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Abstract
We present a novel bending model and constraint creation method for position-based dynamics. Our new bending
model is introduced as an alternative to the current state-of-the-art dihedral bending model. Our model is moti-
vated by geometric principles and operates on virtual triangles. It has the same cheap computational cost as the
stick constraint model but with higher simulation quality and faster convergence than the dihedral bending model.
Along with the model a new global bending parameter is introduced to control the curvature deformation at high
precision compared to the traditional stiffness constant. Further, we propose a new constraint creation method
that we believe is well suited for the triangle bending model and less affected by the underlying mesh tessellation.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Physically based
modeling—Computer Graphics [I.3.7]: Animation—

Keywords: Bending Constraint, Curvature, Interactive Simulation, Position-based Dynamics

1. Introduction

Position-based dynamics [MHHR06] is the industry stan-
dard for interactive real-time applications [Jak01, Cou05,
Cor10]. Maintaining only positions, and treating velocity as
an implicit quantity, is favorable, as contacts and collisions
can be handled by simple projections. The paradigm offers
a certain amount of generality, as a wide variability of geo-
metric constraints can be added without considering conser-
vation laws, etc. With this paper, we address the issue of de-
formable models in interactive simulations. Our contribution
is a new bending model that is inspired by simple geomet-
ric principles. Compared to competing bending models in
position-based dynamics our model has a faster convergence
rate that improves responsiveness and heightens fidelity. The
proposed model is less sensitive to the choice of parameter
values, and we expect that it will increase the ease of use.
Our contribution addresses both equality and inequality con-
straints of the bending model.
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(a) Frame 1 (b) Frame 79

(c) Frame 248 (d) Frame 686

Figure 1: A quasi plant is simulated using the physics-
based dynamics paradigm and our triangle bending con-
straint model. The frames are grabbed from the supplemen-
tary movie.
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(a) κ = 0 (b) κ = 0.02

(c) κ = 0.1 (d) κ = 0.01

Figure 2: The triangle bending constraint model allows for
fast response and high fidelity. The global parameter κ is
increased to control the collapse of the Bunny and decreased
to “inflate” it again.

State-of-the-art interactive physics simulations suffer
from linear convergence rates which result in damped elas-
tic responses and cause low fidelity. Our work yields a fast
response and increases the fidelity as illustrated in Figures 1
and 2. Current state-of-the-art is limited to specific contexts
and does not support a wider range of deformation behav-
iors. The animation quality is highly dependent on the spe-
cific tessellation, the stability is limited, and parameter val-
ues are difficult to fine tune. Figure 3 shows results from
rigid fabrics simulations and illustrates some of the issues
with the competing bending methods.

Combined, the problems with the state-of-the-art method
often imply the need of technical artists in e.g. the games
industry. In this paper, we propose a method that is more
stable and allows for a wider range of behaviors. Our hope
is that our new method is more simple to use by modelers
and animators.

2. Related Work on Bending Models

Many works in Computer Graphics have addressed bend-
ing models, in particular for cloth simulation. Here we will
present a brief overview of the main approaches for bending
models in the Computer Graphics community.

Mass-spring models have been used for cloth simula-
tion [Pro95, BFA02] and have been generalized to other
types of simulations like hair [SLF08]. Traditionally, a reg-
ular grid with springs that are connected to every other node
is used to resist bending. These ideas have also been applied
to stick models [Jak01]. Many variations exist for creating
bending models on triangular meshes. The principle from
regular grids is extended to triangular meshes by adding a
bending connection between the tips of a winged triangle

pair sharing an edge. In [CK02] a circular arc with con-
stant arc length was used as the equilibrium shape of such
a bending connection. This allowed for a numerically stable
method for dealing with cloth buckling. Virtual nodes were
exploited by [SLF08] to create an auxiliary spring from a
virtual node on the bending connection to the shared edge
of the two triangles. In [VMT06], the authors use a momen-
tum conserving bending model, based on height differences,
to evaluate the local curvature of a pair of winged triangles.
In [THMG04] bending was added by taking a pair of winged
triangles and use them to create a virtual tetrahedron and at-
taching a volume constraint to the tetrahedron.

A bending model, based on the dihedral angle between
two triangles sharing an edge, was presented in [BW98].
The same model was used in position-based dynam-
ics [MHHR06,MHHR07] and an improved quasi-multi-grid
solver was later presented in [M0̈8]. A new improved bend-
ing force model, based on the dihedral angle, was intro-
duced in [BMF03]. Here, the authors analyzed the deforma-
tion mode corresponding to only making changes in the di-
hedral angle and combining this single mode with a spring
model, using coefficients weighted by the triangle mesh size.
By construction, the model conserves momentum and only
affects the dihedral bending. A related model was later used
in [PKST08] to model seams.

Bending energy functionals belong to another paradigm.
Here, an integral of some curvature measure serves as the
mathematical foundation of the model. A curvature evalu-
ation technique was used in [VCMT95] to compute an as-
sociated moment, which again could be turned into a force
by considering triangle dimension and normals. A finite el-
ement model approach using co-rotational linear elasticity
was taken in [EKS03]. Here, bending forces are evaluated
by using a Laplace operator projected onto the surface nor-
mal direction. The average of the surface normal projections
at the triangle vertices is used for each triangular element.
A family of discrete curvature energies has been presented
in [WBH∗07]. One application of such a discrete curvature
measure is found in [GHDS03]. In [Gri06], the circumcen-
ters of a winged triangle pair are used to define a diamond
shaped area, in which the mean curvature integral is eval-
uated. The approach is somewhat similar to a finite volume
method. The resulting models [GHDS03,Gri06] of the bend-
ing energy is the squared dihedral angle, multiplied by the
length of the shared edge, divided by the orthogonal dis-
tance between the circumcenters. Recently, elastic rods have
been addressed in [BWR∗08] and [ST07, ST09]. Here, both
twist and bending modes are considered. In these models the
bending energy functionals are used and discretization tech-
niques similar to finite volume method are applied. To our
knowledge, this work does not appear to have been used for
interactive simulation.

Our work is based on position-based dynamics.
Thus, none of the force-based approaches known from

c© The Eurographics Association 2010.

32



Kelager et al. / A Triangle Bending Constraint Model for Position-Based Dynamics

(a) Initial frame. (b) After 5 frames.

(c) After 17 frames. (d) System at rest.

Figure 3: Rigid fabric simulation meshes, comparing our method (to the left) against the state-of-the-art dihedral angle con-
straints (in the middle) and distance sticks (to the right). This test serves to stress how well the different bending constraints can
recover from a highly violated state. In all cases, we use k = 1 and κ = 0 with no elasticity on the tension constraints.

particle/mass-spring systems applies, nor would any of the
bending energy driven approaches work. For interactive
simulations the industrial state-of-the-art on bending models
is based on dihedral angles. Our model is based on a
distance measure between the centroid and the tip of a
triangle.

3. A Triangle Bending Constraint Model

Position-based dynamics is current state-of-the-art in inter-
active simulation software such as PhysX and Bullet and
makes use of the following bending model [MHHR06],

Cdihedral(p1,p2,p3,p4) = arccos(n1 ·n2)−φ0, (1)

where φ0 is the initial dihedral angle and the unit normals n1
and n2 are given by

n1 =
(p2−p1)× (p3−p1)

‖ (p2−p1)× (p3−p1) ‖
, (2a)

n2 =
(p2−p1)× (p4−p1)

‖ (p2−p1)× (p4−p1) ‖
. (2b)

The advantage of this model, compared to distance or stick
constraints, is that it is independent of stretching. Our model
is semi-independent of stretching which means that on aver-
age there is no noticeable difference in tension lengths. The
arccos-term in (1) poses a problem with the dihedral bend-
ing model, as it is only well defined in the range of −1..1

b1
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c

Figure 4: The triangle bending constraint must span at least
two triangles to model curvature.

which corresponds to 0..π radians. This means that in a state
of equilibrium a complete local reflection of the deformable
object results in another equilibrium state.

Working with position-based dynamics, it is essential to
realize that many of the straight forward properties of the
simulation paradigm come directly from the geometry itself.
Thus, tension constraints are constructed from the edges and
dihedral bending constraints are created between adjacent
triangles that share an edge. Stiffness bending constraints
are constructed from traversing the mesh topology and con-
necting every second, non-connected, vertex by the means of
tension constraints. Our model is not directly dependent on
topology in the sense that triangle bending constraints can
be created between any three unique vertices as long as their
contribution will model “curvature”, i.e. for a triangle mesh
any triangle bending constraint must span at least two tri-
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(a) Triangle bending model notation.
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(b) Triangle bending model principle.

Figure 5: The triangle bending model. (a) The intersection
point of the three medians is the centroid c. The radius of
curvature is represented by the length h from the centroid to
the tip of the triangle. By employing the length difference,
a simple geometric constraint can be formulated. (b) The
triangle in a collapsed state where the vertices have been
displaced along the direction of the center median.

angles as illustrated in Figure 4. Degenerated triangles are
valid for our triangle bending constraints as it merely em-
ploys that the mesh does not initially curve in this case. Our
algorithm for the creation of triangle bending constraints is
detailed in Section 4.1.

The triangle bending model arises from the thought exper-
iment of how to collapse a triangle with as few and as cheap
operations as possible, while introducing as little potential
energy as possible. The idea is to work with the centroid of
the triangle which is illustrated in Figure 5(a). The centroid
has a couple of neat properties for our purpose. The three
medians intersect exactly at the centroid, which divides each
median in a ratio of 2 : 1, i.e. ‖ v− c ‖= 1

2 ‖ mv− c ‖. To
collapse the triangle while conserving both linear and angu-
lar momenta we displace the base line vertices (b0 and b1)
with 1

2 (v−c) and update v = c as illustrated in Figure 5(b).

The geometric principle in our method can be explained
by computing the centroid c which is given by

c =
1
3
(b0 +b1 +v). (3)

The distance between the tip of the triangle v and the cen-
troid c is penalized as follows,

Ctriangle(b0,b1,v) ≥ ‖ v− c ‖ −(κ+h0), (4)

where h0 is the rest length (rest radius of curvature) and κ is
a global bending parameter of the system (explained below).
The expression in (4) is defined as an inequality constraint,

Ctriangle ≥ 0, which will allow the underlying model to be-
come more curved than its rest shape, e.g. plants and leaves.
The corresponding equality bending constraint is defined as,

Ctriangle(b0,b1,v) = ‖ v− c ‖ −h0, (5)

where we implicitly assume that κ = 0. The global bending
parameter κ is not confined from not being employed in (5)
but this equality constraint is meant to model systems that
want to stay true to their original curvatures, e.g. fabrics. By
exerting that κ > 0, the underlined mesh can be forced into
a shape it has not been designed for.

The material behavior in our triangle bending model is
controlled by user defined parameters. These parameters
include the global bending constant κ ≥ 0 which can be
thought of as a crude estimation of the mean curvature ra-
dius, and the stiffness constant 0 ≥ k ≥ 1 which controls
the rigidity of the bending constraints. We do not employ k
directly in the positional projection corrections, as its con-
tribution in general will be non-linear when we perform
more than one iteration over the constraints. Instead, we
employ a linear dependent stiffness constant as suggested
by [MHHR06],

k′ = 1− (1− k)
1
n , (6)

where n is the number of solver iterations. Observe, our
model suffers from the same deficiency as the dihedral
model in not being able to discriminate between a symmet-
rical reflection of the model. However, our model will not
let adjacent triangles collapse which can be provoked by the
dihedral model due to symmetrical reflections. The bending
constant κ controls the curvature explicitly whereas the stiff-
ness constant k controls it implicitly. The reason for keeping
both parameters is to support meshes with triangles that are
significantly different in size. The value of κ is an absolute
Euclidean distance where k can be seen as a percentage.

4. A Fast Method for Interactive Applications

We have implemented our bending constraint model into an
existing position-based dynamics solver that allows us to
simulate a variety of deformable objects, e.g. cloth, plants,
pressure soft bodies, etc. When our triangle bending model
is used as an equality constraint (5), we perform the posi-
tional projections every time. However, if the model is used
as an inequality constraint (4) we evaluate the constraint and
perform the projection corrections if and only if Ctriangle < 0.

In the following, we show how to perform the positional
projection corrections to the 3 vertices b0,b1,v for a given
triangle bending constraint. The inverse mass w for a given
vertex with mass m > 0 is

w =
1
m
, (7)

where we employ w = 0 to indicate a fixed, or locked, vertex
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01 : algorithm create-bending-constraints(Mesh M)
02 : foreach vertex v in M do
03 : V ← connected-vertices(v,M)
04 : foreach vertex vi in V do
05 : cos(φbest)← 0
06 : vbest← vi
07 : foreach vertex v j in V do
08 : cos(φ)← (vi−v)·(v j−v)

‖vi−v‖‖v j−v‖
09 : if cos(φ)< cos(φbest)then
10 : cos(φbest)← cosφ

11 : vbest← v j
12 : end if
13 : end foreach
14 : if index(vi)< index(vbest) then
15 : create-bending-constraint(vi,vbest,v)
16 : end if
17 : end foreach
18 : end foreach
19 : end algorithm

Figure 6: Pseudo-code to illustrate our triangle constraint
creation algorithm.

with infinite mass. We define the generalized inverse mass
for the triangle as

W = wb0 +wb1 +2wv. (8)

When a bending constraint of any type is being violated, the
positional corrections to the 3 vertices yield

∆b0 =
2wb0

W
(v− c)

(
1− κ+h0
‖ v− c ‖

)
, (9a)

∆b1 =
2wb1

W
(v− c)

(
1− κ+h0
‖ v− c ‖

)
, (9b)

∆v =−4wv

W
(v− c)

(
1− κ+h0
‖ v− c ‖

)
. (9c)

Because the constraint evaluations can be squared on both
sides of (4) and (5), and because the positional projections
in (9a), (9b), and (9c) only require the evaluation of a sin-
gle square root to compute the length of the difference vec-
tor, the triangle bending constraints can be solved very effi-
ciently and very fast. This make them ideal for applications
in interactive contexts.

4.1. Working with Triangle Meshes

It is possible to apply triangle bending constraints to an ar-
bitrary triangle mesh, i.e. both an open and closed two man-
ifold. One such approach would be to add a virtual vertex at
the midpoint of every edge, and create triangle bending con-
straints over any two pair of triangles sharing an edge. Us-

ing the notation of the dihedral angle model we would use
b0 = p3 and b1 = p4 and v = p1+p2

2 . This would correspond
to the traditional edge-based bending connections used for
triangle meshes where the projection of the virtual vertex
is distributed to both edge vertices. In our experience, using
the edge-based approach results in fewer bending constraints
than our preferred approach, which will be explained below.
However, the animation results suffer from the asymmetric
topology of the mesh which is why we favor a different ap-
proach for creating the triangle bending constraints.

We have constructed an algorithm that in our experience
works well for any two-dimensional triangle mesh. The al-
gorithm operates on the mesh topology. For each vertex v
in the mesh we look at the one ring neighborhood set V .
For each neighboring vertex vi ∈ V , we seek to find another
matching vertex v j 6= vi in the neighborhood that is most in
a straight direction through the vertex v. Let us assume that
each vertex is assigned an unique integer index index(vi)
then our algorithm can be sketched in pseudo code as listed
in Figure 6. In line 03, we assume that a method exists that
returns all adjacent vertices connected to v through an edge.
By resetting φbest to zero in line 05, we ensure that no trian-
gle bending constraint is created within the same half-space
of v,vi. The check in line 14 guarantees that all created con-
straints are distinct.

It should be noted that depending on how the triangle
bending constraints are assigned to the mesh topology, we
can obtain a variety of different material properties. This is
different from the dihedral bending constraints which by de-
sign can only be created on shared triangle edges.

5. Experiments and Results

As reference for our experiments, we use an implementation
of the dihedral-based bending model as the state-of-the-art
method [MHHR06]. PhysX employs the same model where
certain stability measures have been taken into account, such
as clamping parameter values or excessive velocities, forces,
etc. Similar position-based dynamics is employed in other
software such as Bullet.

The experiments and measurements in this section were
performed on an Intel Core2 Duo CPU at 2GHz with 3GB
memory running 32bit Windows Vista. As shown in Table 1,
our triangle bending model matches the interactive real-time
performance demands on a level equal to that of the dihedral
bending model. On average our method is more than a factor
3 faster than the dihedral model.

The convergence rate of our triangle bending model was
compared against the dihedral bending model and the con-
vergence plots are shown in Figure 7. We have plotted the
normalized relative constraint error as a function of the num-
ber of iterations used in the constraint solver. For this study, a
random frame from the first part of the simulation in Figure 3
was used. The convergence plots indicate similarity with Q-
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Rigid Fabric Performance Times

Computation time (ms)
Con. type # Cons Avg. Total
Triangle 160 0.000158 0.405987
Dihedral 144 0.000503 1.159640
Stick 160 0.000113 0.288305

Table 1: Comparison of performance measurements in mil-
liseconds for a single frame between the three different types
of bending constraints. The rigid fabric model consists of
100 vertices. 16 solver iterations are used in all three cases.
The test case is depicted in Figure 3. Observe, on average
our method is a factor 3 faster than the dihedral bending
method.

Figure 7: Convergence plots showing how fast the triangle
bending model converges, compared to the dihedral-based
bending model. Observe, we have Q-linear convergence in
both cases but the triangle method has a lower rate.

linear convergence. This is not surprising, as the constraint
projection approach in nature is a steepest descent method.
However, as shown our method has a lower convergence rate
which yields a faster response. This can also be observed in
the supplementary video that displays live frame grabs from
our real-time interactive system.

We have performed a sensitivity study where we have sub-
jected a rigid fabric to a wide range of parameter values and
compared the different bending behaviors. Frame grabs from
our results are depicted in Figure 8. The results show that our
introduced parameter κ gives more sensitive control over the
bending property, compared to the stiffness constant k that is
usually employed in position-based dynamics.

All complex models that we have demonstrated make use
of our constraint creation algorithm to place the triangle
bending constraints. Examples of such models are depicted
in Figure 1 where a quasi-plant illustrates nice curves, in Fig-
ure 2 where we collapse and inflate the Stanford Bunny, and

(a) κ = 0.004 (b) κ = 0.01 (c) κ = 0.06

(d) k = 1 (e) k = 0.999 (f) k = 0.8

Figure 8: Visual comparison of varied parameter values.
(a)- (c) The stiffness parameter is k = 1 (d)- (f) The cur-
vature parameter is κ = 0. Observe that k gives a limited
control over the bending property where κ is able to fine
tune the bending property to a much higher level.

Figure 9: The deformable cows employ the same mesh and
triangle bending constraints, all with parameters k = 1 and
κ = 0. The constraints are set to equality but the solver iter-
ations vary. Left cow uses only 2 iterations, middle cow uses
16 iterations, and the right cow uses 64 iterations.

in Figure 9 that illustrates different properties when varying
the solver iterations. The first two figures make use of the
inequality triangle bending constraint, where the last figure
illustrates that the equality version can render a deformable
shell surface nearly stiff.

6. Discussion and Conclusion

With this paper, we have presented a novel geometric bend-
ing model as an alternative to the current state-of-the-art di-
hedral angle-based bending model for interactive real-time
simulations of deformable models. The new method was de-
veloped from geometric principles and guided by intuition.
Experiments show that the new triangle bending model have
at least the same simulation and animation qualities, but
with faster convergence properties than the dihedral bend-
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ing model. This is in our opinion an incremental, although
substantial, improvement for position-based dynamics and
its applications.

There are still issues that remain to be solved to further
adapt deformable objects in interactive design applications.
For starters, the inability to discover symmetrical reflections
which cause inversions of the bending model are left open.
Still, from an artistic point of view one must still know a
certain amount of technical details to apply the methods.
For instance, the connectivity of the mesh elements is nec-
essary, and although our method appears to be less affected
by tessellation more work on this is needed. We speculate
that a preprocessing of geometries with the purpose of cre-
ating constraints in the physical model could be interesting.
The current strategy for handling collisions in physics-based
dynamics often result in what resembles ghost forces, and
this is also an issue with our bending constraint model. A
more robust way to handle collisions by projections is worth
investigating.

We speculate that one possible avenue for improvement
would be to use a “signed” height to deal with symmetrical
reflection of the surface. A possible idea is to compute the
signed area of the triangle defined by the triangle bending
constraint upon creation of the constraint. During simulation
we may then recompute the sign of the area and if it differs
from the initial rest sign we could apply a special case for
the constraint projection. We leave this for future work.
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