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Abstract
This paper proposes a method to simulate inextensible hair strands using tridiagonal matrix formulation in which
distance constraints are formulated as a linear system. The proposed method avoids constructing a full matrix
explicitly. Instead, it takes advantage of the chain topology and serial indexing to formulate symmetric tridiagonal
matrix. Furthermore, we use a linear distance constraint so that the constraint gradient can be easily formulated.
With this matrix-free formulation, memory usage can be extremely lowered. Since the formulated matrix is diag-
onally dominant, we can solve it by an efficient direct solver. Comparing error (i.e., stretch of constraints) of the
proposed constraint solver to ones of the position-based solver with different number of iterations, we show that
error of the proposed method is much smaller than those of position-based solver. Also the simulation result shows
mush less numerical damping compared to Dynamic Follow-The-Leader method. By implementing in GPU, we
demonstrate that our proposed method is simple and efficient.

Categories and Subject Descriptors (according to ACM CCS):
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—Animation I.6.8 [Simulation and Modeling]:
Types of Simulation—Animation I.6.8 [Simulation and Modeling]: Types of Simulation—Parallel

1. Introduction

Thanks to recent advancements in real-time rendering tech-
niques, an experience in a video game is getting more and
more realistic. However, it is still challenging to simulate
tens of thousands hair or fur in real-time. Especially user-
controllable game characters can get extremely large exter-
nal forces by sudden spinning or jumping and it can cause
visually disturbing elongation. Even with many iterations in
position-based method, it is hard to enforce distance con-
straints.

In this paper, we propose a method to simulate an in-
extensible hair strand using tridiagonal matrix formula-
tion (TMF). The proposed method can enforce almost zero
stretch with just two sequential sweeps on constraints, there-
fore the complexity of the algorithm is low compared to it-
erating over constraints multiple times using position-based
solver [MHHR07]. Also our method shows very low numer-
ical damping which is is a side effect of Dynamic Follow-
The-Leader method [MKC12].

In the following sections, we will first formulate a gen-

eral constraint linear equation. Second, we will look into a
special case of hair constraint and simplify the linear equa-
tion by carefully choosing a linear constraint and serial in-
dexing. By this, instead building a full matrix explicitly, we
can calculate non-zero coefficients directly from connected
constraints. Then we will show that a computationally in-
expensive direct solver is applicable for the linear system.
Although the proposed method formulates a linear system
and solves with a direct solver, the complexity of the pro-
posed algorithm is low. Thus, it is easy to implement. This
is one of the advantages we can get from the proposed for-
mulation. As a proof of it, we show a GPU implementation
of the algorithm.

2. Related Work

Several approaches have been studied to simulate inextensi-
ble hair, fur or ropes and stiff spring system was widely used
as in [RCT91, SLF08, CCK05].

Baraff and Witkin [BW98] proposed an implicit integra-
tion method to use large timesteps with stiff springs for cloth
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simulation. Implicit integration was later used in the case
of hair simulation [WL03, CCK05, CCK05]. Even with stiff
springs, it often requires a post-correctional process to limit
the stretching of springs [Pro96, BFA02].

Another approach is to use constraint mechanics to solve
for Lagrange multipliers to enforce inextensibility in the
global manner. House et al. [HDB96] used constrained dy-
namics simulation techniques for cloth. Goldenthal et al.
[GHF∗07] developed the Fast Projection method for cloth
simulation. Spillmann and Harders [SH10] applied the con-
straint mechanics to rope simulation. Generally this con-
straint dynamics requires to construct constraint gradient
matrix and a linear equation explicitly. To solve the linear
equation, usually an expensive pivoting-based direct solver
is used such as PARDISO [Sch06] solver.

Müller et al. [MHHR07] introduced a position-based dy-
namics (PBD) which solves the constraint dynamics prob-
lem in an iterative manner. The method is suitable for real-
time applications because of its simplicity and stability.
However, a drawback of the method is a poor convergence
inherited from Gauss-Seidel iterative solver. To improve the
convergence, a hierarchical solver is proposed in [Mül08].
This method uses low resolution representations of a cloth
to propagate the error correction over the cloth faster. How-
ever, it can produce artifacts if low resolution meshes are ill
shaped. Müller et al. [MKC12] exploits the chain structure of
a hair strand to achieve a fast convergence of position-based
solver. However, the method generates an undesirable arti-
ficial damping. Kim et al. [KCMF12] uses additional con-
straints to improve the convergence of position-based solver.
Han et al. [HH12] used the position-based solver for inexten-
sible hair in which they introduced local and global shape
constraints to simulate styled hairs and help the convergence
of distance constraints efficiently.

Our method formulates the hair simulation using con-
straint mechanics as in [GHF∗07]. However, we exploit
chain structure and serial indexing to formulate a tridiago-
nal matrix which can be solved by an efficient direct solver.
Out method is closely related to [MKC12] but addresses the
artificial damping problem.

Besides inextensibility, hair simulation needs bending and
twisting effects to represent various hair styles. Various ap-
proaches have been developed such as springs [CCK05,
SLF08, IMP∗13], constraints [HH12] and shape matching
[RKN10]. More information can be found in [WBK∗07].
Also hair-hair and hair-object collision handling [CCK05,
HMT01, MSW∗09] is an important part. Since this paper is
an extension of our previous hair research [HH12], we do
not cover hair styles and collisions.

3. Method

To simulate an inextensible hair strand, we model it as a hard
constraint problem. This section begins with the formulation
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Figure 1: Hair or fur chain structure. The first vertex (red)
has infinite mass.

of general constraint dynamics. Next, we look into chain
structure case and tridiagonal matrix formulation. Finally,
we show that a computationally inexpensive direct solver
can be used to solve the linear system.

3.1. General Formulation

Constraint C is a vector containing distance constraints be-
tween two connected vertices. ∇C is a constraint gradient
matrix which has m× n dimension (m is a number of con-
straints and n is a number of vertices). By taking up to
first order Taylor expansion, C(P + ∆P) can be expressed
as C(P+∆P) ≈ C(P)+∇C(P)∆P = 0 where P is a vector
storing all the vertex positions. Thus,

∇C(P)∆P =−C(P) (1)

By principal of virtual work of constraint force, position in-
crement ∆P can be formulated as

∆P =−h2M−1∇C(P)T
∆λ (2)

where ∆λ is increment of Lagrange multipliers, h is a
timestep and M−1 is an inverse of mass matrix.

From Eqn. 2 and Eqn. 1, we can obtain a linear system
and compute ∆P. ∆λ

′ is h2
∆λ.

∇C(P)M−1∇C(P)T
∆λ
′ = C(P). (3)

∆P =−M−1∇C(P)T
∆λ
′ (4)

Naïve implementation of Eqn. 3 is done by building a full
matrix, ∇C(P) and multiplying it with inverse of mass ma-
trix and transpose of ∇C(P). However, we can directly cal-
culate non-zero elements without building a full matrix as
shown in the following subsections.

3.2. Special Formulation for Chain Structure

For a chain structure such as hair, we can take advantage
of its linear topology and serial indexing to create a sym-
metric tridiagonal matrix formulation. In Fig. 1, vertices and
constraints are indexed in one direction in the serial manner.
Also in case of hair or fur, we choose the first vertex as an

c© The Eurographics Association 2013.

sbehnke
Schreibmaschinentext

sbehnke
Schreibmaschinentext
12

sbehnke
Schreibmaschinentext

sbehnke
Schreibmaschinentext

sbehnke
Schreibmaschinentext

sbehnke
Schreibmaschinentext



D. Han & T. Harada / Tridiagonal Matrix Formulation for Inextensible Hair Strand Simulation

attachment point and assign infinite mass.
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Eqn. 5 shows one equation from Eqn. 3 for a linear structure.
In case C0 or Cn−2, we can simply drop the term for ∆λ−1
or ∆λn−1. From Eqn. 5, it is clear that the linear equation
forms a symmetric and tridiagonal matrix. The first term for-
mulates subdiagonal, the middle one does diagonal and the
third one does superdiagonal.

∆pi =−
1
mi

(
−∂Ci−1

∂pi−1
∆λ
′
i−1 +

∂Ci

∂pi
∆λ
′
i

)
(6)

Eqn. 6 shows one equation from Eqn. 4.

3.3. Matrix-free Formulation

We define the constraint as Ci = ‖pi−pi+1‖ − ri, ri is a
rest length, and the constraint gradient can be defined as
∂Ci
∂pi

=− ∂Ci
∂pi+1

= pi−pi+1
‖pi−pi+1‖ = ni. To simplify the formulation,

we set zero inverse mass to the fixed vertices and one to the
free ones. It is actually not a matter to assign any mass value
as long as the all free vertices have the equal mass. We can
use other constraint definitions such as quadratic length but
we can get a benefit from our formulation because the con-
straint gradient becomes a normalized edge vector and the
coefficients of ∆λ

′
i become constant. Below is a simplified

equation from Eqn. 5 by using our constraint and mass defi-
nitions.

−ni−1ni∆λ
′
i−1 +2∆λ

′
i−nini+1∆λ

′
i+1 = (‖pi−pi+1‖− ri)

(7)
In hair or fur simulation, we define the first vertex is fixed
and other vertices are free. The first constraint equation can
be defined as ∆λ

′
0−n0n1∆λ

′
1 = (‖p0−p1‖− r0) by setting

1
m0

= 0. The last constraint equation is−nn−3nn−2∆λ
′
n−3 +

2∆λ
′
n−2 = (‖pn−2−pn−1‖− rn−2).

The matrix has a constant diagonal and is symmetric.
Therefore, the superdiagonal and subdiagonal are the same
and their element is basically the dot product of two adja-
cent normalized edge vectors. Therefore, we do not need to
construct a matrix explicitly and it is easy to calculate the
non-zero elements by simple dot products.

3.4. Solving Linear System

In Fig. 1, there are n− 1 equations and n− 1 unknowns.
This linear equations can be solved by any solver. For a cloth
simulation, we could use such as a general direct solver but

(a) (b)

Figure 2: Screenshots from hair strand simulations. Blue,
red, gray, green, and black strands are simulated using TMF,
DFTL and PBD with 2, 5, 40 iterations respectively.

the computational overhead is high compared to position-
based solver. This is one of the reasons why the position-
based solver is widely used in real-time applications.

However, the coefficient matrix for our problem is sparse
and only contains diagonal, subdiagonal and superdiagonal
elements as we have shown above. Furthermore, the matrix
is diagonally dominant because subdiagonal and superdiag-
onal elements are dot products of two unit vectors. For this
matrix, we can use tridiagonal matrix algorithm (Thomas al-
gorithm) which is a direct solver consists of a forward sweep

c′i =
ci

bi− c′i−1ai
(8)

d′i =
di−d′i−1ai

bi− c′i−1ai
(9)

and backward sweep

xi = d′i − c′ixi+1 (10)

where ai,bi,ci are subdiagonal, diagonal, superdiagonal ele-
ments [PTVF07].

This algorithm is suited for real-time purpose because it is
simple to implement, and it does not require any additional
memory storage. Therefore, it is even possible to implement
on the GPU as we are going to show later.

3.5. Update Positions

After solving the linear equations, we can get position cor-
rections from Eqn. 6. Here, we can also take advantage of the
simplicity of linear topology and our constraint definition as
below.

∆pi = ni−1∆λ
′
i−1−ni∆λ

′
i (11)

By this simple position update formulation, we can avoid
constructing a gradient matrix∇C(P) explicitly and solving
Eqn. 4.
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(a) (b) (c) (d) (e)

Figure 3: Trajectories of the hair strand simulations using (a) TMF, (b)DFTL and (b), (c), (d) PBD with 2, 5, 40 iterations,
respectively.

Figure 4: Comparison of stretch of the hair simulations.

TMF DFTL PBD(2) PBD(5) PBD(40)
0.067 0.000 31.62 15.38 2.26

Table 1: Maximum stretch (%) of the hair simulations.

3.6. Implementation

The proposed algorithm is implemented on the CPU and the
GPU. For the GPU implementation, OpenCL is used and
each work item calculates a hair strand, i.e., it builds the co-
efficients and updates all the vertices in the strand. Although
the computation of a single strand is serialized, we are still
able to exploit the entire GPU for a simulation where there
are a lot of strands as examples shown in Fig. 5 and 6.

4. Results

To evaluate the inextensibility of the method, a hair strand
with 51 vertices is simulated by the proposed method (TMF),
Dynamic Follow-The-Leader (DFTL) and position-based
solver with 2, 5 and 40 iterations for distance constraints.
The left most vertex at the beginning of the simulation is set
infinite mass to fix it. Simulation results are shown in Fig. 2
and trajectories for vertices in those simulations are shown in
Fig. 3 in which stretch of position based solver is apparent.
We measured the total length of the strand for the simulation
and compared the ratio of stretch to the original strand length
(Fig. 4). Even the solution of position-based solver with 40
iterations are stretching more than 2% at the first swing.
However, we can see from the graph that the stretch of the
proposed method is almost visually unnoticeable as DFTL.

Actually, the maximum stretch of the proposed method is
less than 0.1% (Table 1). DFTL shows the best inextensi-
bility but the difference between TMF and DFTL is almost
negligible.

We can also see from Fig. 3 that the hair strand simulated
with TMF reaches as high as PBD with 40 iterations after
a swing. This is because our method does not generate any
artificial damping and enforces the constraints tightly. This
is the biggest difference from the method by DFTL.

As for the computational cost, we cannot directly com-
pare the proposed method to position-based dynamics be-
cause the proposed method does not solve constraints in the
same way to position-based dynamics. However, our method
only iterates the constraints twice in the solve of linear equa-
tions. Iterating over constraints twice is almost equivalent to
using two iterations for position-based solver. Therefore, we
could say that the computational cost or complexity of the
proposed method is equivalent to position-based solver with
two iterations whose convergence is very poor as we show
in Fig. 4.

Regarding stability of TMF compared to DFTL or PBD,
it is less stable and dependent to relatively small timestep
due to the linearization of constraint system. It may be pos-
sible to formulate the ill matrix if the two adjacent edges are
perpendicular. However it is easy to find those cases and in
practical case, it does not happen much due to the bending
constraints.

Fig. 5 shows screenshots from a simulation using our
GPU implementation running on a Radeon HD 7970 GPU.
There are 100K hair strands and 600K simulated vertices
which are simulated and rendered at 60fps. There are dis-
tance constraints connecting adjacent two vertices which
are solved by the proposed method, and bending constraints
solved by position-based solver. In a step of the simulation,
external force is applied and positions are integrated to cal-
culate non-constrainted positions. Then it applies bending
constraints 8 times and distance constraints are solved once
by the tridiagonal matrix solver. Those are iterated twice in
a step. A solve of the tridiagonal matrix solver took 1.5ms
which is about 16% of the entire simulation time. As we it-
erate constraint solvers two times in a simulation step, 3ms is
spent to enforce distance constraints. As the computation of
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(a) (b) (c) (d)

Figure 5: Mushrooms with 100K hair strands simulated on the GPU.

the proposed method was fast enough, we did not optimize
the kernel further. However, we found out that the current
implementation uses a lot of registers which lowers the oc-
cupancy of the GPU. Offloading the register pressure using
other memories such as local data store is a future work. The
bottleneck of the simulation is solving bending constraints
using position-based solver which requires many iterations
to enforce a high bending resistance.

Computation time is linear to the number of constraints
in the scene. A scene with 200K hair strands is simulated as
shown in Fig. 6 which runs at 30fps.

5. Conclusion

This paper proposes a method to simulate inextensible hair
and fur using tridiagonal matrix formulation in which dis-
tance constraints are formulated as a linear system. Al-
though the proposed method constructs and solves linear
equations, it does not require to assemble a full matrix which
is beneficial for low memory usage and fast computation.
We propose a matrix-free formulation in which a few non-
zero elements are calculated directly from the topology of
constraints. Then we show that a computationally inexpen-
sive direct solver can be used to solve the linear equa-
tion. Comparing stretch of the proposed constraint solver
to the position-based solvers with different number of itera-
tions, we show that error from the proposed method is much
smaller than those from the position-based solvers and very
close to one from the Dynamic Follow-The-Leader method.

For future work, we are planning to extend this formula-
tion to higher dimensional manifolds such as cloth or soft
volume mesh by decomposing them into linear chain struc-
tures.
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