of the known planes is indeed the plane of
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symmetry: for the three-plane axis, it is the second plane,
and for the four-plane axes, it is the mid-plane of (plane par-
allel to, and mid-way between) the second and third planes.
In other drawings, to allow for possible invisible planes, the
candidate planes we must examine are all planes and mid-
planes from the mid-point onwards.

In practice, the input data produced by Section 2.2 is of-
ten not suitable for this purpose—in particular, planes at the
rear of the object are commonly not fully-grouped, so there
are more known planes at the rear than at the front, and
the mid-point of known planes is thus behind the plane of
mirror symmetry. To guard against such possible problems,
we avoid the short-cut offered by the idea of the previous
paragraph and check the mid-planes of all possible pairs of
planes. Although this increases the time complexity of the
algorithm, this is not a problem in practice as the algorithm
takes a small fraction of a second in all cases we have tried.
However, it does add to the likelihood of false positives, as
discussed below.

Secondly, the assumption that more of the near side of the
object is visible gives us a terminating condition for the inner
loop of our algorithm. When every vertex on the far side of a
candidate mirror plane has been paired with a vertex on the
near side, leaving only vertices on the near side unpaired, we
have identified as much correspondence between the two as
is possible.

The algorithm we use is thus as follows:

• Identify axially-aligned planes (as described earlier)
• Group axially-aligned planes by axes (treat i-aligned, j-

aligned and k-aligned planes separately)
• Identify candidate planes and mid-planes for each group

of axially-aligned planes
• For each candidate central plane:

– Start with all vertices unpaired
– Repeat: find the best pair of vertices (nearest geomet-

rically to mirror-images of one another as reflected
through the central plane) and pair them

– Until: all unpaired vertices are on near side of central
plane

– Assess the candidate central plane: how good is the
mirror symmetry?

Even though the planes of symmetry are usually axially-
aligned, the things which are symmetric need not be, and of-
ten are not. Our algorithm should also identify mirror planes
in drawings of such objects. We do not attempt to identify di-
agonal planes of mirror symmetry such as that in Figure 17.

In principle, our ideas could also be extended to identify
non-axially-aligned mirror planes, but these are less com-
mon in engineering objects and we have not pursued this.

When considering our assessment criterion for candidate
planes of mirror symmetry (how good is the mirror symme-
try?), we must beware of false positives—mappings which,

although not corresponding to topological mirror symme-
try, achieve a high score. Consider, for example, Figures 5
and 6. Each figure shows a possible vertex mapping, in
which vertices labelled with the same letter are interchanged.
Figure 5 illustrates a ‘good’ plane of mirror symmetry—
one that a human would agree represents genuine mirror
symmetry—running along the object. Figure 6 illustrates a
false positive—one where it is apparent to the human eye
that there is no mirror symmetry—running across the object
(between the two faces labelled JHGI).
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Figure 5: Symmetry Plane
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Figure 6: False Positive

Note that the final stage of the algorithm (assessment of
mirror symmetry) is not straightforward. In particular, it can-
not simply use the number of paired vertices: in our exam-
ples above, the false positive pairs more vertices than the
‘good’ plane of mirror symmetry! Neither can we rely en-
tirely on the strict definition of topological mirror symmetry
(edge graph isomorphism) since edges can be hidden even
when their start and end vertices are both visible. Thus, there
must be some geometric input to the assessment criterion.
However, it cannot be purely geometric either, since we must
allow for freehand sketching errors, and we want to find
topological mirror symmetries such as those in Figures 21
and 26 even where there is no corresponding geometric mir-
ror symmetry. Assessment must therefore use both topolog-
ical and geometric clues, and finding the best balance be-
tween the two is not straightforward.

The simplest assessment criterion comes from the algo-
rithm given above. When performing the mapping, we wish
paired vertices to be as close as possible to one another’s
mirror images, and we implement a scoring function based
on this distance. It can be argued that this choice is subopti-
mal, as it could lead to topological mirror symmetries being
undervalued (although it can also be argued that topological
mirror symmetries which diverge strongly from geometric
mirror symmetry should not be considered valuable). Fur-
ther investigation is needed: other possibilities which should
be investigated include (i) how close a 3D line joining paired
vertices is to being parallel to the mirror plane normal; (ii)
how close the 3D lines joining paired vertices are to being
parallel to one another.

There is much work still to be done on this idea. Firstly,
where identification of axis-aligned planes is incomplete,
there are so many planes (and so many ways of arranging
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them) that it is almost always possible to find a false positive
which achieves a high score using our assessment criteria.
Additional work, both on improving the detection of axis-
aligned planes and on refining the scoring mechanism, will
help to overcome this problem. Secondly, there are occasions
where a suggested mirror plane is contradicted by the most
probable interpretation of the frontal geometry. Figure 17 is
a good example of this: the most probable interpretation of
the central feature is that it is entirely concave, and if this
is the case the topmost i j-aligned plane is fully-visible and
demonstrably not bisected by an axis-aligned mirror plane.
Additional work, combining line labelling (to detect occlu-
sion and convexity/concavity) with the inflation techniques
of [VMS05], will make assessment of mirror symmetry in
such cases more reliable.

3.2. Constructing Hidden Topology

Our preferred approach to constructing the hidden topology
of an object is essentially a search through the space of pos-
sible completions. This space can be expressed as the ter-
minal nodes (representing completed objects) of a directed
acyclic graph in which non-terminal nodes represent partial
objects, and links between nodes represent addition of one
or more items of topology. A graph link might, for example,
represent:

• Addition of a new edge joining two existing vertices;
• Addition of a new vertex and two or more edges joining it

to existing vertices;
• Reconstruction of all that hidden topology which can be

deduced on the assumption that a topological mirror plane
exists.

Graph links represent hypotheses about the current partial
object. To make the search efficient, these hypotheses are
assigned merit figures, and at any node, the hypothesis with
the highest merit figure is investigated first.

The previous section described how axially-aligned
planes can be used to hypothesise planes of object mirror
symmetry. Determining the corresponding topology to be
added for a hypothesis is straightforward. Depending on how
much of the object is visible, this may be enough on its own
to complete the topology of the object.

There are other ways in which knowledge of axially-
aligned planes can be used either to create hypotheses about
hidden object topology, or to reinforce hypotheses generated
by other heuristics (thus increasing their merit figures and
making it more likely that they will be investigated).

Consider, for example, the three blue planes in the colour
figure. It is clear that hypothesising that there is a vertex
where these planes intersect is reasonable, and would be a
sensible step towards realising the topology of the compete
object. Similarly, it would be reasonable to hypothesise the
presence of a vertex where the planes coloured (from left to
right) brown, cyan and blue intersect.

As well as being useful for making hypotheses about hid-
den object topology, knowledge of axially-aligned planes
can also be used to reject bad hypotheses. We have already
given an example of this in Section 1 (Figure 2).

4. Results

In this section, we present results concerning: detection of
axially-aligned planes (Section 2.2). We intend to provide
examples of the successful use of these techniques in de-
tection of planes of mirror symmetry (Section 3.1) and con-
structing hidden topology (Section 3.2) in following papers,
in which it will be integrated with other techniques for hy-
pothesising hidden geometry.

To test our ideas, we evaluated them by constructing a
system which identifies candidate cofacial configurations
as described in [Var03], performs inflation as described
in [VMS05], and then attempts to identify axially-aligned
planes and assess candidate planes of mirror symmetry as
described in this paper. It should be noted that [VMS05] is it-
self experimental, and not an optimal approach to inflation—
in particular, it makes no use of line labelling or any tech-
nique resembling line labelling.

As test data, we used the test set of twenty line draw-
ings [VMS04], Figures 7–26, believed to be typical of en-
gineering concept drawings (this set of drawings is available
on-line as the Second Test Set at
//ralph.cs.cf.ac.uk/Data/Sketch.html).

We discuss the results of processing the test drawings in-
dividually, as presenting the results in tabular format could
be misleading. For example, there are cases where the cor-
rect number of axially-aligned planes is identified but these
are the wrong planes, while there are also cases where more
than the correct number are identified but this can be readily
explained and is unproblematic (i.e. no errors will be intro-
duced in subsequent stages of processing). We start with the
successes and working in generally decreasing order of suc-
cess, and focus our analysis on those places where the algo-
rithm has failed in some way—from the point of view of de-
veloping and extending our ideas, these are more interesting
than successes. We finish with a few general conclusions.

In two of the figures, Figures 7 and 8, construction of
axially-aligned planes is entirely successful, generating the
correct planes in each of the three axes.

In Figure 9, the four i j-planes and the four jk-planes are
identified correctly. Five ik-planes are identified where a hu-
man would see three—some edges have not been identi-
fied as axis-aligned. There are no misgroupings (occasions
where axially-aligned planes which should remain distinct
have been merged), and geometric ordering is correct (the
distance coordinates of each plane equation, when ordered
numerically, give the expected results).

In Figure 10, the three i j-planes are identified correctly.
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Figure 7:
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Figure 8: Figure 9: Figure 10: Figure 11:

Figure 12: Figure 13: Figure 14: Figure 15: Figure 16:

Figure 17: Figure 18: Figure 19: Figure 20: Figure 21:

Figure 22: Figure 23: Figure 24: Figure 25: Figure 26:
Test Drawings

Five ik-planes and five jk-planes are identified where a hu-
man would see four of each—the edge joining the base of
the pocket to its rim has not been identified as unequivocally
axis-aligned. The geometric ordering of planes is correct.

In Figure 11, the five i j-planes (horizontal planes) are
identified correctly. Seven ik-planes are identified where
there should be six–a few edges were not identified as un-
equivocally axis-aligned. There are no misgroupings, and
geometric ordering is correct, but the ungrouped vertex is ge-
ometrically much closer to a neighbouring plane than to the
one it should be grouped with. Five jk-planes are identified
where a human would see three. In view of the length of the
graph-connected path between one of the rearmost vertices
and the other five, it is to be expected that these will not be
grouped together (visually, although they look coplanar, they
are not unequivocally coplanar). There are no misgroupings,
and geometric ordering is correct.

In Figure 12, four i j-planes are identified where a human
would see three—the hole loop hypothesis, although correct,

was rejected by the inflation process. Seven ik-planes and
six jk-planes are identified where a human would see four
of each—some edges were not identified as axis-aligned.

In Figure 13, eight i j-planes are identified where a human
would see four. The extraneous planes arise where faces ap-
pear coplanar but cannot be proved to be so. Geometric or-
dering is correct. Five ik-planes and eight jk-planes are iden-
tified where a human would see four of each. There are no
misgroupings, and geometric ordering is correct. One of the
extraneous jk-planes is added because an edge has not been
identified as axis-aligned; the others arise because planes
which appear coplanar cannot be proved to be so.

In Figure 14, eight i j-planes are identified where a hu-
man would see four. The rim edges of the boss are not
axis-aligned, and our approach has not been able to make
any deductions about axis-aligned planes from them. The
i j-planes of the base of the object are identified correctly.
Ten ik-planes and nine jk-planes are identified where a hu-
man would see five and six respectively. Again, our approach
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has been able to deduce little about the boss. The results, al-
though not misleading as such, are of little use.

In Figure 15, seven i j-planes are identified where a hu-
man would see four. This is mostly because unconnected
planes which are ‘obviously’ (to a human) coplanar cannot
be identified as such by our algorithms. There are serious
geometric errors, with the two planes corresponding to the
rearmost horizontal face both being misordered geometri-
cally. Note that the cofacial configuration technique does not
help here—it is not used in this drawing, as all vertices are
graph-connected. It is the length of the graph-connection be-
tween the front and back vertices of this (and the resulting
accumulation of errors) which is the source of the problem.
There is very little grouping of ik-planes and jk-planes (four-
teen ik-planes and thirteen jk-planes, instead of the six and
four respectively a human would see). Again, the inflation
process did not identify all edges as axially-aligned.

In Figure 16, seven i j-planes are identified where a hu-
man would see four. One of the extraneous planes is added
because although two regions apparently correspond to the
same face this cannot be determined by our algorithms; the
others are added because edges have not been unequivocally
identified as axis-aligned. There are no misgroupings. More
seriously, the geometric ordering is incorrect: the two ver-
tices at the bottom of the non-axially-aligned face have been
placed lower than the three vertices at the base. This is a
problem in the output of the inflation process, but not one
which can be solved simply by feeding the axially-aligned
planes back as input into the inflation process. Seven ik-
planes are identified where a human would see six. As with
i j-planes, there are no misgroupings, but the geometric or-
dering is seriously incorrect. Six jk-planes are identified
where a human would see five. Again, there are no mis-
groupings, but the geometric ordering is seriously incorrect:
two of the ‘front’ vertices are behind the boss.

In Figure 17, five i j-planes are identified where a human
would see four, as (somewhat surprisingly) the inflation pro-
cess did not identify all edges as axis-aligned. More serious
is a geometric error: the base of the pocket has been placed
higher than some vertices in the top face. Ten ik-planes and
ten jk-planes are identified where a human would see five of
each. Although unproblematic, this is unhelpful.

In Figure 18, six i j-planes are identified; a human would
also see six, but not exactly the same ones. The ‘obviously’
(to a human) non-axially-aligned face has been misidenti-
fied as i j-aligned, and the vertices at either end grouped in
the same i j-plane; the two apparently coplanar faces cannot
be proved to be coplanar, so are not grouped together. There
is also a geometric misordering of the bottom two i j-planes.
Six ik-planes have been identified where a human would see
four, and there are misgroupings. The five jk-planes have
been identified correctly. There is a minor problem: the ge-
ometric distance between two of these planes is small, so a

naive attempt to merge planes which are geometrically close
could introduce a serious error here.

Figure 19 differs from Figure 14 only in that the boss has
been moved back slightly so that Figure 19 implies a hole
loop where Figure 14 includes a non-trihedral vertex. How-
ever, the results a In Figure 19, seven i j-planes are identi-
fied where a human would see four. Again, our approach has
been able to make little of the non-axially-aligned edges of
the boss. The i j-planes of the base of the object are identified
correctly. Seven ik-planes and nine jk-planes are identified
where a human would see five and seven respectively; there
are several misgroupings in both. Geometric ordering of the
front two jk-planes is incorrect; this is an error which should
be detectable using line labelling, particularly since all the
vertices involved are trihedral.

Similarly disappointing results were obtained in Fig-
ures 20 and 21.

In Figure 22, five i j-planes are identified where a human
would see three—there are some edges which the inflation
process has been unable to identify as unequivocally axis-
aligned. Geometric ordering is correct, the cofacial configu-
ration technique correctly identifies that the base of the cen-
tral boss is coplanar with the top of the supporting cuboid,
and the geometric distance between the two pairs of planes
which should be coplanar is small. There is a serious er-
ror in the ik-planes: several distinct planes have been con-
flated. There are six planes, as one would expect, but they are
wrong. Nine jk-planes have been identified where a human
would see five, again because some edges have not been un-
equivocally identified as axis-aligned. This is unhelpful but
unproblematic. There are no misgroupings, and geometric
ordering is correct.

In Figure 23, twelve i j-planes are identified where a hu-
man would see five. The base plane is identified correctly,
but the rest include serious misgroupings. Twelve ik-planes
and fourteen jk-planes are identified where a human would
see six of each. There are no misgroupings, and geometric
ordering is correct. In both cases, the front of the object has
been grouped correctly, but little if any grouping has taken
place at the rear of the object.

In Figures 24 and 25, the inflation process of [VMS05]
makes incorrect decisions about edge axis alignment; the re-
sults obtained by feeding this incorrect input into our new
idea are meaningless.

Our current implementation cannot process Figure 26—
there is a region containing only one true vertex, and at-
tempting to calculate its 3D plane results in an error.

The immediate conclusion to be drawn from these results
is that most of the problems result from deficiencies in the
input, not failures of the technique. We consider some pos-
sibilities for improving input quality in the next section.

The results obtained in Figures 14 and 19 show that the
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idea proposed in Section 2.4 of identifying candidate cofa-
cial hypotheses as described in [Var03] and assessing these
hypothesis during inflation using the techniques of [VMS05]
is successful.

5. Conclusions and Further Work

Although the idea presented in this paper appears interesting
and useful, it needs better-quality input from the inflation
process before it can be considered reliable. In particular, the
inflation techniques of [VMS05] should be combined with
line labelling in order to provide knowledge of occlusion and
convexity/concavity.

The results presented here would be improved signifi-
cantly if we could be more certain about identifying axis-
aligned edges. At the moment, we only use those edges
which have been identified as certainly axis-aligned. It might
be preferable to use all edges where the confidence of axis-
alignment is higher than a threshold value (although since
this could increase the number of false positives, the thresh-
old value would have to be chosen with some care).

Extending our approach to make use of edges which,
while not axis-aligned, are clearly in one of the axis-aligned
planes ought to be straightforward—identifying these is a
natural extension of the ideas of [VMS05]. This would en-
able correct interpretation of (for example) the boss in Fig-
ure 14.

Nevertheless, the ideas presented here is both natural, in
that it identifies something humans also identify in drawings,
and flexible, in that there are several alternative ways of im-
plementing them. We plan, in future papers, to present an
evaluation of these various alternatives, and to present an in-
tegrated approach to construction of hidden topology which
includes the best of these.
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