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ABSTRACT 

We present a framework for simultaneous grouping and recognition of shapes and symbols in free-form ink dia-
grams. The approach is completely spatial, that is it does not require any ordering on the strokes.  It also does not 
place any constraint on the relative placement of the shapes or symbols. Initially each of the strokes on the page is 
linked in a proximity graph. A discriminative classifier is used to classify connected subgraphs as either making up 
one of the known symbols or perhaps as an invalid combination of strokes (e.g. including strokes from two different 
symbols). This classifier combines the rendered image of the strokes with stroke features such as curvature and 
endpoints.  A small subset of very efficient features is selected, yielding an extremely fast classifier. An A-star 
search algorithm over connected subsets of the proximity graph is used to simultaneously find the optimal segmen-
tation and recognition of all the strokes on the page.  Experiments demonstrate that the system can achieve 97% 
segmentation/recognition accuracy on a cross-validated shape dataset from 19 different writers. 

 

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Document Capture]: Graphics recognition 
and interepretation).   

 
1. Introduction 

Sketched shape recognition is a classic problem in pen 
user interfaces. Augmenting a sketched shape with its sym-
bolic meaning can enable numerous features including 
smart editing, beautification, and interactive simulation of 
visual languages [Gross94, LM95, AD01, KS04].  

In this paper we present an integrated, accurate, and effi-
cient method for recognizing and grouping sketched sym-
bols. Our approach applies to both hand-sketched shapes 
and printed handwritten text, and even heterogeneous mix-
tures of the two. 

1.1 Previous Work 

The problem of recognizing sketched drawings can be di-
vided into two parts: grouping strokes into sets, and recog-
nizing what symbol a set of stroke represents. 

Previous research has proposed numerous shape recogni-
tion strategies including a wide variety of different features 
and classifiers. Some strategies emphasize invariance to 
changes in scale and rotation [HN04]. Others require few 
examples to train [Rub92, KS04, VD04]. Others are able to 
cope with dashed sketches and overstrikes [FPJ02]. 

There are also many approaches to grouping ink strokes 
for recognition. Some systems are designed with the con-
straint that the user must draw shapes with a single stroke 

[Rub92]. Some systems use a timeout: when the user does 
not sketch for a pre-specified time, the system will group 
the last set of strokes into a shape to be recognized. Some 
systems use hand-tuned heuristics to group shapes [KS04]. 
Many handwriting systems require the users to finish writ-
ing one shape before beginning on the next one, and then 
perform an optimization over the sequence of strokes to 
find the grouping that maximizes some heuristic or statisti-
cal score [TSW90]. 

In work that is most closely related to ours, Mahoney and 
Fromherz [MF01] have constructed a system that uses 
finds subgraphs of strokes that satisfy heuristically-
specified constraints. They suggest that their approach 
should work well for sketches that are defined by the struc-
tural relationships between strokes, but may not be well-
suited for sketches that are defined by the curve shape of 
the strokes. 

We have presented an initial version of this work for the 
purpose of recognizing and grouping handwritten character 
strokes in mathematical equations and diagrams [SVC04]. 
This paper extends the work to flowcharts and mixtures of 
text and graphics.  For this work we have developed a more 
powerful classification scheme and an improved search 
strategy for discovering the optimal grouping. 
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1.2 Spatial Grouping and Recognition 

In this paper, we present an efficient, purely spatial ap-
proach to simultaneously group and recognize handwritten 
symbols on a page. Our approach is an optimization over a 
large space of possible groupings in which each grouping 
is evaluated by a recognizer (Figure 1). This is in contrast 
to approaches where grouping and recognition are carried 
out as separate steps (e.g. systems with a separate layout 
analysis step). 

In this approach the recognizer carries the burden of dis-
tinguishing good groupings from bad groupings and also 
must assign correct labels to good groupings. This sort of 
recognizer must evaluate quickly in order to process the 
large number of possible stroke groupings for a page of ink 
in a reasonable time. 

Given such a recognizer, there are several benefits to this 
factoring of the problem. Improving the accuracy or per-
formance of the system is simply a function of improving 
the accuracy or performance of the recognizer. Introducing 
new features to the system, such as rotation- or scale-
invariance is simply a matter of changing the recognizer, 
rather than changing both the recognizer and the layout 
analysis. 

Perhaps most significantly, it enables our system to be 
nearly entirely learned from examples rather than relying 
on hand-coded heuristics. This last point bears repeating: 
ours is a monolithic system which once developed, requires 
no hand constructed geometric features. All thresholds and 
parameters are learned automatically from a training set of 
examples. 

Our system operates in the following manner.  As a pre-
processing step, it first builds a neighborhood graph of the 
ink in which nodes correspond to strokes, and edges are 
added when strokes are in close proximity to one another. 
Given this graph, we iterate efficiently over connected sets 
of nodes in the graph using dynamic programming and fast 
hashing on collections of nodes. For each set of nodes of 
up to size K, we perform a discriminative recognition on 
the set. This allows us to incorporate non-local information 
that rules out spurious answers that might result from a 
generative model. We use dynamic programming to opti-

mize over the space of possible explanations. The resulting 
system achieves high accuracy rates without any language 
model, places no stroke ordering requirements on the user, 
and places no constraints on the way in which symbols 
must be laid out on the page. 

We first describe the search-based optimization that we 
perform over different groupings of strokes and recognition 
alternatives. We then describe the classifier (AdaBoost) 
and its features (the Viola-Jones image filters) that we use 
to evaluate each stroke group. We then evaluate our work 
on a publicly-available database of sketched shapes and a 
heterogeneous mixture of shapes, arrows, and text in the 
form of a flowchart. 

2. Search-Based Optimization 

We approach shape recognition and grouping as an opti-
mization problem. In other words, in the space of all possi-
ble groupings of strokes on the page all possible labelings 
of those groupings, there is a best grouping and labeling 
according to a cost function. 

The cost of a grouping and labeling is a function of the 
costs of each of its constituents. 

1 2({ }) ( ( ), ( ), , ( ))i NC V R V R V R V= Φ �  [1] 

In Equation 1, each Vi is a subset of the vertices which 
form a partition of the page (we use the terms strokes and 
vertices interchangeably), R is the best recognition result 
for that set of vertices, the function 

�
 is a combination cost 

(such as sum, max, or average), and C represents the over-
all cost of a particular grouping Vi. 

Of course, the number of possible groupings is combinato-
rial in the number of vertices, so it would be prohibitively 
expensive to compute all of the combinations. Therefore, 
we constrain the possible groupings in the following ways: 

1. We construct a neighborhood graph (Figure 1(b)) in 
which vertices that are close to each other on the 
page are connected. We say that a grouping Vi is 
only valid if its vertices are connected in the 
neighborhood graph. 
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Figure 1. An overview of our approach. (a) A user sketch containing several strokes. (b) A neighborhood graph of the 
strokes in the sketch. (c) Connected subsets of the neighborhood graph of up to a fixed size K. (d) Rendered images of the 
subsets that are passed to an AdaBoost recognizer. (e) Results from the classifier include a symbol hypothesis and a score. 
(f) An optimization partitions the graph to jointly maximize the classifier scores. 
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2. We restrict the size of each subset Vi in the graph to 
be less than a constant K (Figure 1(c)). For instance, 
in our data we have not seen symbols of greater than 
8 strokes, so we assert that it is reasonable to place 
an upper bound on the size of a subset. 

Given these restrictions, we have used two optimization 
methods to solve for the best solution. The first is dynamic 
programming, as we describe in [SVC04]. In this paper we 
present an improvement based on A* search. 

2.1 A* Search 

A typical search problem can be defined as a state space in 
which each state has a cost, operators to transition between 
states, and a test to see whether a state is a goal state. A* is 
a search technique that uses a heuristic underestimate to the 
goal from each state to prune away parts of the search 
space that cannot possibly result in an optimal solution 
[RN95]. The quality of the estimate impacts the efficiency 
of the search: a weak underestimate can result in a slow 
search and an aggressive underestimate that is not a true 
underestimate can result in a suboptimal solution (also 
known as an inadmissible heuristic). 

Our search space is a set of partial groupings of strokes 
(Figure 2). Our initial states are all individual groups of 
strokes of up to size K. Each group of strokes can combine 
with another group to form an aggregate partial grouping 
provided that the two groups do not share any common 
strokes.  Such combinations are the operators of the search. 
Finally, a state is a goal state if it explains all of the strokes 
on the page. 

As in Equation 1 and [SVC04], the cost of a grouping is 
the combination cost of its sub-groups. The underestimate 
to the goal from a partial grouping is a function of the best 
explanations of the parents of the strokes unexplained by 
that grouping. In particular, if a partial grouping explains 
the first N strokes of a drawing, the underestimate cost for 

each unexplained stroke is R(V*)/|V*| where V* is the best 
partial explanation that explains that stroke (note this par-
tial explanation may explain multiple strokes,  so we divide 
the cost across the strokes). This is a true underestimate 
because in the best case those best interpretations can all be 
taken. It is not a true estimate because some of those inter-
pretations may conflict, in which case they cannot all be 
taken. 

3. Recognition 

The recognizer utilized in the optimization described 
above is based is a novel application of AdaBoost.  The 
primary input to the classifier is a rendered image of the 
strokes that comprise the hypothetical shape. Since we do 
not yet know the segmentation of the strokes, the strokes 
passed to the classifier may not make up a shape at all (we 
call these groupings garbage). 

The framework used is most closely related to the work of 
Viola and Jones, who constructed a real-time face detection 
system using a boosted collection of simple and efficient 
features [VJ01]. The Viola-Jones approach is distinguished 
because it classifies images extremely rapidly and reliably. 
We chose this approach both because of its speed and 
because it is easily extensible to include additional feature 
information. 

We have generalized Viola-Jones in two ways. First, our 
classification problem is multi-class. Second, we have 
added additional input features to the 29x29 input images.  
These additional features are computed directly from the 
on-line stroke information and include curvature, 
orientation, and end-point information (Figure 3). While 
we believe that this information could be computed directly 
from the image, this information is only currently available 
from on-line systems. 

The observations that are sent to the classifier are sums 
over the pixel values in rectangular regions of the image. 

 

Figure 2. Classifier input. The candidate stroke 
(square) is shown in red and its context strokes is 
shown in blue. Both candidate and context are 
rendered into 29x29 images. The first image shows the 
original ink, the other images depict stroke features 
such as endpoints, curvature, and self-intersections. 
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Figure 3. A* Search. (a) A toy search example show-
ing the hypotheses in each state. (b) Visualization of 
the search for a small example which yielded the incor-
rect “best” solution. For purposes of example we let 
the search run until it hit the true solution. 
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While in practice we do not generate all possible rectangles 
at all possible locations in a 29x29 image, we have 
generated 5280 rectangles per image. Because there are 12 
input images example, the classifier rceives 63,360 
observations per training example! Over the course of its 
training, the classifier automatically determines which of 
these observations are relevant to the classification problem 
and selects a small subset of these observations which 
should actually be made in practice. The mechanics of this 
process is outside the scope of this paper, but is discussed 
in [SS98]. 

In this paper we have further extended the learning 
framework to include boosted decision trees.  In our 
previous work we boosted “stumps” or depth one decision 
trees.  In other words, each boosted classifier previously 
reasoned about a single threshold (i.e. a depth 1 decision 
tree), whereas our current boosted classifiers reason about 
small conjunctions of thresholds on different rectangles. 

While stumps yielded good results when the number of 
classes is small,  it didn’t work well for problems with a 
larger number of similar symbols/characters.  In these 
experiments we have used depth 3 decision trees.  These 
more general decision trees are more powerful classifiers, 
capable of modeling complex dependencies between 
features.  The main risk in using a decision tree is that it 
may overfit the training data.  We have found that be 
limiting the depth of the tree to 3 there has been no 
tendency to overfit in our experiments. 

4. Evaluation 

We have evaluated this work on the publicly-available 
HHReco sketched shape database [HN04], containing 7791 
multi-stroke examples over 13 shape classes, collected 
from 19 different users. On randomly-generated shape 
scenes in which shapes are placed near one another in 
random patterns (Figure 4(a)), we achieved 97% accuracy 
for both grouping and recognition simultaneously, and over 
99% accuracy for grouping alone (using 80/20 train/test 
split). 

We also evaluated our approach on a more complex set of 
randomly synthesized flowcharts. Each flowchart was 
generated from the shapes { square, ellipse, diamond, 
hexagon, pentagon }, the connectors { � , � , − }, and the 
digits { 0 – 9 }, in which four nodes were synthesized in 
random non-overlapping locations with randomly sampled 
edges between them, and four digits were contained in each 

node  (Figure 4(b)). On this problem we achieved an 85% 
grouping/recognition accuracy, and a 90% grouping 
accuracy. 

Data 
set 

DT 
Depth 

False 
Pos 

False 
Neg 

FP 
Grp 

FN 
Grp 

Truth 
Count 

shape 1 16 30 6 11 600 

shape 3 25 18 9 7 600 

flow 1 80 78 18 14 1200 

flow 3 76 58 21 8 1200 

flow2 1 459 430 107 134 2400 

flow2 3 330 348 107 134 2400 

 Table 1. Grouping and recognition results. Data sets 
include shapes (shape), flowcharts (flow), and flowcharts 
with digit labels (flow2). False pos/neg refer to errors in 
grouping and recognition. FP/FN Grp refer to grouping 
errors only. Truth refers to the number of symbols in the 
true grouping. 

Our initial results are shown in Table 1. They indicate that 
small-depth boosted decision trees are roughly equivalent 
to stumps for sketch recognition problems with a small 
number of classes. However, as the number of classes 
grow, the decision trees show a modest improvement over 
the stumps. These results also show that, at least for our 
system and data set, digit recognition is substantially more 
difficult than shape recognition–the error rate on 
flowcharts without digits was much lower than the 
flwochart with digits.  Furthermore, the errors that did 
occur in the flowcharts with digits were mostly errors on 
the digits. 

We are able to process files such as the one shown in 
Figure 4(a) in appromimately .1s on a 1.7GHz Tablet PC. 
Larger examples such as Figure 4(b) currently take 
approximately 8s to process. Nearly 90% of the time is 
spent rendering the examples to bitmaps (Figure 1(d)) since 
there are an order of magnitude more symbol candidates 
than there are symbols in the file. We have spent almost no 
time optimizing our implementation and believe that there 
is plenty of room for improvement. 

The experiment had several limitations.  As in the shape 
experiment, both the training and test data were 
synthesized. However, we used the HHReco shape data and 
synthesized it with arrows and digits collected from users 
in our lab.  We were careful to keep the test and training 
users separate to show that our approach is able to 
generalize, and to keep a one-to-one mapping between 
shape writers and digit/arrow writers. 

5. Discussion 

We have presented a method for grouping and recognized 
sketched shapes that is efficient and accurate, yet relies 
solely on spatial information and is completely example-
based. We were not surprised that the approach appears to 
be equally applicable to sketched shapes, arrows, and 
printed handwritten characters. 

This work has several implications to the field of sketch 
recognition and sketch-based user interfaces in general. 

(a) (b)(a) (b)

 
Figure 4. Test examples. (a) A randomly generated 

collection of shapes. (b) A synthetic flowchart 
composed of shapes, arrows, and characters collected 
from real users. We superimpose its neighborhood 
graph to give a feel for the size of the problem. 
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Firstly, we envision a recognizer that achieves high accu-
racy for shapes, symbols, arrows, and so on, and places no 
constraints on the user in terms of order or specific page 
layout of those symbols. With such a recognizer available 
off the shelf, the designer of a sketch-based user interface 
would not have to make compromises on which symbols to 
include or how the use should enter those symbols, and 
could instead focus on defining the right symbol set for the 
problem, an appropriate correction user interface, and so 
on. 

The approach we present in this paper is the basis for such 
a solution. Because the approach is entirely based on ma-
chine learning and requires no hand-coded heuristics, it can 
be easily retargeted to different domains, as we have done 
originally for mathematics and now for flowcharts. There 
has been work on recognizers that can operate on small sets 
of training examples, and recognizers that adapt to user 
correction. The approach described in this paper does not 
achieve these goals. However, we have noted that our 
graph optimization ultimately takes the form of the under-
lying recognizer, so a variant of this approach may eventu-
ally achieve this. In the meantime, we are happy with a 
combination of efficiency and high accuracy. 

From a recognition standpoint, we note that the system 
relies on very few parameters. The only significant ones are 
the maximum number of strokes in each character (in our 
case 6), and a proximity threshold for building a neighbor-
hood graph. Furthermore, it relies entirely on the concise 
cost function for its answer and so improvements in accu-
racy can be achieved through improvements of the cost 
function and the underlying recognizer, without needing to 
modify any of the rest of the algorithm. 

The biggest limitation of the approach is on symbols that 
are actually deformable templates. Real arrows in diagrams 
need not be straight and can snake arbitrarily. We have not 
evaluated our approach on deformable arrows for flow 
charts, but we expect that it will be a challenge.  We are 
therefore interested in establishing a more formal relation-
ship between this work and ongoing work in so-called 
structural recognition of sketches. 
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