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Abstract
This paper introduces a continuum mechanics based thread model for use in real-time simulation. The model
includes both rotary inertia, shear deformation and torsion. It is based on a three-dimensional beam model, using a
corotational approach for interactive simulation speeds as well as adaptive mesh resolution to maintain accuracy.
Desirable aspects of this model from a numerical and implementation point of view include a true constant and
symmetric mass matrix, a symmetric and easily evaluated tangent stiffness matrix, and easy implementation of
time-stepping algorithms. From a modeling perspective interesting features are deformation of the thread cross
section and the use of arbitrary cross sections without performance penalty.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

In the field of physically based simulation there is a need
to simulate one-dimensional, two-dimensional and three di-
mensional objects in a physically plausible way. Real-time
simulation of such objects are of interest in games, and var-
ious types of virtual simulations such as surgery simulation
for instance. This paper deals with one-dimensional objects
such as beams, strands or threads.

In recent years the study of soft body simulations in the
field of real-time computer graphics has seen a move away
from ad-hoc simulation methods, typically based on systems
of connected masses and springs, towards methods derived
from the theory of continuum mechanics, typically finite el-
ement based methods. While continuum mechanics based
methods normally require more computational power there
are several benefits to this approach. Firstly, modeling be-
comes easier as measurable material parameters naturally
appear in the continuum mechanics based methods com-
pared to tweaking dozens or hundreds of masses and spring
constants to produce physically plausible results. Secondly,
a simulation method based on a mathematically sound the-
ory will give greater confidence in the method and a clearer
understanding of its properties and limitations based on the

assumptions and approximations made in the derivation of
the method.

Usually a thread is viewed as being an one dimensional
object existing in three dimensional space which introduces
the need for rotational variables to accurately describe the
current state. This is because torsional twist cannot be de-
scribed in terms of the thread midline alone. A difficulty in
the dynamic simulation of threads connected to the use of ro-
tational coordinates is that the description of the deformation
field becomes highly nonlinear, thus resulting in a nonlinear
mass matrix. Therefore, these rotational variables are often
ignored in the dynamical representation making the model
unable to capture inertial effects. Another approach is to use
a simple intuitive model for the dynamics of the thread cre-
ating a need for special solution procedures to make sure the
dynamical representation abide Newton’s laws of motion.

In this paper we propose a thread model without rotational
variables which still includes torsion and rotary inertia. A
special set of three dimensional basis functions suitable for
representing slender objects is used. These basis functions
allow twisting along the element’s principal axis. As this
model is a continuum rather than a truly one-dimensional
object, the simulation will in a natural way include both tor-
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sion and rotary inertia. The proposed model has the follow-
ing appealing features:

• Arbitrary and deformable cross section.
• Handles torsional and inertial effects.
• Symmetric tangent stiffness matrix.
• Constant and symmetric mass matrix.
• No special time stepping required.

These features make the model suitable for inclusion in an
existing corotational simulation framework. As all matrices
are symmetric, fast iterative solvers based on the conjugate
gradient method may be used.

1.1. Our Contribution

Starting from continuum mechanics we present a straight
forward derivation of a thread model for use in real-time
simulation. The derivation is consistent in both the elastic
description as well as the dynamic description, i.e. both the
stiffness matrix and mass matrix are derived from the same
deformation field.

We have applied a corotational procedure to an existing
three dimensional beam element to achieve real-time sim-
ulation speeds. To our knowledge this is the first time this
beam element is presented in the field of computer graphics.
By using a binary tree mesh representation we allow on the
fly adaptive resolution to ensure the accuracy with minimal
performance impact.

2. Related Work

In recent years a number of methods for simulating tor-
sional threads suitable for real-time simulations have been
presented. Most existing methods have different representa-
tions for dynamics and elasticity, or are heavily dependent
on constraint equations, making it necessary to use special
solution procedures. While there are many contributions to
thread simulations worth acknowledging, we limit the re-
view of related works to thread models which include tor-
sional effect.

A thread model which include torsion was presented by
Wang et al. [WBD∗05] who described the thread as a chain
of springs linked at the nodes using torsional springs. The
mass of the thread was assumed to be lumped at the nodes.
Kubiak et al. [KPGF07] used a similar mass-spring approach
in combination the ideas in [MHHR07]. With the ambitious
goal of simulating every hair on a human head Selle et
al. [SLF08] proposed a mass-spring model where ‘altitude
springs’ were introduced used to capture torsional effects.

Several methods start out from the dynamic representa-
tion by modeling each thread section as a rigid body. The
elastic abilities are achieved through constraints or springs
acting on bending and torsional angles. Choe et al. [CCK05]
proposed such a method for the modeling of hair strands and

Servin and Lacoursière [SL08] proposed a similar model for
simulating cables under heavy loads. A rigid body formula-
tion was also used by Hadap [Had06] who used a differential
algebraic equation solver to solve a constrained multi-body
system.

The use of Cosserat rod theory for simulation of tor-
sional threads was introduced in the field of computer graph-
ics by Pai [Pai02] and several models based on this theory
have been presented since. Grégoire and Schömer [GS07]
presented a torsional thread based on Cosserat rod theory,
but used it in a quasi-static approach. A method similar to
[GS07] in the elastic description was presented by Spillmann
and Teschner [ST07]. In their torsional thread the dynamic
representation was lumped masses at each node in combi-
nation with a modified solution method to make the lumped
masses follow the equations of motion for rigid bodies. The
method was further refined in [ST09] where they created
nets from Cosserat rods.

Bergou et al. [BWR∗08] presented a torsional thread
based on discrete differential geometry. However, in this
model dynamical updates were only performed on the thread
midline and thus did not include inertial effects. This model
was further developed in the context of viscous threads by
Bergou et al. [BAV∗10].

Other recent work dealing with torsional threads, include
the work on the super-helix model by Bertails [Ber09] and
the work on creating a unified treatment for elastic rods,
shells and solids by Martin et al. [MKB∗10].

3. Basis Functions and Nodal Variables

Our thread model is based on a beam element presented by
Shabana and Yakoub in [SY01, YS01] using a formulation
called the Absolute Nodal Coordinate Formulation (ANCF).
This element is continuum mechanics based and thus we use
it in solving the usual equations of three dimensional elas-
ticity. It is a two-noded element and its shape is determined
by the following degrees of freedom

e =
[
xT

1 xT
1,x xT

1,y xT
1,z xT

2 xT
2,x xT

2,y xT
2,z

]T

(1)

where x j is the current spatial coordinate of node j, and x j,k
is the derivative of x j with respect to k = {x,y,z}. Thus, at
each node we store the position and the gradient of the de-
formation field. These degrees of freedom are called ‘nodal
coordinates’.

Given the specific basis functions for this element, the gra-
dient variables have a geometric interpretation. The tangent
vector of the beam midline is defined by x j,x and its length
defines the curvature. Because x j,x is defined in global co-
ordinates and shared between elements, this ensures C1 con-
tinuity of the midline. The area and shearing of the beam
cross section is defined by x j,y and x j,z. This is illustrated in
figure 1.
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Figure 1: Illustration of an ANCF-beam element in the ref-
erence state (left) and in a deformed state (right). The triads
at each node represent the gradient of the deformation field
at that node.

In accordance with the notation for the nodal variables we
let x be the current position of a point corresponding to a
point xr in the reference domain. We call x the deformation
field. The reference domain of an element is denoted by Ωr
and the domain of the element in its rest state is denoted by
Ωe. For clarity of presentation we assume that Ωe = Ωr, i.e.
the rest state is straight. The case of initially curved threads,
where Ωe 6= Ωr, is addressed in Section 4.4.

Using the matrix of basis functions ϕ(xr) we can write the
deformation field of an element as

x = ϕ(xr)e (2)

where e is the vector of nodal variables. The matrix of basis
functions is

ϕ(xr) =
[
ϕ1I ϕ2I . . . ϕ8I

]
(3)

with the basis functions given in [Sha08]

ϕ1 = 1−3ξ
2 +2ξ

3
ϕ2 = l(ξ−2ξ

2 +ξ
3)

ϕ3 = l(η−ξη) ϕ4 = l(ς−ξς)

ϕ5 = 3ξ
2−2ξ

3
ϕ6 = l(−ξ

2 +ξ
3)

ϕ7 = lξη ϕ8 = lξς

 (4)

where ξ = x/l, η = y/l, ς = y/l, and l is the length of the
element in the reference state.

This means that the deformation field in polynomial form
is

x =

a0 +a1x+a2x2 +a3x3 +a4xy+a5xz+a6yz+a7xyz
b0 +b1x+b2x2 +b3x3 +b4xy+b5xz+b6yz+b7xyz
c0 + c1x+ c2x2 + c3x3 + c4xy+ c5xz+ c6yz+ c7xyz


(5)

where x is the beam’s principal direction and y and z are the
transverse directions.

4. Elastic Response

Unlike the ANCF-beam element presented in [YS01] where
a non-linear description based on the Green-Lagrange strain
tensor

εG(x) =
(∇x)T∇x− I

2
(6)

is used, we chose to evaluate the elastic forces based on lin-
ear elasticity in combination with corotation to allow for
geometrically large deformation at interactive simulation
speeds.

4.1. Large Deformations and Corotation

Within the field of computer graphics the corotational
method presented in [MG04] and [HS04] has been success-
ful in plausible real-time simulation of soft materials. The
computational advantage is speedy computation of the elas-
tic response forces and the tangent stiffness matrix. This is
made possible by utilizing precomputed element stiffness
matrices.

The fundamental assumption of corotational methods is
that we locally only have small strains even though rotations
may be arbitrarily large. This allows us to approximate the
Green-Lagrange strain tensor εG with the corotational strain
tensor, which is defined as the Cauchy strain tensor ε used in
linear elasticity but in a local reference frame

εCR(x) = ε(uloc) =
∇uloc +(∇uloc)

T

2
(7)

where uloc is the displacement field in the local reference
frame.

As the corotational strain tensor is invariant to rigid body
translations due to the gradient operators we define the local
displacement field uloc without any translational terms

uloc = RT x−RT
0 x0 (8)

where R is the extracted element rotation and R0 is the initial
element rotation. Using the deformation field prescribed by
our basis functions we write the local displacement field

uloc = ϕ(xr)QT e−ϕ(xr)QT
0 e0 = ϕ(xr)dloc (9)

where the local displacement nodal variables are dloc =
QT e−QT

0 e0 and we have block diagonal matrices Q and
QT

0 with blocks R and R0, respectively.

4.2. Extracting Element Rotation

Because the ANCF beam element is a continuum and thus
features a complete deformation gradient, we may extract
each element rotation R by polar decomposition of the de-
formation gradient at the element midpoint as Hauth and
Strasser [HS04] and in a more elaborate setting as Moita and
Crisfield [MC96]. However, as the geometry of the beam
element has a natural principal axis r1, the axis pointing
through the nodes, we create a rotation matrix R with the
local x-axis pointing through the nodes. We have

r1 =
x2−x1
‖x2−x1‖

(10)

Let xm denote the deformation field at the element mid-
point. Because the beam cross section is allowed to skew,
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we should include xm,y and xm,z in the calculation of r3, but
we choose to take a more simplistic approach using the as-
sumption that the cross section will not skew noticeably and
define r3 through

r3 =
r1×xm,y

‖xm,y‖
(11)

Finally we complete the orthogonal triad through

r2 = r3× r1 (12)

The triad R = [r1 r2 r3] defines the element rotation.

For simplicity and stability reasons we assume that R is
constant in each time-step, and therefore also constant in
changes of the nodal coordinates e. In reality R is a func-
tion of the nodal variables and a more elaborate corotational
procedure could be used, like the one presented in [Cri97].

4.3. Internal Forces and Tangent Stiffness

Assuming a Saint Venant-Kirchhoff material we may write
the strain energy for an element as

W =
1
2

∫
Ωe

ε
T
GDεG dV (13)

where, for isotropic materials, D is the constitutive ma-
trix given in [ZT05] and determined by the Lamé param-
eters. Here we have used the symmetry of the Green-
Lagrange strain tensor and written it in Voigt notation εG =
[ε11 ε22 ε33 γ12 γ23 γ31]

T , where γi j = 2εi j .

Assuming that the strain will locally be small we approxi-
mate the Green-Lagrange strain tensor with the corotational
strain tensor (6). Thus, we rewrite the strain energy as

W =
1
2

∫
Ωe

ε
T
CRDεCR dV (14)

Recalling the usual three-dimensional (Cauchy) strain op-
erator S given in [ZT05] we can express the co-rotated
strain-displacement relation as

εCR = Suloc = Sϕdloc (15)

Introducing the matrix B = Sϕ we can now write the elas-
tic energy as

W =
1
2

∫
Ωe

dT
locBT DBdlocdV =

1
2

dT
locKedloc (16)

where Ke is the usual constant element stiffness matrix in
linear elasticity

Ke =
1
2

∫
Ωe

BT DBdV (17)

We can simulate arbitrary cross sections through the
choice of Ωe. As the element stiffness matrix is precom-
puted, there is performance wise no limitation in the com-
plexity of the cross section. In Figure 2 a simulation using

Figure 2: Simulation with oval cross section.

an oval cross section is shown. For estimation of the inte-
grals when using an arbitrary cross section, a triangulation
of the cross section can be used. Even though this cross sec-
tion may be chosen arbitrarily, it is recommended to keep
the cross section center of mass at the midline defined by
the nodes as interaction otherwise will appear unintuitive.
Further, the basis functions may exhibit undesired behavior
away from the midline.

As it is assumed that R is constant between time-steps we
can use the approximation

∂dloc
∂e
≈QT (18)

We derive the internal forces vector for the element by
differentiating the strain energy (13)

fint =

(
∂W
∂e

)T

=

(
∂W

∂dloc

∂dloc
∂e

)T

=

(
∂uloc

∂e

)T

Kedloc = QKedloc

(19)

The tangent stiffness matrix is calculated by differentiat-
ing the internal forces vector

KeT =
∂fint
∂e

= QKeQT (20)

Note that this derivation is general and produces the same
corotational method as the one presented for linear tetrahe-
dra in [HS04], but with a different element stiffness matrix.

4.4. Initially Curved Threads

For initially curved threads we have that Ωe 6= Ωr. The
ANCF-beam element is an isoparametric element and as
such we may define the rest state using our basis functions

x0 = ϕ(xr)e0 (21)
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Figure 3: Simulation of a thread with curved initial state.

where x0 is a point in the rest state domain Ωe, xr is a point
in the reference domain Ωr, and e0 is a constant vector of
nodal variables.

The displacement gradient for a curved element is

∇uloc =
∂uloc
∂x0

=
∂uloc
∂xr

∂xr

∂x0
=

∂uloc
∂xr

J−1
0 (22)

with the matrix J0 = ∂x0/∂xr. This will result in a modified
strain operator S in (15), which is used in the calculation
of the B matrix. Note that for x0 = xr, J−1

0 is the identity
matrix.

By a change of variables from x0 to xr we describe the
element stiffness matrix as an integral over the reference do-
main Ωr

Ke =
1
2

∫
Ωr

BT DB|J0|dV (23)

As this integral is calculated by numerical integration, we
find J−1

0 at each quadrature point by taking the inverse of J0.

4.5. Element Limitations

The main assumption in corotational formulations is that lo-
cally the strains are small. If this assumption is false in an
element we may encounter intra-element artifacts such as
those presented in Figure 4. There are two causes for these
artifacts, mainly incorrect estimation of internal forces when
the corotational assumption is false, but also limitations in
what shapes the deformation field can take. Through refine-
ment, these intra-element artifacts are efficiently resolved.

5. Adaptive Resolution

When deformation of a single element becomes large, strains
become large and artifacts such as those presented in Sec-
tion 4.5 may occur. These artifacts are resolved by splitting
the element. By splitting elements before deformation be-
comes too large artifacts can altogether be avoided. In our
implementation we created ad-hoc refinement and coarsen-
ing criteria based on bending and twisting angles. By choos-
ing suitable constants we introduce some hysteresis between
refinement and coarsening to avoid frequently alternating
resolution changes.

Figure 4: Intra-element artifacts stemming from large bend-
ing (top) and large twist (bottom).

Figure 5: Illustration of mesh refinement and coarsening
using a hierarchical mesh level structure.

Spillmann and Teschner [ST08] use an energy minimizing
procedure to select the position of new nodes. This is done
to remove the snapping effect which may occur after split-
ting an element. However the need for such a procedure is
limited in the presented model. Since the deformation field
is known at all points of the thread and the midline is repre-
sented as a C1 continuous curve we get a natural choice of
nodal coordinates and velocities when inserting new nodes
in the thread. Thus, the deformation field after the split will
be the same and also its velocities. As long as we split ele-
ments before artifacts become too large, snapping effects can
be avoided. Assuming that the rest shape of initially curved
threads is correctly described in the coarsest allowed state,
the rest shape will remain the same after a change in resolu-
tion.

5.1. Hierarchical Representation

To be able to dynamically scale the resolution up and down
without too big impact on performance, we chose to have
a hierarchical representation of the mesh. This means that
mesh refinement is performed by symmetric splitting of el-
ements and coarsening is performed by joining previously
split elements as illustrated in Figure 5. The implementa-
tion is done using a binary tree to represent the mesh and
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element stiffness and mass matrices are precomputed for ev-
ery refinement level to minimize the performance impact of
splitting elements.

5.2. Ad-hoc Refinement/Coarsening Criteria

We constructed an ad-hoc refinement criteria by defining er-
ror indicators for an element

ηbending =

∣∣∣∣∣r1 ·x1,x∥∥x1,x
∥∥
∣∣∣∣∣+
∣∣∣∣∣r1 ·x2,x∥∥x2,x

∥∥
∣∣∣∣∣ (24)

ηtorsion =

∣∣∣∣∣r2 ·x1,y∥∥x1,y
∥∥
∣∣∣∣∣+
∣∣∣∣∣r2 ·x2,y∥∥x2,y

∥∥
∣∣∣∣∣ (25)

and recommended splitting of the element if

ηrefinement < ηbending +ηtorsion (26)

where ηrefinement is a constant.

The same error indicator was used to determine coarsen-
ing, with the left and right nodes taken from a pair of ele-
ments. If the error indicator is smaller than a constant

ηcoarsening > ηbending +ηtorsion (27)

joining of the element pair is recommended.

Because of the binary tree representation of the mesh only
two elements sharing the same parent in the binary tree are
allowed to be joined. By only allowing one refinement and
one coarsening per timestep the computational cost of re-
finement/coarsening is limited and so are any noticeable side
effect of refinement/coarsening.

These criteria were applied to an initially straight thread,
but can also be used on initially curved threads by transform-
ing the nodal gradients to the reference state by multiplying
them with J−1

0 .

6. Dynamics

In the presented method there is no special treatment of the
mass matrix as it is directly derived from the deformation
field, and still it becomes constant and capture inertial ef-
fects.

We can write the kinetic energy by integrating the dis-
placement field over the domain of the undeformed element.

T =
1
2

∫
Ωe

ρẋT ẋdV (28)

As the deformation field for each element can be represented
as x = ϕ(xr)e with our time-dependent nodal variables as
coefficients we can easily derive the constant element mass
matrix Me via

T =
1
2

ėT
[∫

Ωe

ρϕ(xr)
T

ϕ(xr)dV
]

ė = 1
2

ėT Meė (29)

That this constant mass matrix correctly handles inertial
effects is shown in [YS01].

6.1. Time Stepping

The same degrees of freedom are used in the calculation of
the dynamic response as in the elastic response, and no con-
straints are introduced. It is therefore straight forward to ap-
ply a finite difference scheme to produce a time stepping
algorithm.

Let M, KT and Fint denote global matrices and vectors
which, as usual, are assembled by summing element con-
tributions from each element. The state vector e consists of
nodal variables for all nodes and the equations of motion
take the form

Më = Fint +Fext (30)

We rewrite this differential equation as a system of first order
ODEs: {

ė = v

Mv̇ = Fint +Fext (31)

We choose to discretize time with a time step h using the
backward Euler method, which gives

en− en−1
h

= vn

M
vn−vn−1

h
= Fint

n +Fext
n

(32)

Our best approximation for the external forces at the next
time-step n are the forces currently applied. For the internal
forces we make a better approximation by doing a single
Taylor expansion of fint around en−1.

Fext
n ≈ Fext

n−1 (33)

Fint,n ≈ Fint
n−1 +

∂fint
∂e

∣∣∣∣
n−1

(en− en−1) (34)

From (20) we obtain

Fint
n ≈ Fint

n−1 +KT,n−1(en− en−1) (35)

The final time stepping algorithm is derived by solving for
en and vn in the system

en− en−1
h

= vn

M
vn−vn−1

h
= KT (en− en−1)+Fint

n−1 +Fext
n−1

(36)

Note that this presented method only involves a single New-
ton step which should be sufficient given that the time step
is small enough. The same time integration in a slightly dif-
ferent setting is presented in [BW98].

6.2. Collision handling

When interacting with a real-world thread it is likely to
collide with both the surrounding environment and itself.
Therefore, besides time-stepping the internal dynamics of
our torsional thread, we also need to handle collisions and
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contact situations robustly and efficiently to make for a plau-
sible and interesting real-time simulation. In fact, when sim-
ulating the twisting stiffness of a torsional thread it will self-
collide more frequently than a simpler model that neglects
the torsional effects. This is due to the tendency of a twisted
thread to twirl itself up when given some slack, see Figure 6.

It is beyond the scope of this paper to give a detailed
description of the intricacies of collision detection and re-
sponse, but we will give a quick overview below. For an ex-
cellent further read on the topic, see the State of The Art
Report by Teschner et al. [TKZ∗05]. Our implementation is
mainly based on ideas from the cloth collision treatment de-
scribed by Bridson et al. [Bri02].

For the purpose of producing the examples in this paper,
we adopted a simple collision geometry. Each element in
our thread model was approximated with a collision volume
consisting of a line segment between the nodes x1 and x2,
padded with a thickness matching the average radius of the
element cross section. This is equivalent to a cylinder joined
with half-sphere caps on both ends, also called a capsule.
The penetration depth of two such colliding capped cylinders
can be calculated by comparing the sum of their radii against
the shortest distance between the center-line segments. For
collisions of the thread against an infinite ground plane, we
simplify things even further by checking the signed distance
between each node x j and the plane. It should be noted, how-
ever, that the approximate collision volumes described here
may not be accurate enough if the element cross section is
not circular or if a single element is allowed to bend signif-
icantly. In that case, a better fit could be achieved by subdi-
viding these collision volumes into smaller parts or even tri-
angulating the thread surface and using a more complicated
triangle-mesh based approach.

For a thread with just a few segments it may be sufficient
to do a brute-force collision detection by testing all thread
segments against all the others, yielding a O(n2) algorithm.
However, for practical purposes the collision detection per-
formance should be accelerated by efficiently pruning, or
culling, unnecessary collision tests using a spatial data struc-
ture. For deformable geometry like our thread model, the
chosen data structure must also be able to handle frequent
updates. Two good choices in our case would be either a
spatial hashing algorithm or a bounding volume hierarchy,
where the latter could be built in accordance with the binary
tree used for adaptivity in Section 5.1. An efficient bound-
ing volume for thread segments is an extension of the axis
aligned bounding box (AABB) where all edges are beveled.
This is also known as a k-DOP (Discrete Oriented Polytope)
where the number of half-spaces used for its construction is
k = 18. For the relatively short threads in our implementa-
tion, we skipped the hierarchy and tested all possible pairs
of elements, excluding pairs of node-sharing neighbor el-
ements. Each element was encapsulated in an 18-DOP for
quick culling of distant element pairs.

For slow movement or short time-steps one could use dis-
crete collision detection, i.e. testing for inter-penetration at
the end of each time step. However, for interactive simula-
tion rates the velocities of thread segments may easily be-
come large enough to cause "tunneling" where a collision
is missed since the thin thread segments pass completely
through each other during one single timestep. To catch
those cases a more elaborate continuous collision detection
method must be used, where the trajectories of thread seg-
ments is checked for collisions during a timestep. In our im-
plementation we used dynamic intersection tests based on
interval halving to avoid missing any collisions (see Chapter
5.5 in the book by Ericson [Eri04]).

When collisions are detected, appropriate responses must
be applied to resolve the collisions. This can be done in
several ways. Inter-penetrations can be removed directly by
moving nodes towards a collision free state and modifying
their velocities. In that case a strain or strain rate limiting
method may need to be applied to smooth out resulting dis-
continuities in the neighborhood of a collision. Collision re-
sponses could also be applied indirectly by feeding them
back into the dynamics solver as springs, penalty forces or
constraints. For a robust handling of collisions, care must be
taken to detect any new collisions caused by applied colli-
sion responses. It may sometimes be necessary to iterate the
collision resolving process several times for a single time
step until all collisions are resolved. For our implementation
we chose to modify node positions and velocities directly, in
combination with a simple strain limiting approach.

7. Numerical Examples

The purposes of these numerical examples are threefold:

• Show that the presented method capture desired properties
of torsional threads.

• Demonstrate that the use of an adaptive resolution mesh
produces plausible results comparable to those of a uni-
form fine scale mesh.

• Illustrate unique or interesting features of the proposed
thread model.

The first example shown in Figure 6 is a typical case
of demonstrating the torsional abilities of a thread model.
Twisting the right end of the thread while the left end is
locked, produces the desired effect that the thread twirls
around itself. Such an example is not possible using mod-
els without torsion.

Figure 7 illustrates the use of adaptivity when the thread is
wrapped around a stiff object, for instance a surgical instru-
ment. The problem with the coarse mesh is twofold. Firstly,
the elements become too stiff when bent too much. Sec-
ondly, the beam midline is C1 continuous while the collision
volumes are piece-wise linear, causing an unnatural distance
to the instrument. These problems are solved when using a
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Figure 6: Thread with increasing torque applied at the right
node to produce a torsional effect.

Figure 7: Thread with various levels of mesh refinement
wrapped around a fixed rod: coarse mesh (left), fine mesh
(center), adaptive mesh (right).

fine mesh or an adaptive mesh. Note that the difference be-
tween the fine mesh solution and adaptive mesh solution is
minor. Another example that visualizes the use of adaptive
resolution is shown in Figure 8 where we have made a knot
on the thread. This is typical case where it is valuable to
have a high resolution mesh in very local areas, why adap-
tive mesh resolution is a valuable feature.

To visualize the ability of the cross section to deform we
used a soft rubber like material with somewhat volume con-
serving properties which is stretched in Figure 9. Note that
no special procedures is used to ensure volume conservation.
As no locking effects introduced by the mesh, as in the case

Figure 8: Thread with a knot. The adaptive resolution au-
tomatically increase resolution where needed.

Figure 9: Stretching a rubber like material, illustrating the
deformation of the thread cross section. A Poisson’s ratio of
ν = 0.4 was used in this example.

of two and three dimensional structures, it is possible to use
a Poisson’s ratio close to 0.5.

Other features of this model is the support for curved rest
states as visualized by the phone cord shape in Figure 3 and
the support for arbitrary cross sections as visualized in Fig-
ure 2 by using a simple non-trivial cross section, an oval. As
all the complexities of these features are concentrated to the
calculation of the element stiffness and mass matrices, which
are precalculated, there is no added performance penalty.

7.1. Visualization

In all the presented numerical examples we utilize the known
deformation field in our visualization. We sample points on
the surface of each element, dividing the circumference of
the cross section into 12 parts and the length of the element
into 10 parts. Torsional twists is illustrated by blue and white
stripes along the element while the mesh is illustrated by
blue rings at each nodal point.

7.2. Computational Cost

The number of degrees of freedom for the proposed thread is
greater than for most existing methods. The model consists
of 12(n+ 1) degrees of freedom, where n is the number of
elements. For comparison the CoRdE method [ST07, ST08]
consists of 7(n+1) degrees of freedom for a thread of n el-
ements. It is likely that this will result in a higher computa-
tional cost for the proposed method if comparing threads us-
ing the same number of elements, of course depending on the
solution method. It should be noted that the computational
cost is independent of the choice of cross section and initial
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curvature if we ignore visualization and collision aspects.
The extra degrees of freedom also means that the proposed
method is richer, in that the cross-section of the thread may
shear and deform. This can be useful for simulating materi-
als with volume conserving properties, such as rubber bands
(See Figure 9).

The proposed thread model has a clearly defined deforma-
tion field with C1 continuity along the principal axis. By ren-
dering the known deformation field between element nodes
we create smooth curves even for threads using few ele-
ments. However, for simulations including collision detec-
tion this creates a non-conformity between the visualization
and the collision volumes because suitable collision volumes
in thread simulations are cylinders.

Simulating a thread consisting of 64 elements on an In-
tel iCore 870 CPU a framerate of 95 Hz was achieved in
our single-threaded program with collision detection dis-
abled and visualization kept basic. While we solve the linear
system of equations using a conjugate gradient method the
banded sparsity pattern of the matrices allow for using more
efficient solver implementations [KW03].

8. Conclusion

In this paper we have adapted the ANCF-method for con-
tinuum based beams to a corotational setting for use in real-
time thread simulations. By employing an adaptive refine-
ment and coarsening procedure we effectively remove coro-
tation artifacts stemming from locally large deformations.

To summarize, the benefits of this approach are

• Possibility to simulate slender objects with any cross sec-
tion and the ability for the cross sections to deform.

• Suitable for inclusion in existing corotational frameworks.
• Symmetric mass and stiffness matrices, thus allowing the

use of fast iterative Conjugate Gradient solvers.
• Any finite difference scheme can easily be used to create

the time stepping algorithm.
• A straight forward derivation from the fundamental equa-

tions of continuum mechanics.

8.1. Limitations and Future Work

For some applications within the field of computer simula-
tions this model may be a bit too rich in that the thread cross
section is allowed to deform and shear. Therefore it would
be interesting to investigate the possibility to reduce the de-
grees of freedom in this model without reducing its desirable
properties, i.e. constant mass matrix, rotary inertia and tor-
sional effects.

As this method handles large deformations by a corota-
tional approach, where the element rotation is assumed con-
stant during each timestep, the method has the inherent lim-
itations of such approaches, i.e. extreme deformations give

rise to an oscillating deformation field when the time step is
kept constant.

The purpose of applying a corotational approach to the
ANCF-beam is to approximate the non-linear formula-
tion [SY01, YS01] in a computationally efficient way. To
estimate how good this approximation is, we would like to
implement the non-linear formulation to get reference solu-
tions to compare our results with.
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