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Abstract

A method to simulate suture threads for a microsurgical training simulator is presented. An integration method
based on implicit integration is used in order to achieve the high stiffness of suture threads while still using a
large time step for keeping the real-time capabilities of the simulation. A key feature of the presented method is
the separation of the contact handling and the integration itself. This preserves the real time capability of the
simulation even in complex situations that involve many self collisions (e. g. tying knots). The stability and realism
of the model are demonstrated by simulating a reef knot, which is one way of tying and holding together two
simulated threads. The methods have been developed in cooperation with the VRmagic GmbH in Mannheim.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

Microsurgery is a method in which surgical interventions
are performed with high precision instruments while being
viewed through microscopes. Intensive training is required
to develop a high degree of hand dexterity and hand-eye co-
ordination while looking through a microscope, skills nec-
essary for microsurgery. A computer simulation offers op-
portunities for learning the required skills without the ne-
cessity of doing surgery on anaesthetized animals or letting
an untrained surgeon operate on a human patient. Suturing
of tissues and blood vessels is one part of microsurgical in-
tervention. A realistic simulation of the suture material, the
thread, is an important requirement. To create an ideal train-
ing situation, the simulation has to be accurate.

In this paper an approach to simulate a thread for suturing
based on the mass spring model is introduced. The high stiff-
ness of the thread poses a problem when traditional explicit
integrators are used. With explicit integration the timestep
with which the simulation is updated has to be inverse pro-
portional to the stiffness of the spring, increasing the com-
putational demands of the simulation. On the other hand im-
plicit integration is stable even for large time steps but re-
quires solving a linear system of size n, where n is the num-
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ber of mass points representing the thread. This is generally
not possible in O(n).

In this paper the resolution of interactions (e.g. thread-
thread collisions) between non-adjacent mass points is sepa-
rated from the integration itself. The integration thereby be-
comes a banded linear system solvable in O(n). Solving for
the contact forces at the collision points is then only a prob-
lem of size ¢ where c is the number of contact points. For
this, the interactions between contact points are derived from
the integration formulas of the integration method, allowing
to resolve the contacts in a similar way rigid body contact
resolution is normally done. This requires solving a linear
complementary problem (LCP).

Additionally, an approximation of the implicit integration
is given, simplifying the linear system to a tri-band Matrix.
The integration is based on a physical model and allows
modelling interactions by applying the corresponding forces.

The correctness of the system is demonstrated by simulat-
ing a reef knot, tying together two threads of similar diame-
ter.

2. Related work

Physically-based simulation and animation of deformable
objects is an important research area in computer graphics.
A good overview off the topic is given in [NMK*06].
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Most approaches for simulating rods, ropes or threads
are modeled representing its centerline as a chain of ver-
tices connected by line segments [ST07], [Pai02], [PK11],
[BWR*08]. The explicit representation of the centerline has
the advantage of simplifying geometric tests such as colli-
sion detection. On the other hand [CJY02] focuses on hair
interactions, modeling the hair strands as clusters linked by
bending springs. [LWL10] introduces a continuum mechan-
ics based thread which includes rotary inertia shear deforma-
tion and torsion. The model allows deformation of the cross
section, use of arbitrary cross sections and is realtime capa-
ble.

A very simple model for thread simulation called “Fol-
low the leader” is introduced in [BLMO04] and embedded in
a microsurgical simulator [BMcLS01]. All vertices follow
one vertex pulled by the user’s input. While the absence of a
physical model is apparent, this method allows tying com-
plex knots. Adding other physical effects such as gravity
or bending resistance is difficult in this model. Other com-
mon approaches for integrating and simulating rods, ropes
and threads include finite element [GPLOS], finite differ-
ence [Kla96] and mass spring models [ST07], [CCKOS5]. The
mass spring model has the advantage of being simple and
physically motivated. Physical motivated forces, such as the
pulling of the springs, are calculated and applied at the mass
points. The mass spring model is also the starting point for
this work.

Real world threads can be very stiff, making it neces-
sary to set the spring constants in the thread very high. For
the simulation to be stable the timestep squared must be in-
versely proportional to the stiffness, requiring a very small
timestep when using the mass spring method with an explicit
integration scheme. This increases the number of necessary
computations per frame decreasing the realtime capabilities
of the simulation. For example [STO7] uses a timestep of
0.1ms. The problem can be solved by applying an implicit
integration scheme, as proposed in [DSB99] and adapted
for the context of cloth simulation in [BW98]. [TGABO08]
proposes a deformable model for one-dimensional objects
based on elasticity and plasticity theories. The model allows
very accurate simulation even of stiff objects utilizing a fast
implicit integration method from [HMCO1]. However, colli-
sions and contacts are addressed with penalty forces which
are not accurate enough for a stable simulation of complex
contact situations such as knots.

Implicit integration schemes have the advantage of being
stable even for stiff spring forces and large timesteps. Unfor-
tunately implicit integration requires solving a linear system
of size n, where n is the number of mass points, in every
timestep. This is in general not possible in linear time limit-
ing the realtime capabilities of implicit integration.

The implicit integration couples all mass points of the
thread within one integration update. This means that con-
tact points distributed over the thread are also coupled.

A force applied to one contact distributes over the thread
and effects the situation at all other contacts. A similar
situation arises in the simulation of stacked rigid bodies;
[Cat05] suggests a Projected Gauss Seidel (PGS) solver.
This method is extended and improved in [SHNE10] intro-
ducing a Fletcher-Reeves type nonlinear nonsmooth conju-
gate gradient (NNCG). Both methods have the advantage of
benefiting from warmstarting where the solver is initialized
with an initial guess close to the correct result. Because the
situation does not greatly change between integration up-
dates, the result of the last simulation iteration poses a good
candidate for warmstarting.

3. Methods
3.1. Notation and representation of the thread

The thread is modeled with N € N mass points connected by
N — 1 springs. The i-th spring connects the i-th mass point
with the i+1 mass point. In the following, lower indices are
used to index the mass points and springs while in the case
of vector quantities the spatial dimensions are indexed by an
upper index. The mass points are located at the positions

(1) i= (! (t),xiz(t),x?(t))r, ic{l...N}

where ¢ denotes time. The mass of the mass points is denoted
by m;. The state of the threads (position of the mass points)
are updated at a time interval of Ar. The springs between the
mass points have a spring constant of k; and a rest length of
1;. Their direction is given by the tangents

- Xip1 —Xi

fi(t) = %

|xi+l - xi‘

The i-th spring applies a force of §,~(t) to the i-th mass point
and a force of —S;(¢) to the i+1 mass point where

Sit) ==ki- (Ripa (1) = %i(t) = ity (1)) -

To reduce the handling of special cases when deriving the
formulas, §,1 and §N are defined to be 0, allowing to treat
the mass points at the endings of the thread the same as all
other mass points.

3.2. Algorithm overview

Algorithm 1 states the method in pseudo code. The forces

Algorithm 1 Method overview
loop
Compute forces acting on mass points.
Detect collisions and contacts
Find contact forces resolving contacts
Integrate threads
end loop
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acting on the mass points are computed by collecting ex-
ternal and internal forces and by applying the integrator in-
troduced in section 3.3. Knowing these forces, contacts are
detected and resolved. The couplings between contacts are
found as explained in section 3.6.3 and the contact system is
solved using the Fletcher-Reeves type nonlinear non-smooth
conjugate gradient (NNCG) introduced in [SHNE10]. The
contact forces are applied and the threads are integrated with
the integrator from section 3.3.

3.3. Integration

The implicit integration introduced in this paper presumes an
integration rule for which there are (1) € R? and b;(r) € R
such that

AF(t) =%t + M) = %i(1) = G;(t) + bi(t) - Fi(1) (1)

at every timestep 7. F:(r) denotes the total force acting on the
i-th mass point at time ¢. Most integration procedures ful-
fill this requirement. To give an example, the semi-implicit
Euler integrator is given by
. . F(t
vi(t—f—At) = V,‘(l‘) =+ L)Al‘
i

Xi(t+ Ar) = Xi(t) + V(t + Ar) At
which sets @;(¢) and b;(1) to

(ar)?

mj;

ai(t) = vi(r)Ar bi(t) =

For reasons of readability ¢ will be omitted where the
meaning is clear, that is, without ambiguity. The forces op-
erating on the i-th mass point can be split between external
forces E; and the spring forces of the adjacent springs. In the
following, the external forces applied to a mass point will be
denoted by the letter £ while for the total force the letter F
will be used. Consequently for all i € {1...N}

Fi(t) = Ei(t) +Si(t) = $i-1(1). 2
In the next step the F;(¢) are replaced with
FMNo) = MRyt +40) = (1=WF(x()) - 3)

where A € [0, 1]. Note that for A = 0 does not lead to any
modification of the original integration procedure while for
A = 1 an implicit integration procedure is given.

x(t + At) is not known in advance and has to be solved for.
17‘,-7‘(1:) is therefore also not known, and will be approximated
by a Taylor expansion:

- o S OF(t
o)~ () +1 Y, 200
=1 %Xj

AX;

For this the derivatives of the components of Ij“ix(t) are
needed. S; depends only on X; and X;; and its derivatives
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are given by

3—; =- aj;jl =k [1=s;- (i75)] @)
with
b
Si = m

Assuming E; also depends only on neighboring mass points,
(1) and (3) can be combined to

DiAY; + O] %i41 +Of Ximy = i+ biF; )

where

1 ai; as"ifl(t) E)lf,
bi:=1 M’(az,-+ w_, oy

O = Ab; <a§,~ 9E; )

ox;  OXiq

- ) a§i_1 8172,
O =2bi <afi1 a afil)

This relation can be written in a linear system

MAZ =R

where A% is the vector of all A¥; and R € RN and M € R* x
R3N can be derived from (5). M is a banded matrix with 5
bands. This allows the system to be solved in linear time
using LU decomposition [Tho79].

Ensuring Stability: For the system to be stable, all eigen-
values of M have to be bigger than one. Consider the tangent
f;. It can happen, that <?,| 3;’:

]1 |f,> = 0. If the contribution

given by the derivative of E; also vanishes, this results in:
?|M|?> =14+ Mbiki(1—s;)

If this is smaller or equal to 1, there is an eigenvalue of M
which is also smaller or equal to 1. Therefore to ensure nu-
merical stability in all cases it has to be ensured that

14+Ab;+ki(1—s;) > 1+4¢

where € € R is a small number greater 0. This is done by
redefining

. l,’ € )
s;i:=min [ — —.1— . (6)
( [Xir1 — % Abiki

3.4. Simplified approach

If one assumes that the 7; do not change much within one
timestep, g—)’;’l can be set to zero. If the derivatives of the E;
are also scalar (diagonal with the same entry on all diagonal
elements), D;, O?‘ and O; also become scalar, reducing the
number of bands from 5 to 1. Because the LU decomposi-
tion has a complexity quadratic in the number of bands, this
significantly reduces the computational requirements of the
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integration. In addition the calculations for resolving con-
tacts done in section 3.6 require many multiplications and
inversions of these matrices. If the matrices are scalar they
can be represented as real numbers, reducing the number of
floating point operations from 27 to 1 for every matrix multi-
plication. While this approximation speeds up calculation, it
introduces an error illustrated in figure 1. The correct spring
forces are always linear to X;;| —X;. Their magnitude is pro-
portional to the distance between the current position of the
i+1 mass point and the position of the i+1 mass point where
the spring would be at rest. §'(t + Ar) does not consider the
updated rest position of the spring at time ¢ + Ar but takes the
old rest position from time ¢. The consequences of this error
will be discussed in section 4 and 5.

X; ('t) =X (t+At) ) Si (t)

S, (t+At

Xi4(t)
-.S] (t+At)

:

Xip(t+AL)

Figure 1: Error in §,~(t + At) made by the simplified ap-
proach. For illustration purposes, it is assumed that X;(t) =
Xi(t + Ar). The correct spring forces at both time t and t + At
are drawn in green while the approximated spring force
§'(t + At) is drawn in red. The rest length of the spring
along the corresponding tangent is draw in black for both
time points.

3.5. Constraining mass points to positions

When the thread is grasped by forceps or some other medical
instrument, it is assumed that the external force applied by
the instrument is always big enough to hold the mass point at
the position dictated by the user input. Assume the n-th mass
point is grabbed. The constraint is enforced by overwriting
by and d, with

b"(t):O ﬁ"(t)zfdest_x’"(t)

where X, is the position to which the mass point should be
constrained. This ensures that the mass point moves to X,
independent of any external applied forces.

3.6. Collision handling and response
3.6.1. Collision/Contact detection

The collision detection algorithm detects intersections be-
tween pairs of thread segments. The segments are repre-
sented as cylinders with a fixed radius. The minimal distance
between the centerlines of the cylinders is calculated and
tested against the sum of the radii of the two cylinders. If the
minimum distance is smaller than the sum of the radii, the
closest points on the centerlines are found and represented
by the index of the segments in the threads and the positions

ui, 42 € [0,1] on these segments such that the contact points
¢i, i=1{1,2} are given by

i = (1 — )%, + pix 41
where ¥, X}, are the positions of the adjacent mass points.
The separation vector is defined by
5= 62 — 61
5 is perpendicular to both colliding segments at the contact
point.

A contact is represented as a five-tupel (iy,ir,u1,u2,5)
where ij,i, are the indices of the colliding segments and
U1, o, s are as defined above.

3.6.2. Contact handling

All contacts are assumed to be inelastic. The contact han-
dling scheme applies forces that maintain non-penetration
constraints at all contact points. A contact potentially inter-
acts with two threads. In the following the quantities of the
second thread will be denoted with an apostrophe.

The force applied by a contact ¢ = (i1,ip,u1,12,5) is de-
noted by Ce. It results in the forces

AE; = —Ce-(1—p)  AE; 11 =—Cer @)

being applied to the adjacent mass points on the segment of
the first thread and the forces

AE[, =Ce-(1—m) AEj 1 =Ce (8)

being applied to the adjacent mass points on the segment
of the second thread. The forces are constant within one
timestep, which sets %% = 0. Momentum is preserved be-
cause these forces sum to zero. In accordance with this,
given the movement of the adjacent mass points, the relative

contact movement is
AXe = (1 =) - A%, +pp - AT, 4 )
—(1 —p1) - A%, — i A% 1.

The contact force E'C is split in the normal force, which
is responsible for maintaining the non-penetration condition
and the friction force. The normal force is directed in the
same direction as the separation distance § while the friction
force lies in the normal plane of 5. The contact c is resolved
when the following conditions are met:

e The relative contact movement X must resolve the pene-
tration.

o The total relative contact movement must either solve the
penetration exactly (no gap between the threads) or (if the
threads are pushed apart further) no normal force must be
applied at this contact (Ce=0).

e The friction force must point in the opposite direction of
the relative contact movements and its magnitude must
be smaller than the normal force times the coefficient of
friction.

(© The Eurographics Association 2011.
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e If the friction force is big enough to stop the relative
movement completely while still fulfilling the last condi-
tion (static friction) the resulting relative movement must
be zero.

An exact mathematical formulation of these conditions
can be found in [SHNE10] and [Cat05].

To solve the problem, the couplings between the contacts
(the relation between C, and AX.) have to be calculated.

3.6.3. Coupling of contacts

Having a set of contacts {c;}, a set of contact forces {C¢, }
must be found fulfilling the conditions from the last section.
It is necessary to calculate the change of AY; on one mass
point i when a contact force on a different mass point n is
applied. Seeing the AX; as a function of Ep, Sn,,- is defined
by:

Figure 2: An external force (blue arrow) results in displac-
ments of all mass points (green arrows).

Lemma 1: If an external force E, is applied to the n-th
mass point, the AX; changes by:

o -1
8n,n = [Dn +0rJlrM;+1 +0;M:[_1] bnEn (10)

8ui=M;8,;41 for i<n (11)
8pi=M; 8,; 1 for i>n (12)
where

—1
M= [DﬁOfM,iJ of

—1
— ) — R —
My :=-Dy'Oy M i=— [Di +0; MM} 0;
The proof of the lemma is given in the appendix. The cou-
pling G ; between mass-points i and j on the same thread is

defined by
8ji=GjiEj

which is a linear equation because equations (10) - (12) are
linear. Assume two contacts ¢ = (iy,ip,uy,12,5) and d =
(i, 5,44}, 445, 5") for which the coupling has to be found. The
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indices of the mass points coupling with a contact are paired
with the corresponding coupling quantity by defining:
P((i1,i2,11,12,5)) 1=
{6, L =), (1 + 1,m), (2,1 — o), (2 + L) }

Using this definition, the coupling G, . between ¢ and J

is given by
Gc,c/ = Z

(i,u)€P(c
(v)EP()

,Ll-V-G,‘_’j.

Comparison with (7) and (9) reveals that the coupling be-
tween two contacts is given by

MC’ = GL‘,L‘/ ‘6(;

Given M € N contacts {c;}, i =1...M, the corresponding
contact forces will be denoted by C'C,. The relative movement
of contacts before any contact forces have been applied will
be denoted by AXy .,. These movements originate from other
external forces and internal spring forces. The total relative
movement of contacts after contact forces have been applied
will be denoted by AX,,. The contact force vector is defined
by

- =T AT T
Cley = (ccl,ccz,...) . (13)

A vector for the relative movements before contact forces
have been applied is defined by:

T
- T T
Axov{ct} = <Ax0,t:] 7Ax0752, .. ) R

and also a vector for the relative movements after the contact
forces have been applied:

T
AT (o = (A AR, )

With matrix Q given by

Gerer Gere
Q:=|6Ge o Gerer

the relation between these quantities is given by
A¥(e} = 0~ Cay + A% (a) (14)

This relation has to be solved respecting the condition
given in previous section 3.6.2. It can be stated as a lin-
ear complementary problem (LCP) [Cat05] or as a nonlinear
complementary problem (NCP) [SHNE10]. The LCP prob-
lem has often been stated for rigid body contact handling
and is commonly solved with the projected Gauss Seidel al-
gorithm (PGS). [SHNE10] solves the NCP problem by ap-
plying a Fletcher-Reeves type nonlinear nonsmooth conju-
gate gradient (NNCG) type method. Both methods greatly
benefit from warmstarting where the result of the last update
step is used as an initial guess for the current update step.
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Both PGS and NNCG have been tested for the problem and
NNCG has been found to output better results in most cases.

Because the time available for an update interval is lim-
ited, the time requirements have to be limited. The stopping
criteria for the iterative solver has been chosen to a fixed
numbers of iterations. This has the advantage of making the
time consumption of the solver predictable, reducing varia-
tion in time consumption between update steps.

4. Results

All experiments have been done on an Intel(R) Core(TM)
i7 CPU with 3.07Ghz. Ubuntu 11.04 has been used as the
operating system.

Both approaches are stable even with a very high spring
constant k; and only one simulation update is done per
frame (At =~ 30ms for a simulation running at 30Hz). For
the simplified approach because of the approximation error
described in figure 1 a high k; leads to the thread behaving
like a rigid object. A force applied to one end of the thread
gets almost equally distributed among all mass points lead-
ing to a homogeneous movement of the whole thread. This
behavior is illustrated in the supplementary material. This
effect is reduced by decreasing Ar. The balancing between
these values has been done by visual inspection and testing.
A timestep of At = 5ms has been found to provide good vi-
sual results with a stiff thread. Additionally the effect can be
reduced by setting A < 1. For A < 0.5 the simulation gets
unstable. A value of A = 0.5 has therefore been chosen.

While for the normal approach a larger timestep still pro-
vides good visual results for the dynamic behavior of the
thread, a large timestep increases the risk of a collision be-
ing missed and the thread tunneling through itself or other
threads. For better comparison of the approaches a timestep
of At = 5ms has also been chosen for the normal approach.
The dynamic behaviour can be viewed in the video added
in the supplementary material which can also be down-
loaded at https://www. ziti.uni- heidel berg.de/icnm
de/forschung/microsimhtmn .

The contact constraint solver is set to a fixed numbers of
50 iterations per integration update.

4.1. Integrator

As mention in section 3.3 the implicit integration scheme
can be used with any integrator fulfilling (1).

An integrator storing the impulses of the mass points
would apply an impulse to contact points. This results in
the contacts being resolved and not re-detected in the next
frame which causes instabilities. This problem is addressed
in [SJTMOS8] with the predictor-corrector approach. Unfor-
tunately in case of a tight knot involving big forces, a large
time step can lead to the thread tunneling through itself. The

low mass integrator avoids this problem by not remembering
the impulse. It solves the differential equation

X =pF
where u is called the mobility. The ,uF" models friction in
a viscous fluid. The term mX is missing in this equation. If
4 is big in relation to the mass m, the term mx is small in
comparison to the other terms and can be omitted.

4.2. Tying a knot

The visual dynamic behavior and knot tying behavior of the
simulation is tested on the reef knot, which is a common
knot used to tie together two threads or ropes of equal diam-
eter. Figure 3 shows a loose configuration of the reef knot.
This is the starting point for the test simulation. The reef
knot involves two threads, which are color coded in figure 3.
To better visualize how the threads are simulated as discrete
segments, adjacent segments are colored differently leading
to two colors per thread.

Figure 3: Start configuration for knot tying simulation.

To tighten the knot, the first mass point of each thread is
fixed using the method described in section 3.5. The fixed
mass point of the red-green thread is then pulled to the left
putting the knot under stress. The knot fast converges to a
equilibrium situation holding the threads together. The situ-
ation is shown in figure 4.

@;

e,

Figure 4: Tying the knot.

Gravity is added to the system, pulling the threads down-
wards. The new configuration is shown in figure 5.

(© The Eurographics Association 2011.
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Figure 5: Adding gravity.

4.3. Contact constraint solver

The reef knot, as described in the last section, has been tied
and contact forces have been computed using the contact
constraint solver. This has been repeated over 90 integrations
steps. After the constraints have been solved, the error in the
computed forces has been measured by detecting how much
the total forces at the contacts differ from a force fulfilling
the criteria described in section 3.6.2. For the simulation to
be stable, it is important that the maximal force error is small
in every integration step. For this reason, the maximal force
error of all contact forces has been measured after every in-
tegration step and the mean over all 90 integration steps has
been calculated. This has been repeated with and without
warmstarting for different number of iterations.

0.1 ! . . : :
without warmstarting ———
with warmstarting -~
001 + ~© 1
ot
I
= SIS
z 0.001 ¢ ; I
5 1
5 0.0001 - } i
IS 1
1< |
& 1e-05 : 1
1e-06 1 ]
16-07 S N N S U S S S
20 40 60 80 100
# iteratons

Figure 6: Error in contact forces for different number of
constraint solver iterations.

The results for the described situation is shown in fig-
ure 6. These results vary depending on the configuration of
the threads. For this reason the choice of 50 iterations has
not been evaluated from figure 6 but by visual inspection
from various situations. The value of 50 iterations has al-
ways yielded satisfying results when warmstarting has been
enabled.

The results in figure 6 show an tremendous gain in pre-
cision by warmstarting. This effect is reduced when a more
dynamic situation is analyzed. But the higher precision at
resting situations is important because when the thread is at
rest, errors in its movement are much more visible to the
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user. Without warmstarting the reef knot contains vibrating
movements even when the number of iterations is set to 100.

4.4. Timings

The time complexity of both integration approaches are
O(n). Due to the more bands in the normal approach, it is
expected to perform worse by a constant factor than the sim-
plified approach. For the detection of collisions a spatial sub-
division technique known as spatial hashing [THM*03] has
been implemented which has a time complexity of O(n). The
complexity of the contact constraint solver is independent of
the number of mass points n, but depends on the number
of contacts c. The number of iterations is fixed at 50 and
therefore does not contribute to the complexity. For every
iteration, coupling between all pairs of contacts have to be
calculated setting the complexity to 0(c2).

Running time for different parts of the method are mea-
sured in the configuration described in the last section (the
reef knots). The number of mass points of each thread is set
to 50, 100 and 150 resulting in the total number of mass
points in the simulation being set to 100, 200 and 300. The
time needed for collision detections and both integration ap-
proaches is taken. The results are shown in table 1.

Collision

simplified
N detection (us)

Integration (us) | Integration (us)

100 126+ 15 5448 14+3
200 184 £22 110£20 27+5
300 265424 18040 40£9

Table 1: Timing for different number of nodes per threads
when tying a reef knot. The number of nodes is the sum of
nodes for both threads. N denotes the number of nodes.

The time needed for resolving contact constraints is not a
function of the number of mass points but of the number of
constraints and therefore not included in table 1. It is also ex-
pected to be higher for the normal approach than for the sim-
plified approach because calculating the coupling between
contacts involves a matrix multiplication while for the sim-
plified approach only a scalar multiplication is needed. Fig-
ure 7 shows the time the contact constraint solver took in de-
pendence on the number of contacts. During the simulation
of the reef knot in the last section, the number of contacts
always stayed below 25. The number of contact constraint
solving iterations is set to 50.

5. Discussion and Outlook

A novel method to simulate a stiff thread based on implicit
integration has been introduced. Because implicit integration
is unconditionally stable, the method allows the update inter-
val to be high, reducing the computational requirements of
the simulation. The integration method allows the time step
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Figure 7: Time for 50 iterations of contact resolution.

to be arbitrarily large. The computational demands of an im-
plicit integration scheme are handled by breaking the prob-
lem into two steps, the contact resulution and the main in-
tegration. The main integration step thereby becomes much
simpler to solve and the contact resolution is a small prob-
lem by itself. A simplification for the integration which, as
can be seen in table 1, is faster by about a factor of five, has
been pointed out in section 3.4. Unfortunately, with the sim-
plified approach large time steps in combination with a stiff
thread lead to the thread behaving like a rigid object due to
the approximation made during the integration.

In addition with a too large time step the risk of tunneling
increases. While this could be solved with continuous col-
lision detection, a time step of 5ms has been found not to
stress the computation time to much while not posing prob-
lems with tunneling. The normal approach has a tendency of
being more unstable when tightening knots. These instabili-
ties can be reduced by increasing € in (6). While this makes
the behavior of the normal approach more similar to the be-
havior of the simplified approach, an € can be found making
the simulation stable while still allowing the thread to be
very stiff.

The main bottleneck of the simulation is the contact con-
straint handling. Figure 7 shows, that for more than 35 con-
straints, the time needed for constraint solving gets danger-
ously close to 2ms. But for simulation of the reef knot the
number of constraints does not get above 25 keeping the time
needed for constraint solving below 1ms. While the reef knot
is already a complicated knot, care must be taken if more
complex knot are tied or several knots exist at the same time.

The time needed for contact resolution is quadratic based
on the number of contacts. It would therefore be beneficial to
divide the contacts into subsets of different knots assuming
the knots do not influence each other much. Also tied knots
could be identified as such and be simulated as rigid objects
coupling with the thread requiring no contact constraints to
be solved.
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Appendix A: Proof for Lemma 1

Proof: (12) is proved first by induction over i. For i < n the
right hand side in (5) is 0, so for i = 1 this means:

Dl—sn,l + 01+_Sn,2 =0
. ] - -
= 8,,’1 = 7D1 0?8,1,2 = MfLSnQ

Doing the induction step from i — i+ 1 we again know from

(5)
Didyi+ 07 8,141+ 0; 8,521 =0
= Didyi+0; 81 +0; Mi"18,;-1 =0
. 3 -1 . .
= O,i=—|Di+0; M;r_l} Of 8y i1 =M; 8,111

where the induction hypotheses has been used in the second
line. The proof for (11) works analogous.

For (10) we start again from (5), where the right hand side
now is b;AEy:

Dn_sn,n + O:Sn,nJrl + On__sn.nfl = bnAEn
= Dn_sn,n + OrTMn_Jrl_sn,n + On_M:,r_]_Sn,n = bnAEn

. -1
= Sun= Dn+0;M;H+0;Mntl] boAE, O
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