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Abstract
Needle insertion is a common practice used in many different medical procedures. Therefore, simulation of needle
insertion is of great importance for multiple purposes such as training, planning and robotic assisted interventions.
Modeling of soft tissue plays an important role in the needle insertion simulation, but the use of mesh based
methods such as the Finite Element Method is frustrated by the need for remeshing in the neighbourhood of the
needle tip. We have developed a novel method that uses meshfree methods for the tissue deformation model. In
this method new tissue nodes are added on the needle shaft as the needle is inserted into the tissue. We have used
a stack based approach to keep the state of the model; therefore, we have avoided over-sampling the model due
to continuous needle insertion and extraction. Using this approach we have simulated the insertion of a straight
rigid needle into soft tissue. In addition, we have utilized Nvidia’s CUDA technology to accelerate the methods
used in our framework. Our framework allows dynamic resampling and addition of new nodes while using CUDA.
Our results show the usability and flexibility of the new method. By using the CUDA technology we were able to
achieve up to 20 times speed for large meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Virtual reality I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors

Keywords: Needle Insertion Simulation, Deformable Object Modeling, CUDA, GPGPU

1. Introduction

Simulation of needle insertion is an important research area
that has many applications in robotic and image guided
operations such as brachytherapy cancer treatment, biopsies,
neurosurgery and injections [APM07]. The success of these
operations depends on the accuracy of reaching the target by
the needle; however, in most cases the deflection of the nee-
dle, deformation of the soft tissue, imaging limitations and
human error result in poor accuracy [APM07, RNM∗97].
Modeling of soft tissue plays an important role in robotic
needle insertion [DS02, DS03] and it is also essential
for needle insertion planing and simulation [CAR∗09].
Simulation of needle insertion is known to be challenging
because of the disagreement in discretizations between
needle and soft tissue. We will show here how our particle
based framework can be an intuitive and efficient approach
to simplify the discretization aspect on the tissue.

Modeling deformable objects such as soft tissue is still
computationally expensive; however, most of the related
calculations can be performed faster if they are executed in
parallel. In [SE10] a framework was developed that utilized
NVIDIA’s CUDA technology [CUD10] to accelerate
several classical methods in deformable object modeling by
transferring their core computations to the GPU. Moreover,
a new method called Local Shape Matching [SE10] was in-
troduced based on the Shape Matching method [MHTG05].

1.1. Our Contributions

The main contributions of our work on needle insertion sim-
ulation are:

An algorithm that uses meshfree methods for modeling
soft tissue.
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A resampling approach based on the Shape Matching ap-
plicable to meshfree methods.

A stack-based handling of resampling that avoids over-
sampling during needle insertion/extraction.

Parallel implementation on the GPU while dynamic re-
sampling is allowed.

In the next section we will review the literature on nee-
dle insertion simulation. In section 4 we outline the GPU-
accelerated framework used in our needle insertion simu-
lation. Then we introduce our new method developed for
needle insertion simulation. Our results are provided in sec-
tion 6. Finally, we will conclude and provide our directions
for future research.

2. Related Work

Simulation of needle insertion in soft tissue is a very chal-
lenging application of deformable objet modeling, since spe-
cial algorithms should be used to enforce the boundary con-
ditions between needle and tissue. In this section we review
different methods used to simulate needle and tissue interac-
tion and the methods used to simulate the deformation.

2.1. Needle Tissue Interaction

Modeling the interaction forces between needle and tissue
is very important in simulation of needle insertion. It affects
tissue and needle deformation, trajectory of needle inside is-
sue and the feedback force generated for simulation or con-
trol. It is known that before the puncture, the tissue applies a
greater force on the needle because it is interacting with the
membrane. After the puncturing, the tissue exerts a steady
force due to friction and cutting which is less than maxi-
mum force at puncture. During extraction a negative force is
applied to the needle due to friction only. In order to achieve
similar behavior Simone et. al. [SO02] proposed a model in
which the process is divided into two steps. Pre-puncture and
post-puncture. In pre-puncture, the force increases steadily
which is followed by a sharp drop in the amount of force
due to puncturing of the surface of the tissue. During post-
puncture, the amount of force depends on friction, cutting
and collision with interior structures.
Crouch et. al. [CSWO05] further studied the dynamic ef-
fects such as relaxation on needle insertion. They recorded
the position of the needle tip and the tissue needle forces
during insertion and they repeated this experiment with dif-
ferent insertion velocities. They concluded that the tissue
deformation and needle forces are time and velocity depen-
dent. They also observed a gradual reduction in force after
the needle halted. Recently Chentanez et. al. [CAR∗09] used
a stick-slip model of the friction between the tissue and the
needle shaft. In static friction state the needle and the tis-
sue move in lock step; in dynamic friction state they slide
against each other. They derived and numerically solved the
coupled equations of needle and tissue in both static and fric-
tion states.

2.2. Soft Tissue Modeling

Modeling of tissue deformation can become very com-
plex since tissues are usually inhomogeneous, nonlinear,
anisotropic, elastic, and exhibit the viscous behavior. Mass-
spring and linear explicit finite element models are the most
widely used methods for modeling tissue deformations.
Zhu et. al. [ZMRK07] used a localized mass-spring model to
simulate needle tissue interaction. They assumed that needle
only causes deformation in the region local to the insertion
path. Therefore, once the needle is inside, a cylindrical de-
forming field centered at the predicted insertion path (i.e.,
the current direction of the needle) is created in the form
of a tetrahedral mesh. In order to ensure that during the in-
sertion a mesh node is always constrained at the tip and all
penetrated nodes are constrained to only move along the nee-
dle shaft, they used a first-in-last-out stack, to store the shaft
nodes.
DiMaio and Salcudean [DS02, DS03, DS05] used the Fi-
nite Element Method to model soft tissue deformation for
their realtime haptic simulation system. Their system al-
lowed the users to experience both visual and kinesthetic
feedback while executing a virtual planar needle insertion.
In [DS02,DS03] they described a method for estimating nee-
dle shaft forces that occur during insertions into tissue phan-
toms, based on empirical results. They applied estimated
constant needle shaft force distribution based on penetration
depth to nodes that are in contact with the needle. Therefore,
they were able to simulate needle penetration with a constant
speed in a predefined path in two dimensions. In [DS05] they
developed a method to simulate insertion of a flexible nee-
dle in soft tissue using FEM. In their approach they applied
the force boundary conditions only to the nodes in direct
contact with the needle shaft, and deformation was calcu-
lated only for those working nodes. Displacement boundary
conditions in this simulation constrained tissue nodes to the
needle geometry and varied for rigid and flexible needles in
their model. Displacement boundary conditions for a flex-
ible needle and force boundary conditions were calculated
from physical experiments. This was completed to include
arbitrary 3d meshes in [GSD∗05]. In [DGM∗09], the inter-
actions between soft tissues and needle are modeled using a
set of soft constraints, eliminating the need for remeshing the
soft tissue. They introduce corrective forces to constrain the
tissue nodes to the needle. Additional constrains are added to
the system to model other tissue properties such as puncture.

2.3. Remeshing During Needle Insertion

In the Finite Element Method, the boundary condition can
only be applied at nodes. On the other hand, during insertion
of the needle, it can generally penetrate inside an element.
Therefore, a major issue in modeling needle insertion using
Finite Element Method is the necessity to perform a remesh-
ing on the mesh to make sure that the needle tip is always
aligned with a node inside the tissue.
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The simplest form of enforcing the boundary condition is
achieved by Snapping a node to the needle trajectory. How-
ever, this method applies artificial deformations. A more so-
phisticated method is to increase the resolution of the tis-
sue mesh around the needle by subdividing the elements to
smaller elements. The subdivision could be done uniformly
by dividing elements with a predetermined proportions; an-
other approach is to subdivide the element such that the
newly added node coincides with the needle trajectory. Even
with progressive subdividing, it is not guaranteed to have the
needle tip conform with the needle shaft. Therefore, after
certain steps either a snapping is applied or the closest nodes
are constrained to needle. Nienhuys et. al. [NvdS03] used
a nonconforming scheme, that avoided snapping the nodes.
After a few subdivision of tissue mesh around the needle in-
stead of snapping the nodes, the friction were are adjusted
based on geometry.
Instead of remeshing on the deformed mesh, remeshing can
be done on the reference undeformed mesh (material space)
such that the mesh is aligned with the needle. Therefore, the
node can be constrained to the needle shaft with fewer arti-
ficial deformation. During this operation both the mesh and
the stiffness matrix of the elements that are adjacent to the
moving node should be updated [DS05].
Chentanez et. al. [CAR∗09] used combination of operations
in the material space to achieve high quality meshes after
remeshing. These operations included node snapping, edge
splitting, face splitting, and the tetrahedron splitting.

3. Local Shape Matching Method

We have extended the concept of clusters in the Shape
Matching method, such that a cluster is defined for each
point. An overview of this approach is shown in Figure 1. At
the beginning of the simulation for each node i the center of
mass C0

i is calculated for that node and its neighbours; also
the vector νi from the center of mass to each node is stored.
At each iteration of the simulation, rotation should be ex-
tracted from the deformation. The rotation is approximated
using the least square optimization explained in [MHTG05].
As shown in Figure 1(c), extracting the rotation is equiva-
lent to rotating the coordinate system in reverse xR = R−1x.
For each node i in the new rotated coordinate system, the
goal position is located at gR

i = νi+CR
i where CR

i is the new
center of mass of node i and its neighbours in the rotated
coordinate system. Once the goal position are found in the
new coordinate system, the goal positions are transformed to
the original coordinate system gi =RgR

i . Instead of using the
integration schema proposed by Müller et.al., we introduce
a restoring force from the current position to the calculated
goal position:

fsi = ks(gi − xi) (1)

Using this approach will allow us to use the standard inte-
gration methods used for other methods. It turns out that we

don’t have to transform all the nodes to the rotated coordi-
nate system. The same results can be achieved if we only
rotate νi. An overview of our algorithm is given in Algo-
rithm 1.

Algorithm 1 Our Local Shape Matching algorithm
{Initialization}
for all nodes i do

C0
i =

1
N ∑ j∈N (xi) x0

j
νi = x0

i −C0
i

end for
{At each iteration}
Approximate the rotation → R.
for all nodes i do

Ci =
1
N ∑ j∈N (xi) x j

gi = Ci +Rνi
fi = ks(gi − xi)

end for
{Explicit integration}
for all nodes i do

ẋi ← ẋi +�tfi/mi
xi ← xi +�tẋi

end for

4. Our CUDA Accelerated Framework for Deformable
Object Modeling

In [SE10] a framework was developed for animating de-
formable objects using different particle based methods.
The framework efficiently take advantage used parallel pro-
cessing power of GPU using CUDA technology. In addi-
tion to the Local Shape Matching Method(LSHM) method
mentioned in the previous section, we have implemented
weighted Mass-Spring system (MSM), Debunne’s meshfree
Finite Element method (DEB) [DDBC99] and Point Based
Animation (PBA) method described in [MKN∗04].
In this framework, for each node a set of arrays are generated
to store variables associated with the simulation. These vari-
able are stored for all nodes and include position, velocity,
elastic force, list of neighbours and weight of each neigh-
bour. Other than these variable there are some variables that
are specific to each method and should be declared sepa-
rately. These arrays generally keep the information regarding
to the shape of each object. In this paper the arrays specific
to each method are known as Shape Information arrays. All
arrays are created and initialized at the beginning of simula-
tion on the host CPU and copied into GPU device. However,
during simulation only positions and velocities are sent back
and forth between host and device. Positions and velocities
are transferred to host for collision detection, the corrected
values are sent back to GPU for next iteration.
Table 1 shows the proprieties of each variable that is cre-
ated on the GPU. Velocity, position and force are of fac-
tor 4 instead of 3. The reason is that in our CUDA ker-
nel we use float4 since CUDA is not optimized for access
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Figure 1: Local Shape Matching. (a) Node xi and its neighbours at the beginning of the simulation. C0
i is the center of mass

node i and its neighbours, νi = x0
i −C0

i (b) Node xi and its neighbours after deformation. (c) The rotation is extracted by
rotating the coordinate system. Then the goal position is calculated at the rotated coordinate system; it is located at the same
vector position from the center of the mass gR

i = νi +CR
i . (d) Goal positions are rotated back to the original coordinate system

and a force is applied in the direction of xi − gR
i .

Table 1: Data arrays and their sizes

Array Name Type Size GPU Memory Transfer
Position float4 4× n_Nodes Global Each Iteration
Velocity float4 4× n_Nodes Global At Initialization
Force float4 4× n_Nodes Global Each Iteration
Neighbours int n_Neighbours× n_Nodes Texture At Initialization
Nei_Weights float n_Neighbours× n_Nodes Texture At Initialization

Method Specific
node distances (MSM) float n_Neighbours× n_Nodes Texture At Initialization
νi (LSHM) float4 4× n_Nodes Texture At Initialization
Original Positions (DEB,PBA) float4 4× n_Nodes Texture At Initialization
M−1 (PBA) float 9× n_Nodes Texture At Initialization

of type float3. The Neighbours array keeps the index of
n_Neighbours closest nodes to each node and effect of each
neighbour is weighted according a weight function. We have
used two kernel function in our simulation. The first kernel
calculates the forces(or accelerations) and the second kernel
is used for explicit integration.

5. Description of Meshfree Needle Insertion Method

We have developed an algorithm to use meshfree methods
for needle insertion simulation. Our main contribution is that
instead of remeshing or snapping the nodes, we add nodes to
the system. Adding a node is done in such a way that it does
not impose any artificial strain in the tissue. We have used the
GPU based framework introduced in the previous section to
accelerate the simulation. In this section we explain the addi-
tions that enables us to simulate needle insertion. While we
have used the concept of Shape Vector explained in section 3
for the purpose of resampling, the developed algorithm can
be applied to any meshfree approach as explained in this sec-
tion.

5.1. Adding a Node

In FEM the tissue is remeshed at the needle tip as the nee-
dle is inserted. Instead of remeshing, we add nodes to the
system as the needle is inserted. A node is added and placed
at the needle tip if the distance between the needle tip and
the last added node is greater than a threshold. When a new
node is added to the mesh, a corresponding node should be
added to the reference mesh (material space). It is not al-
ways straightforward to find a mapping between the mate-
rial space and the world space. If a tetrahedral mesh is used
barycentric coordinates can be used to find this mapping as
it is done in [WRK∗10].
In our meshfree framework we have used the shape vector ν
introduced in Local Shape Matching (section 3) to approxi-
mate this mapping. This operation involves a few a steps:

1. Update the list of neighbours and weights:
Once the new node is added to the mesh in the world
space, we calculate the distance of the new node to all
other nodes and pick the n = num_neighbours closest
nodes as its neighbours. If i is the new node, its neigh-
bours are shown by N (xi) and rth neighbour of i is shown
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by Nr(xi) and its corresponding weights is shown by
Wr(xi). The neighbourhood relationship should be mu-
tual to preserve the third law of Newton (action equals re-
action); therefore, i should be a neighbour of all nodes in
N (x j) as well, where j ∈N (xi). Suppose we want to add
i to the list of neighbours of node j. In the list of neigh-
bours of j we look for a node with zero weight.† Suppose
there is such a node and that node is the rth neighbour of
j (which means Wr(x j) = 0). We place i at the empty
position of r: Nr(x j)← i and Wr(x j)← wi j.
If all weights associated with node j are nonzero we add i
to the last place in the list of neighbours of j: Nn(x j)← i
and Wn(x j) ← wi j. However, since we are dropping a
neighbour from j we have to break the corresponding re-
lationship. If before updating the last neighbour of j it
was pointing to node k, we search for j in N (xk). If j is
the sth neighbour of k ( j = Ns(xk)) we assign its corre-
sponding weight to zero: Ns(xk)← 0.

2. Calculate the shape vector ν for the newly added node:
The shape vector νi is the vector from the center of the
mass of the neighbourhood of node i to the node i itself.
In the world space we find the center of mass of the neigh-
bourhood: Ci = (1/n)∑ j∈N (xi) x j then we find the shape
vector. The object might be rotated then vector from the
center of the mass to the node i is in fact the rotated shape
vector: νR

i ← xi−Ci. After approximation of the rotation
we obtain the shape vector: νi ← R−1νR

i .
3. Find the position of the new node in the reference

mesh: After calculating the shape vector we approxi-
mate the position of the new added node in the reference
mesh by: x0

i ← C0
i + νi where C0

i = (1/n)∑ j∈N (x0
i )

x0
j .

This approximation produces no artificial deformation in
LSHM but it might cause a small non-existent deforma-
tion in other methods.

4. Calculate the shape information for the newly added
node and update the shape info for its neighbours:
Now that the we have placed the new node in the ma-
terial space we have to find the shape information spe-
cific to each method. During updating list of neighbours
and weights, some neighbourhood relationships might be
broken. Therefore, it is necessary to update the shape info
for all other nodes that might be affected. In general the
new node, its neighbours and neighbours of neighbours
could be affected.

5.2. Deleting a node

When the needle is inserted new nodes are added and they
are attached to the needle like beads. When the needle is

† We might have zero weights since we first form the list of neigh-
bours by finding the closest neighbours of each node. Then we per-
form a one to one comparison to make sure that the neighbourhood
relationship is mutual. This ensures that nodes apply equal forces to
each other (action equals reaction). If we find a non-mutual neigh-
bourhood relationship, we assign zero to weight of that neighbour

pulled out the new nodes that are added should be deleted
as the needle is withdrawn. Thus we create stacks of arrays
of neighbours list, neighbour weights and shape info. Fig-
ure 2 shows a representation of these stacks. Before a new
node is added these arrays are pushed into their correspond-
ing stacks and after a node is deleted they are popped back.
This ensures that we don’t impose any modification or com-
plexity to the model.

5.3. Needle Boundary Conditions

We use the stick-slip friction model [Kar85] by consider-
ing two friction states. Each node can be in the stick or slip
mode independently from other nodes. In the stick state the
node moves with the needle and the static friction governs
between the needle and that node. If the magnitude of the
part of the elastic tissue force on node i which is projected
on the needle shaft ‖fp

i ‖ is greater than the static friction
threshold we change the state of that node to slip in which
dynamic friction applies.
A node which is bound to the needle should always lie on
the needle. To apply the needle boundary condition in the
dynamic friction state, we first move the node to the clos-
est point on the needle, then we apply the dynamic fric-
tion force. The closest point on the needle is found by pro-
jecting the position of the node on the needle. Crouch et.
al. [CSWO05] demonstrated that friction forces are velocity
dependent. In addition a tissue that is under deformation will
generate a greater friction force on the needle and vice versa.
In order to model the layer forces we use the Coulomb fric-
tion model which states that the friction is proportional to
the normal force. To include all these states we declare the
dynamic friction force on node i, f d f

i as follows:

fd f
i = kv f v

p
i + kd f sign(vp

needle − vp
i )‖fNi ‖b̂t (2)

where kv f is the velocity friction coefficient and kd f is the
dynamic friction coefficient. vp

i is the velocity of the node
i projected on the needle, vp

needle is the velocity of the nee-
dle at the position of the node projected on the needle shaft.
‖fNi ‖ is the magnitude of the part of the elastic tissue force
on node i which is normal to the needle shaft and b̂t is the
normal vector in the direction of needle base to needle tip.
The projection vector is found by a dot product. The projec-
tion of the elastic force exerted on node i is equal to:

fp
i = (fi · b̂t)b̂t (3)

and the remaining part will be perpendicular to the needle:

fNi = fi − fp
i (4)

5.4. The Complete Model

In the previous section we explained the elements used in our
method. In this section we put all the elements together and
explain the overall process in detail. We have to mention that
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Figure 2: Stacks are used for node deletion

Figure 3: Needle Tissue Friction Model. (a) Static friction: the node i moves along with the needle. If ‖ f p
i ‖ is greater than the

static friction direction we change the state of that node to dynamic (b) Dynamic friction: The node i is projected on the needle
and the dynamic friction force f d f

i is applied. The dynamic friction force depends on the velocity of the needle and elastic tissue
force on the direction of the needle normal vector.

although we have used meshfree methods to simulate the tis-
sue, we use a triangular mesh to create the enclosing surface
of the model. Using this method we can use the fixed func-
tionality of the graphics hardware for rendering. It also helps
us to develop an effective algorithm for puncture simulation.
We have assumed that the needle and the tissue can be in
three different states: Outside, Touching and Inside.

5.4.1. Needle in Outside State

When the needle is Outside it has no interaction with the
tissue. To detect a collision between the needle tip and the
mesh, we project the needle tip to all planes and if it is close
enough to a triangle plane, we project the needle tip to see
if it lies inside that triangle [Eri04]. If a collision is detected
between the needle tip and the tissue surface a node called
Surface node is added to the tissue nodes and placed at the
needle tip. We also delete the triangle that collided with nee-
dle and replace it with 3 triangles created by nodes of the
deleted triangle and the Surface node. From now on the nee-
dle tip is in Touching state.

Needle in Touching State

Once the needle is in the touching state with the needle, we
attach the Surface node to the needle like the static friction
state. As we explained in the previous section, we have re-
placed a triangle with 3 new ones. Edges of the new trian-
gles form three angles with the needle itself shown by α1,
α2 and α3 in Figure 4. We take the average of these 3 angles
if the average is greater than a certain threshold (eg. 95◦) we
change the state to Outside, delete the surface node and re-
place the 3 newly added triangles with the original one.
If the average of the angles is less than a threshold (eg. 80◦)
it means that puncture has occurred. Then we change the
state to Inside and immediately add another node called Tip
node. We also change the friction state of the Surface node
to dynamic friction state.

5.4.2. Needle in Inside State

When the needle is inside the tissue boundary conditions
mentioned in section 5.3 are applied. At each iteration we
update all nodes including the Surface node but the Tip node
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Figure 4: Needle Puncture and Extraction Condition Check-
ing.

is a special case. We always measure the distance between
the Tip node and the node before it (which is always the last
added node), if the needle is pulled out this distance becomes
negative at some point(the positive direction is in from nee-
dle base to its tip) in which case we delete the last added
node (section 5.2). If the needle is inserted and the distance
between needle tip and the last added node becomes greater
than a threshold we add another node at needle tip node (sec-
tion 5.1). Figure 6 shows different steps of inserting a needle
into the tissue in our simulator.
The neighbours list and weights for the Tip node is gener-
ated as soon as the tissue surface is punctured but it can
penetrate deep into the tissue. Therefore, we have to update
the neighbours list and neighbours weight for it regularly.
One option is to update that neighbours for the Tip node as
soon as adding or deleting a node. In practice we do this
update more often. We update the neighbours list and their
weights, if the distance of the needle tip to the last added
node changes more than a threshold. The threshold that we
considered was 1/10th of the node adding threshold. There-
fore, during insertion the tip node is updated 10 times before
a new node is added.

5.4.3. Data Structure

In order to be able to simulate the needle insertion with the
framework that was introduced in section 4, we needed to
do some modifications to the data structure. Suppose there
are N_mesh nodes in the original tissue mesh. Instead of
creating the arrays for N_mesh nodes, we create the ar-
rays for N_mesh+N_needle nodes. Where N_needle is the
maximum number of nodes that can be added as needle
nodes. This value should be sufficiently large to accommo-
date for the state which the needle is fully inserted into the

tissue. However, a very large value will result in waste of
resources. At each iteration, the simulation is only done for
N_mesh +N_needle_active where N_needle_active is the
number of nodes added as the needle nodes including the
Tip node and the Surface node. Since boundary conditions
are enforced on the CPU side, we have to transfer the cal-
culated elastic force from the device to host and transfer the
dynamic friction force from host to device. However, these
arrays are transferred back and forth for the needle nodes
only.

6. Results

In our framework, Wavefront .obj format is used to import
triangular meshes. In order to compare the deformation
using different methods, we have inserted a needle into a
cube mesh with 639 nodes. In Figure 7 screen shots for
needle insertion is given for four different methods used in
our framework. For all 4 simulations we first inserted the
needle by moving it 15cm to the right in the x axis direction;
then we rotated the needle along the z axis by 25◦.
In general the weighted Mass Spring system is able handle
a limited range of deformations and needle movements
and results in a visually good response. However for very
sudden large movements it results in stability. The stability
is very good under LSHM and almost no kind of defor-
mations causes numerical breakdown; however, its lack of
volume preservation is evident on those circumstances. The
Debunne method gives the most naturally looking result
however the range of deformations that it can endure without
getting unstable is far less than LSHM. Although PBA is the
most computationally expensive method in our framework
it does not give the best results. A similar result is obtained
in [GBB09] for large elastic deformation. When there is
large elastic deformations, using Moving Least Square
for approximation results in ill-conditioned deformation
gradient and thereby destabilizes the simulation.

6.1. Performance

In order to compare the performance of different methods
together and examine effect of CUDA we ran the simulation
on cube meshes with different resolutions. We ran the
simulation on a PC with Intel(R) Core 2 Quad 2.4Ghz CPU
with 4GB of RAM and graphics processing unit of Nvidia
GTX 8800 with 128 CUDA cores and 768MB of memory.
We measured the calculation time for single core CPU, 4
core CPU and CUDA.
In Figure 5 the calculation time is compared for different
implementations. We have used logarithmic scale to better
observe the differences. The simulation is repeated for all
four methods for different mesh sizes (639, 2207, 3232,
5567 and 10932 nodes) and the average calculation time
is given in milliseconds when running the algorithm on a
single core of CPU, on 4 cores of CPU and on the GPU.
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(a) (b)

(c) (d)

Figure 5: Comparison of calculation time for different methods when 16 neighbours were considered. (a) Mass-Spring Method.
(b) Local Shame Matching. (c) Discretized Finite Element method (Debunne). (d) Point Based Animation.

Using all 4 cores of the CPU we were able to accelerate
the simulation almost three times. The nodes added during
insertion didn’t have a significant impact on the calculation
time since the needle nodes are far less than the total number
of nodes. Although, additional data is sent back and forth
between host and the GPU, however that does not cause
any noticeable increase since we only transfer the required
information for the needle nodes instead of all nodes.

7. Conclusion

A new algorithm was developed using meshfree (non-grid)
methods for simulation of needle insertion into soft tissue. It
was shown that meshfree methods have better flexibility for
needle insertion simulation. By adding nodes, we eliminated
the need for remeshing the tissue around the needle tip. We
also enforced the boundary conditions by defining static and
dynamic friction forces. A dynamic friction model was de-
veloped that took both the velocity of the needle and defor-
mation of the tissue into consideration and therefore resulted
in a more realistic simulation. Our results overview the bene-
fits and drawbacks of each method. Although LSHM did not

provide the most accurate result it was stable for a wide va-
riety of the needle movements. Therefore it is a good choice
for a training software in which the user has the freedom
to move the needle around. When accuracy is required, the
Debunne method is a better choice – but needle movement
should be restrained.
We have implemented the needle insertion algorithm in our
CUDA based framework and therefore we were able to ac-
celerate the simulation to 20 times when using large meshes.
In the future we intend to extend our algorithm to be able
to simulate flexible needles. This will be achieved by mod-
eling the curved needle as a set of small rigid needles. Sim-
ulation of a flexible needle enables us to simulate a wider
range of procedures such as insertion of a ventricular shunt
commonly used to treat hydrocephalus. On the other hand,
by using the GPU we where able to achieve tremendous ac-
celeration, we are encouraged to implement more advanced
meshfree methods. In addition, we are interested in valida-
tion of the achieved simulation results.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Needle insertion steps. The cubes are the original tissue nodes and the spheres are added nodes. (a) Needle is Outside.
(b) Needle has collided with tissue and is now in Touching state. The Surface node is added. (c) Needle is pushed into the tissue
but puncture is not happened yet. (d) Needle has punctured the tissue surface and is Inside the tissue now. The Tip node is
added. (e) Another tissue node is added and is constrained to the needle. (f) Needle is being pulled out and is in Touching state
again.
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Figure 7: Comparison of needle insertion simulation with different methods.
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