

Spatial Recognition and Grouping of Text and Graphics

Michael Shilman Paul Viola
Microsoft Research
One Microsoft Way
Redmond, WA 98052

{shilman,viola}@microsoft.com

ABSTRACT

We present a framework for simultaneous grouping and recognition of shapes and symbols in free-form ink dia-
grams. The approach is completely spatial, that is it does not require any ordering on the strokes. It also does not
place any constraint on the relative placement of the shapes or symbols. Initially each of the strokes on the page is
linked in a proximity graph. A discriminative classifier is used to classify connected subgraphs as either making up
one of the known symbols or perhaps as an invalid combination of strokes (e.g. including strokes from two different
symbols). This classifier combines the rendered image of the strokes with stroke features such as curvature and
endpoints. A small subset of very efficient features is selected, yielding an extremely fast classifier. An A-star
search algorithm over connected subsets of the proximity graph is used to simultaneously find the optimal segmen-
tation and recognition of all the strokes on the page. Experiments demonstrate that the system can achieve 97%
segmentation/recognition accuracy on a cross-validated shape dataset from 19 different writers.

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Document Capture]: Graphics recognition
and interepretation).

1. Introduction

Sketched shape recognition is a classic problem in pen
user interfaces. Augmenting a sketched shape with its sym-
bolic meaning can enable numerous features including
smart editing, beautification, and interactive simulation of
visual languages [Gross94, LM95, AD01, KS04].

In this paper we present an integrated, accurate, and effi-
cient method for recognizing and grouping sketched sym-
bols. Our approach applies to both hand-sketched shapes
and printed handwritten text, and even heterogeneous mix-
tures of the two.

1.1 Previous Work

The problem of recognizing sketched drawings can be di-
vided into two parts: grouping strokes into sets, and recog-
nizing what symbol a set of stroke represents.

Previous research has proposed numerous shape recogni-
tion strategies including a wide variety of different features
and classifiers. Some strategies emphasize invariance to
changes in scale and rotation [HN04]. Others require few
examples to train [Rub92, KS04, VD04]. Others are able to
cope with dashed sketches and overstrikes [FPJ02].

There are also many approaches to grouping ink strokes
for recognition. Some systems are designed with the con-
straint that the user must draw shapes with a single stroke

[Rub92]. Some systems use a timeout: when the user does
not sketch for a pre-specified time, the system will group
the last set of strokes into a shape to be recognized. Some
systems use hand-tuned heuristics to group shapes [KS04].
Many handwriting systems require the users to finish writ-
ing one shape before beginning on the next one, and then
perform an optimization over the sequence of strokes to
find the grouping that maximizes some heuristic or statisti-
cal score [TSW90].

In work that is most closely related to ours, Mahoney and
Fromherz [MF01] have constructed a system that uses
finds subgraphs of strokes that satisfy heuristically-
specified constraints. They suggest that their approach
should work well for sketches that are defined by the struc-
tural relationships between strokes, but may not be well-
suited for sketches that are defined by the curve shape of
the strokes.

We have presented an initial version of this work for the
purpose of recognizing and grouping handwritten character
strokes in mathematical equations and diagrams [SVC04].
This paper extends the work to flowcharts and mixtures of
text and graphics. For this work we have developed a more
powerful classification scheme and an improved search
strategy for discovering the optimal grouping.

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2004)
John F. Hughes and Joaquim A. Jorge (Editors)

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

1.2 Spatial Grouping and Recognition

In this paper, we present an efficient, purely spatial ap-
proach to simultaneously group and recognize handwritten
symbols on a page. Our approach is an optimization over a
large space of possible groupings in which each grouping
is evaluated by a recognizer (Figure 1). This is in contrast
to approaches where grouping and recognition are carried
out as separate steps (e.g. systems with a separate layout
analysis step).

In this approach the recognizer carries the burden of dis-
tinguishing good groupings from bad groupings and also
must assign correct labels to good groupings. This sort of
recognizer must evaluate quickly in order to process the
large number of possible stroke groupings for a page of ink
in a reasonable time.

Given such a recognizer, there are several benefits to this
factoring of the problem. Improving the accuracy or per-
formance of the system is simply a function of improving
the accuracy or performance of the recognizer. Introducing
new features to the system, such as rotation- or scale-
invariance is simply a matter of changing the recognizer,
rather than changing both the recognizer and the layout
analysis.

Perhaps most significantly, it enables our system to be
nearly entirely learned from examples rather than relying
on hand-coded heuristics. This last point bears repeating:
ours is a monolithic system which once developed, requires
no hand constructed geometric features. All thresholds and
parameters are learned automatically from a training set of
examples.

Our system operates in the following manner. As a pre-
processing step, it first builds a neighborhood graph of the
ink in which nodes correspond to strokes, and edges are
added when strokes are in close proximity to one another.
Given this graph, we iterate efficiently over connected sets
of nodes in the graph using dynamic programming and fast
hashing on collections of nodes. For each set of nodes of
up to size K, we perform a discriminative recognition on
the set. This allows us to incorporate non-local information
that rules out spurious answers that might result from a
generative model. We use dynamic programming to opti-

mize over the space of possible explanations. The resulting
system achieves high accuracy rates without any language
model, places no stroke ordering requirements on the user,
and places no constraints on the way in which symbols
must be laid out on the page.

We first describe the search-based optimization that we
perform over different groupings of strokes and recognition
alternatives. We then describe the classifier (AdaBoost)
and its features (the Viola-Jones image filters) that we use
to evaluate each stroke group. We then evaluate our work
on a publicly-available database of sketched shapes and a
heterogeneous mixture of shapes, arrows, and text in the
form of a flowchart.

2. Search-Based Optimization

We approach shape recognition and grouping as an opti-
mization problem. In other words, in the space of all possi-
ble groupings of strokes on the page all possible labelings
of those groupings, there is a best grouping and labeling
according to a cost function.

The cost of a grouping and labeling is a function of the
costs of each of its constituents.

1 2({ }) ((), (), , ())i NC V R V R V R V= Φ � [1]

In Equation 1, each Vi is a subset of the vertices which
form a partition of the page (we use the terms strokes and
vertices interchangeably), R is the best recognition result
for that set of vertices, the function

�
 is a combination cost

(such as sum, max, or average), and C represents the over-
all cost of a particular grouping Vi.

Of course, the number of possible groupings is combinato-
rial in the number of vertices, so it would be prohibitively
expensive to compute all of the combinations. Therefore,
we constrain the possible groupings in the following ways:

1. We construct a neighborhood graph (Figure 1(b)) in
which vertices that are close to each other on the
page are connected. We say that a grouping Vi is
only valid if its vertices are connected in the
neighborhood graph.

1 2

3

4

5

6

1 2

3

4 5

6

1 2

3

4 5

6

V0

V1

1 2

3

4 5

6

V0

V1

(a) (b) (c) (d) (e) (f)

[7, .05]

[tri, .9]

[tri, .2]

[4, .3]

[sq, .8]

…
… …

Figure 1. An overview of our approach. (a) A user sketch containing several strokes. (b) A neighborhood graph of the
strokes in the sketch. (c) Connected subsets of the neighborhood graph of up to a fixed size K. (d) Rendered images of the
subsets that are passed to an AdaBoost recognizer. (e) Results from the classifier include a symbol hypothesis and a score.
(f) An optimization partitions the graph to jointly maximize the classifier scores.

c© The Eurographics Association 2004.

Michael Shilman, Paul Viola / Spatial Recognition and Grouping of Text and Graphics 92

2. We restrict the size of each subset Vi in the graph to
be less than a constant K (Figure 1(c)). For instance,
in our data we have not seen symbols of greater than
8 strokes, so we assert that it is reasonable to place
an upper bound on the size of a subset.

Given these restrictions, we have used two optimization
methods to solve for the best solution. The first is dynamic
programming, as we describe in [SVC04]. In this paper we
present an improvement based on A* search.

2.1 A* Search

A typical search problem can be defined as a state space in
which each state has a cost, operators to transition between
states, and a test to see whether a state is a goal state. A* is
a search technique that uses a heuristic underestimate to the
goal from each state to prune away parts of the search
space that cannot possibly result in an optimal solution
[RN95]. The quality of the estimate impacts the efficiency
of the search: a weak underestimate can result in a slow
search and an aggressive underestimate that is not a true
underestimate can result in a suboptimal solution (also
known as an inadmissible heuristic).

Our search space is a set of partial groupings of strokes
(Figure 2). Our initial states are all individual groups of
strokes of up to size K. Each group of strokes can combine
with another group to form an aggregate partial grouping
provided that the two groups do not share any common
strokes. Such combinations are the operators of the search.
Finally, a state is a goal state if it explains all of the strokes
on the page.

As in Equation 1 and [SVC04], the cost of a grouping is
the combination cost of its sub-groups. The underestimate
to the goal from a partial grouping is a function of the best
explanations of the parents of the strokes unexplained by
that grouping. In particular, if a partial grouping explains
the first N strokes of a drawing, the underestimate cost for

each unexplained stroke is R(V*)/|V*| where V* is the best
partial explanation that explains that stroke (note this par-
tial explanation may explain multiple strokes, so we divide
the cost across the strokes). This is a true underestimate
because in the best case those best interpretations can all be
taken. It is not a true estimate because some of those inter-
pretations may conflict, in which case they cannot all be
taken.

3. Recognition

The recognizer utilized in the optimization described
above is based is a novel application of AdaBoost. The
primary input to the classifier is a rendered image of the
strokes that comprise the hypothetical shape. Since we do
not yet know the segmentation of the strokes, the strokes
passed to the classifier may not make up a shape at all (we
call these groupings garbage).

The framework used is most closely related to the work of
Viola and Jones, who constructed a real-time face detection
system using a boosted collection of simple and efficient
features [VJ01]. The Viola-Jones approach is distinguished
because it classifies images extremely rapidly and reliably.
We chose this approach both because of its speed and
because it is easily extensible to include additional feature
information.

We have generalized Viola-Jones in two ways. First, our
classification problem is multi-class. Second, we have
added additional input features to the 29x29 input images.
These additional features are computed directly from the
on-line stroke information and include curvature,
orientation, and end-point information (Figure 3). While
we believe that this information could be computed directly
from the image, this information is only currently available
from on-line systems.

The observations that are sent to the classifier are sums
over the pixel values in rectangular regions of the image.

Figure 2. Classifier input. The candidate stroke
(square) is shown in red and its context strokes is
shown in blue. Both candidate and context are
rendered into 29x29 images. The first image shows the
original ink, the other images depict stroke features
such as endpoints, curvature, and self-intersections.

…

…

…

(a)

(b)

stroke

committed group

conflicting group

unexplored group

start state

goal state

unexpanded state

expanded state
true solution

“best” solution
strokes explained

co
st

Figure 3. A* Search. (a) A toy search example show-
ing the hypotheses in each state. (b) Visualization of
the search for a small example which yielded the incor-
rect “best” solution. For purposes of example we let
the search run until it hit the true solution.

Michael Shilman, Paul Viola / Spatial Recognition and Grouping of Text and Graphics 93

While in practice we do not generate all possible rectangles
at all possible locations in a 29x29 image, we have
generated 5280 rectangles per image. Because there are 12
input images example, the classifier rceives 63,360
observations per training example! Over the course of its
training, the classifier automatically determines which of
these observations are relevant to the classification problem
and selects a small subset of these observations which
should actually be made in practice. The mechanics of this
process is outside the scope of this paper, but is discussed
in [SS98].

In this paper we have further extended the learning
framework to include boosted decision trees. In our
previous work we boosted “stumps” or depth one decision
trees. In other words, each boosted classifier previously
reasoned about a single threshold (i.e. a depth 1 decision
tree), whereas our current boosted classifiers reason about
small conjunctions of thresholds on different rectangles.

While stumps yielded good results when the number of
classes is small, it didn’t work well for problems with a
larger number of similar symbols/characters. In these
experiments we have used depth 3 decision trees. These
more general decision trees are more powerful classifiers,
capable of modeling complex dependencies between
features. The main risk in using a decision tree is that it
may overfit the training data. We have found that be
limiting the depth of the tree to 3 there has been no
tendency to overfit in our experiments.

4. Evaluation

We have evaluated this work on the publicly-available
HHReco sketched shape database [HN04], containing 7791
multi-stroke examples over 13 shape classes, collected
from 19 different users. On randomly-generated shape
scenes in which shapes are placed near one another in
random patterns (Figure 4(a)), we achieved 97% accuracy
for both grouping and recognition simultaneously, and over
99% accuracy for grouping alone (using 80/20 train/test
split).

We also evaluated our approach on a more complex set of
randomly synthesized flowcharts. Each flowchart was
generated from the shapes { square, ellipse, diamond,
hexagon, pentagon }, the connectors { � , � , − }, and the
digits { 0 – 9 }, in which four nodes were synthesized in
random non-overlapping locations with randomly sampled
edges between them, and four digits were contained in each

node (Figure 4(b)). On this problem we achieved an 85%
grouping/recognition accuracy, and a 90% grouping
accuracy.

Data
set

DT
Depth

False
Pos

False
Neg

FP
Grp

FN
Grp

Truth
Count

shape 1 16 30 6 11 600

shape 3 25 18 9 7 600

flow 1 80 78 18 14 1200

flow 3 76 58 21 8 1200

flow2 1 459 430 107 134 2400

flow2 3 330 348 107 134 2400

 Table 1. Grouping and recognition results. Data sets
include shapes (shape), flowcharts (flow), and flowcharts
with digit labels (flow2). False pos/neg refer to errors in
grouping and recognition. FP/FN Grp refer to grouping
errors only. Truth refers to the number of symbols in the
true grouping.

Our initial results are shown in Table 1. They indicate that
small-depth boosted decision trees are roughly equivalent
to stumps for sketch recognition problems with a small
number of classes. However, as the number of classes
grow, the decision trees show a modest improvement over
the stumps. These results also show that, at least for our
system and data set, digit recognition is substantially more
difficult than shape recognition–the error rate on
flowcharts without digits was much lower than the
flwochart with digits. Furthermore, the errors that did
occur in the flowcharts with digits were mostly errors on
the digits.

We are able to process files such as the one shown in
Figure 4(a) in appromimately .1s on a 1.7GHz Tablet PC.
Larger examples such as Figure 4(b) currently take
approximately 8s to process. Nearly 90% of the time is
spent rendering the examples to bitmaps (Figure 1(d)) since
there are an order of magnitude more symbol candidates
than there are symbols in the file. We have spent almost no
time optimizing our implementation and believe that there
is plenty of room for improvement.

The experiment had several limitations. As in the shape
experiment, both the training and test data were
synthesized. However, we used the HHReco shape data and
synthesized it with arrows and digits collected from users
in our lab. We were careful to keep the test and training
users separate to show that our approach is able to
generalize, and to keep a one-to-one mapping between
shape writers and digit/arrow writers.

5. Discussion

We have presented a method for grouping and recognized
sketched shapes that is efficient and accurate, yet relies
solely on spatial information and is completely example-
based. We were not surprised that the approach appears to
be equally applicable to sketched shapes, arrows, and
printed handwritten characters.

This work has several implications to the field of sketch
recognition and sketch-based user interfaces in general.

(a) (b)(a) (b)

Figure 4. Test examples. (a) A randomly generated

collection of shapes. (b) A synthetic flowchart
composed of shapes, arrows, and characters collected
from real users. We superimpose its neighborhood
graph to give a feel for the size of the problem.

Michael Shilman, Paul Viola / Spatial Recognition and Grouping of Text and Graphics 94

Firstly, we envision a recognizer that achieves high accu-
racy for shapes, symbols, arrows, and so on, and places no
constraints on the user in terms of order or specific page
layout of those symbols. With such a recognizer available
off the shelf, the designer of a sketch-based user interface
would not have to make compromises on which symbols to
include or how the use should enter those symbols, and
could instead focus on defining the right symbol set for the
problem, an appropriate correction user interface, and so
on.

The approach we present in this paper is the basis for such
a solution. Because the approach is entirely based on ma-
chine learning and requires no hand-coded heuristics, it can
be easily retargeted to different domains, as we have done
originally for mathematics and now for flowcharts. There
has been work on recognizers that can operate on small sets
of training examples, and recognizers that adapt to user
correction. The approach described in this paper does not
achieve these goals. However, we have noted that our
graph optimization ultimately takes the form of the under-
lying recognizer, so a variant of this approach may eventu-
ally achieve this. In the meantime, we are happy with a
combination of efficiency and high accuracy.

From a recognition standpoint, we note that the system
relies on very few parameters. The only significant ones are
the maximum number of strokes in each character (in our
case 6), and a proximity threshold for building a neighbor-
hood graph. Furthermore, it relies entirely on the concise
cost function for its answer and so improvements in accu-
racy can be achieved through improvements of the cost
function and the underlying recognizer, without needing to
modify any of the rest of the algorithm.

The biggest limitation of the approach is on symbols that
are actually deformable templates. Real arrows in diagrams
need not be straight and can snake arbitrarily. We have not
evaluated our approach on deformable arrows for flow
charts, but we expect that it will be a challenge. We are
therefore interested in establishing a more formal relation-
ship between this work and ongoing work in so-called
structural recognition of sketches.

References

[HN04] HSE, H., AND NEWTON, A. R: Sketched
Symbol Recognition using Zernike Mo-
ments. International Conference on Pat-
tern Recognition, Aug. 2004, Cambridge,
UK.

[SVC04] SHILMAN , M., VIOLA, P., AND

CHELLAPILLA , K.: Recognition and Group-
ing of Handwritten Text in Diagrams and
Equations. IWFHR 2004, September.
2004, Tokyo, Japan

[CSK02] CALHOUN, C., STAHOVICH, T.F.,
KURTOGLU, T. AND KARA, L.B., Recogniz-
ing Multi-Stroke Symbols. 2002 AAAI
Spring Symposium - Sketch Understand-
ing, (Palo Alto CA, 2002), AAAI Press,
15-23.

[LM95] L ANDAY , J., AND MYERS, B. Interactive
Sketching for the Early Stages of User
Interface Design. Proc. of CHI '95: Hu-
man Factors in Computing Systems, Den-
ver, CO, May 1995, pp. 43-50.

[TSW90] TAPPERT, C., SUEN, C. , WAKAHARA , T.
The State of the Art in Online Handwrit-
ing Recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence
12(8): 787-808 (1990)

[MF01] MAHONEY, J., FROMHERZ, M. Interpreting
Sloppy Stick Figures by Graph Rectifica-
tion and Constraint-based Matching.
Fourth IAPR Int. Workshop on Graphics
Recognition, Kingston, Ontario, Canada,
Sept. 2001

[RN95] RUSSELL, S. AND NORVIG, P. Artificial
Intelligence: A Modern Approach. Pren-
tice Hall, 1995.

[SS98] R. SCHAPIRE, Y. SINGER. Improved Boost-
ing Algorithms using Confidence-Rated
Predictions. COLT 1998: 80-91

[Gross94] M. GROSS. Stretch-A-Sketch, a dynamic
diagrammer. IEEE Symposium on Visual
Languages (VL '94), 1994.

[VJ01] P. VIOLA, M. JONES. Robust Real-Time
Face Detection. ICCV 2001: 747

[AD01] ALVARADO, C., DAVIS, R. Preserving the
freedom of paper in a computer-based
sketch tool. Proceedings of HCI Interna-
tional, 2001

[VD04] VESELOVA, O. DAVIS, R. Perceptually
Based Learning of Shape Descriptions for
Sketch Recognition. The Nineteenth Na-
tional Conference on Artifical Intelligence
(AAAI-04), July 2004.

[KS04] KARA, L., STAHOVICH, T. Sim-U-Sketch:
A Sketch-Based Interface for Simulink,
AVI 2004, pp 354-357.

[FPJ02] FONSECA, M.J., PIMENTEL, C. AND JORGE,
J.A., CALI: An Online Scribble Recog-
nizer for Calligraphic Interfaces. 2002
AAAI Spring Symposium on Sketch Un-
derstanding, (Palo Alto CA, 2002), AAAI
Press, 51-58.

[Rub92] RUBINE, D.: Specifying Gestures by Ex-
ample. SIGGRAPH '91, 25 (4). 329-337

Michael Shilman, Paul Viola / Spatial Recognition and Grouping of Text and Graphics 95

