‘Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2010)
J. Bender, K. Erleben, and M. Teschner (Editors)

A Geometry-Shader-Based Adaptive Mesh Refinement
Scheme Using Semiuniform Quad/Triangle Patches and
Warping

M. Knuth! , J. Kohlhammer! , A. Kuijperl’2

! Fraunhofer IGD, Germany
2TU Darmstadt, Germany

Abstract

In the field of garment simulation the resolution of the simulation mesh has a direct impact on visual quality.
Unfortunately, an increase in mesh resolution introduces a much higher computational cost and potentially causes
instability inside the simulation. In addition, it increases the amount of data sent to the renderer for visualisation.
Therefore, a GPU-based refinement of the simulated mesh has several advantages, since all additional data is
generated immediately before rendering. This allows an increase in visual quality without adding to computational
costs for the simulation process or bandwidth necessary for rendering.

In this paper we present a view-dependent, adaptive tessellation method designed for the geometry processing
stage of modern GPUs. It uses uniform meshes internally, removing the necessity to store external patches. Since
we deal with a local refinement scheme, sudden changes in the mesh structure size on adjacent patches may occur
incidentally. To reduce this effect as far as possible, we control the triangle density distribution of the refinement

process inside a refined triangle patch.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

Nowadays, the garment industry’s design and prototyping
process is increasingly performed virtually with the help of
computers. In this workflow the garment designers rely on
real-time garment simulation in order to get fast feedback on
changes they intend to apply. This is a very dynamic process
and a challenge for the simulation and visualisation system
used. Often a trade off between computational cost and sim-
ulation mesh resolution has to be made to achieve a good
interactivity. Reducing the simulation mesh resolution addi-
tionally has the side effect of reducing the amount of data
necessary to update the geometry inside the rendering part
of the interactive system.

With the existence of geometry processing stages in mod-
ern GPUs an interesting alternative solution for increasing
the visual quality of the rendered simulation data exists. A
geometry-shader-based tessellation allows the inclusion of a
single-pass refinement inside the existing rendering system

(© The Eurographics Association 2010.

DOI: 10.2312/PE/vriphys/vriphys10/021-029

with a minimum of changes. For this purpose we present
a GPU-based method intended to be run inside its pro-
grammable geometry shader. Our proposed algorithm has
three design goals:

i) The algorithm has to fit into an existing system, working
with the existing vertex/normal-based triangle sets.

ii) The simulation can lead to suboptimal (thin) triangles
which degrade or have large differences within their edge
length. Thus, our algorithm has to refine these triangles with-
out adding to much geometry, ideally making the inner tri-
angles more homogeneous.

iii) For a fine refinement control the algorithm has to allow
arbitrary odd and even vertex counts on the refined patch
borders.

In addition to an edge-based refinement level we change the
triangle density over the patch. This feature uses a per vertex
interpolation and allows a better view-dependent silhouette
refinement when dealing with large triangles with high cur-
vatures.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/vriphys/vriphys10/021-029

22 M. Knuth & J. Kohlhammer & A. Kuijper / A Geometry-Shader-Based Adaptive Mesh Refinement Scheme

Our main contribution is therefore an adaptive tessellation
method using a combination of uniform triangle tessellation
with a semi-uniform quadrangle tessellation method. In con-
trast to the inspiring method presented in [DRS09] this com-
bination allows a better handling of thin triangles, since a
uniform quad patch can natively handle different refinement
levels in the horizontal and vertical directions. This way, our
presented solution allows a smooth transition of refinement
levels inside the triangle patch (See Figure 1). Additionally,
our scheme is not limited to dyadic (power of two) edge re-
finement. This allows us a linear increase of the refinement
level on the edges of the patch, similar to the refinement de-
scribed in [VPBMO1].

Our second contribution allows control of the triangle
density distribution inside the patch. It improves silhouette
outline refinement on large base triangles. The presented
method is based on warping the coordinates necessary for
patch surface evaluation. Thus it is independent of the re-
finement process itself and can be used in conjunction with
recently introduced GPU hardware tessellation methods.

ANNNNNNNNN

Figure 1: Hybrid refinement: an adaptive semi uniform re-
finement scheme can lead to sudden resolution changes on
the edge with the lower resolution level (Left). To distribute
the resolution changes we combine a quad and a triangle
based refinement process (Right). In this particular case the
split allows us to solve the resolution change with uniform
meshes.

In the next section we refer to related work centred on
GPU-based adaptive local mesh refinement techniques. This
is followed by the presentation of our method. We then de-
scribe our implementation and the results we obtained using
our approach. We conclude with a discussion of these results
and possible enhancements of our method.

2. Background

In this section we discuss techniques related to GPU-based
mesh refinement. We focus especially on local refinement
techniques. Local refinement is well suited for shader-based
approaches since it only operates with data provided by a
single patch of the control mesh.

A refinement process can be roughly divided into 3 stages.
First, a patch setup is performed. The patches describe the

Vertex Shader Vertex Shader

Tesselation Control Shader
HW Tesselation Stage
Tesselation Evaluation Shader.
Geometg Shader

Geometr{ Shader

Rasterizer Rasterizer

Fragment Shader Fragment Shader

Figure 2: DX10/OpenGL3.2 (left) versus DX11/OpenGLA4.0
(right): With DX11 3 new Shading pipelines are available.
Tessellation can now be achieved within the 3 new stages
or by the geometry shader. Green blocks mark fixed function
stages, while blue blocks are freely programmable.

surface curvature. They are controlled by the input mesh,
which is to be refined. Second, a tessellation logic is re-
quired, which divides the basic input mesh into a finer repre-
sentation, creating interpolation coordinates. The third stage
uses these coordinates in conjunction with the patch data
to compute the positions of the new vertices. In the newest
Rendering APIs of DirectX 11 and OpenGL 4.0 there exist
special shaders, which directly resemble these stages (See
Figure 2). Both APIs implement a similar mechanism. A de-
scription of this process inside OpenGL can be found in the
specification of OpenGl 4.0 [www10] The new stages allow
a direct hardware tessellation. It resides between the vertex
processing unit and the triangle rasteriser. To allow a high
flexibility, the stages need a new primitive type. This type
is patch-based and allows a definable number of vertex in-
dices per patch. The tessellation logic itself is a configurable
fixed-function stage. As an alternative approach, the geome-
try shader stage allows us to create a tiny tessellation engine,
which can be adapted directly to an existing rendering sys-
tem with only few modifications. In addition this shader type
is more common, since it was already introduced in the pre-
vious shader model [Bly06]. With the step from DX10 class
to DX11 class GPUs the Geometry shader stage was im-
proved. In addition to speed improvements, the output buffer
size was increased from 512 output elements to 32k output
elements. This alone allows roughly 64 times more complex
geometry. Thus, hardware tessellation of a DX11 class GPU
is not necessarily superior to a geometry-shader-based ap-
proach (Concheiro et al. [RMM10]).

In [LSNCO09] Loop et al. describe a technique for approx-
imating subdivision surfaces with Gregory patches. Their
technique allows the approximation of Catmull-Clark subdi-
vision surfaces directly on the GPU. Additionally they give
an overview of the new hardware tessellation unit in DX11
class graphics hardware.

2.1. Triangular Patches

There exist several methods regarding smooth surface
patches usable for local triangle refinement. The patches

(© The Eurographics Association 2010.

M. Knuth & J. Kohlhammer & A. Kuijper / A Geometry-Shader-Based Adaptive Mesh Refinement Scheme 23

represent the curvature described by the control or input
mesh sent to the refinement process. Unfortunately, positions
and normals are the only curvature data source available for
patch setup in our situation.

A fast technique allowing a patch setup under these con-
ditions is Phong tessellation [BAOS8]. It is a technique, which
uses a triangular patch of second order in conjunction with
Phong-shading to create a smooth surface. To work properly
it needs an adequately tessellated base mesh, since it cannot
handle infliction points.

Without inflexion limitation, triangular patches of cubic
degree can be used to create smooth surfaces. A first ap-
proach for using the triangle mesh data directly as con-
trol mesh is called Curved PN Triangles and is presented
in [VPBMOL1]. To provide a control for creases by additional
vertex data Boubekeur et al. [BRS05] extend this technique.
The methods rely on a cubic triangular Bezier patch. Since
the centre control point of the Bezier patch is shared by all 3
edges of the patch, geometric continuity of degree one (G1)
can only be reached at the vertices of the patch. A technique
promising a G1 continuity along patch borders is presented
in [FMHFO8]. It combines several triangular patches of cu-
bic degree to grant continuity on the edges and blends them
by a rational function to build the final surface. Unfortu-
nately, this inspiring technique needs data from neighbour-
ing triangles for parameter computations. There is a repre-
sentation for such adjacency information available for the
GPU’s geometry shader, but it replaces the given index set
of the base geometry.

2.2. Tessellation and Adaptive Refinement

Early GPU-based refinement approaches were limited to the
vertex and fragment shader. The GPUs used did not contain
stages for direct mesh manipulation. Thus, it was necessary
to encode the new geometry data in textures to be able to
process it. A theoretical framework for GPU based refine-
ment is presented by Shiue et al. in [SGP03]. A list of ap-
proaches utilising the GPU as a general purpose processing
unit for refinement can be found in the work of Boubekeur
and Schlick [BS05].

A first approach on tessellation inside consumer graph-
ics hardware was introduced in 2001 by ATI inc.The imple-
mented technique internally uses Curved PN Triangles. The
achieved refinement has a uniform topology and allowed a
linear increment of the number of edge vertices. A uniform
refinement is quick to compute. On the other hand, it does
not allow changes of the refinement level within the same
geometry without topological inconsistencies.

Nowadays there exist mechanisms, which simplify the
process chain for adaptive mesh refinement on the GPU.
The data necessary to represent smooth transition topologies
between the different refinement levels for adaptive trian-
gle refinement can be pre-computed. These topologies can

(© The Eurographics Association 2010.

Figure 3: Semiuniform tessellation of a triangle: We start
with a uniform mesh (Left). Vertices of an edge with lower
degree are snapped to valid positions (middle) until the de-
sired lower resolution is reached (right).

be stored inside a lookup table sent to the GPU as geome-
try data. The Adaptive Refinement Kernel (ARK) technique
presented by Boubekeur and Schlick in [BSO8] uses this
technique. Another similar method using adaptive topolog-
ical patches called Dynamic Mesh Refinement is presented
by [LDO8]. The patterns describing the necessary topology
have to fit to all possible combinations of refinement levels.
Thus the number of topological patches can be very high.
This problem is reduced in the work presented by Lenz et
al. [LCNV09]. A permutation technique is used to reduce
the overall number of patterns necessary by permutation of
the barycentric coordinates used for describing positions on
the patch surface.

These methods rely on large topology catalogues in order
to deal with the different combinations of refinement lev-
els on the patch edges. The topological patches collected in
these catalogues allow a high flexibility for choosing refine-
ment patterns. Additionally, they can be computed in a pre-
processing step. The drawback is that the patterns use a lot
of memory space and have to be addressed. Thus, these algo-
rithms usually perform several drawing passes until the final
refined geometry is drawn.

An alternative to a catalogue of topological patterns is
presented in [DRS09]. The technique is a topologically con-
sistent extension of the work presented in [DRSOS8]. Their
edge-based refinement technique uses a simple mesh topol-
ogy based on dyadic uniform triangle meshes. First, a uni-
form mesh is chosen representing the highest refinement
level provided on the edges. On edges with lower refinement
level the vertices are snapped to lower refinement positions.
This grants a watertight, topologically consistent patch. The
drawback is that the snapping on the edge can create sudden
resolution changes, since only the vertices in the edge are
moved. (See Figure 3)

GPU tesselation is not only aimed at creating smoother
meshes. It can be used to reduce the necessary bandwith
of a 3D application in a system. This is especcially use-
ful for mobile devices which have limited bandwidth re-
sources. In [CYKKO09] Chung et al. address this problem
and present a shader-based solution for mobile phones. Ad-

24 M. Knuth & J. Kohlhammer & A. Kuijper / A Geometry-Shader-Based Adaptive Mesh Refinement Scheme

ditionally, they discuss the differences between the ARK
technique and the HW tesselation system of DX11 in detail.
Semiuniform adaptive triangle tessellation is adaptable for

Figure 4: Comparison between semiuniform triangle tessel-
lation and our approach: Tessellation of a thin tetrahedron:
Semi uniform triangle tessellation uses the highest edge re-
finement level for its internal structure, resulting in a high
triangle count. Our scheme uses triangle based tessellation
only on the tip and fills the reminder with a quad patch,
which can be tessellated with different resolutions for the
x and y axis. This results in a much lower polygon count in
this example and triangles more adapted to the resolution on
the edges.

geometry shader implementations, too. But the limitation to
uniform triangles as a basic refinement strategy leads to un-
necessarily high polygon counts when dealing with thin tri-
angles (See Figure 4). Additionally, the snapping algorithm
can lead to sudden resolution changes on the patch border.
Our presented refinement algorithm uses a quad- and a trian-
gle refinement to circumvent these two problems. The trian-
gle refinement uses a uniform mesh, while the quadrangular
mesh is based on a semi adaptive approach.

3. Refinement based on Quad/Triangle Patches and
Warping

In this section we present our novel hybrid adaptive refine-
ment method we use inside the geometry processing stage of
the GPU. In the GPU shader model of DX10 a new shader
stage was introduced [Bly06]. The stage is located between
vertex processing and triangle rasterisation. These geometry
shaders take mesh primitives as input and create new primi-
tives from them. The shader has limited resources, especially
regarding the number of new vertices created from an input
primitive. In order to minimize the number of vertices in our
generated geometry we use triangle strips. Another limiting
factor is the restricted accessibility of lookup data from the
shader side. A catalogue of topological patches is not suit-
able under this restriction. Thus, we generate our topology
on the fly. Since we combine different refinement strategies
on parts of the patch surface we have to represent relative
positions on the patch. We use barycentric coordinates as
suggested in [LCNV09]. This allows an easy interoperabil-
ity of the two different refinement strategies. Additionally, it
allows us modify the triangle density on the patch as a post
process after refinement and prior to the surface evaluation
of the patch. This warping process is described in Section
3.2

We first focus on the refinement stage.

3.1. Refinement Stage

This step consists of a rotation procedure, a split logic, which
divides the input triangle patch into a triangular and a trape-
zoidal part and two mesh generators.

3.1.1. Rotation

We first rotate the triangle patch (TP) to have the edge with
the lowest refinement level on its base. Thus, we always have
the same starting condition. This is inspired by the work
of Dyken [DRS09] which uses a permutation process to re-
duces the number of possible refinement states. After rota-
tion, the quad patch is placed in the lower part, while the
triangle part is located in the top part of the TP.

Figure 5: Overview over our refinement process: Given a
triangular patch and three refinement levels on its edges
(Left), we perform a split between the two edges with the
highest refinement level (Middle). The remaining triangle is
filled with a uniform triangle mesh with a resolution equal
to the patch’s lowest resolution. The gap is filled by a trape-
zoidal Quad matching the remains of the surrounding edge
resolutions (Right).

3.1.2. Split

After rotation, we perform a split of the TP into a triangular
part and a trapezoidal one. (See Figure 5) The triangular part
is processed by a triangle mesh generator. The quad part is
processed by a rectangular mesh generator. The split of the
TP is performed on the two edges with the highest refine-
ment level. This allows us to reduce the maximum refine-
ment level used in the two refinement generators.

We start by defining the refinement level for the triangle
mesh generator. Our quad mesh generator is only adaptive
for the left and the right side. Thus the resolution of the TP’s
base is directly routed through the quad patch to the triangle,
defining its resolution. The triangle mesh itself always has a
uniform topology. Through the initial rotation the left and
right edge of the TP have a resolution higher then or equal
to its base edge. Thus, the remaining difference on the two
edges has to be chosen as target resolution for the left and
the right side of the quad mesh generator.

A problem arises in the case of having two equally low
resolution edges and a high resolution edge. In this case large
fan-like structures are generated. We circumvent this case by
rotating the quad part by 90 degrees. This is possible, since

(© The Eurographics Association 2010.

M. Knuth & J. Kohlhammer & A. Kuijper / A Geometry-Shader-Based Adaptive Mesh Refinement Scheme 25

VAYAVAN
JAVAVAVAN
N1

Figure 6: Special case: Two equal low resolution edges and
one high resolution edge can lead to awkward topologies.
In this case we rotate the quad patch and place it on the

high resolution edge. This allows the adaption of the high
resolution edge to the other low resolution edges.

both sides of the quad have the same resolution. Now the
resolution of the refinement side can be lowered toward the
top triangle (See Figure 6)

3.1.3. Mesh Generators

Our approach uses two different types of mesh generators.
The first one creates a uniform triangle mesh for a given re-
finement level. The second generates a rectangular tessella-
tion which is semiuniform and uses a snapping mechanism
inspired by the work presented by Dyken [DRS09]. Top and
bottom of the rectangle share the same refinement level. In
contrast the left and the right side allow different refinement
levels (See Figure 7). The vertical resolution represents the
maximum of both refinement levels. To create a watertight
mesh a snapping process adapts the high resolution mesh to
the lower refinement level. In contrast to [DRS09], we per-
form the vertex snapping only for the vertical axis of gener-
ated triangle strips from the quad refinement patch. Perform-
ing adaptation only on one axis simplifies the mesh genera-
tor. It allows the performance of snap operations in conjunc-
tion with linear interpolation for the vertical axis of the gen-
erator. The snapping process itself can be moved outside the
inner loop of the tessellation procedure this way.

3.2. Barycentric Warping - Improving the View
Dependency

The method described above already allows an adaptive tes-
sellation of the input triangle patch. However, the method
can only create a uniform distribution of vertices on an edge.
Our edge based level of detail (LOD) is derived from a
vertex-based LOD scheme. Thus, it is obvious to use the
vertex-based data to derive a density distribution for the gen-
erated triangles.

To provide a vertex-based density control mechanism we
perform a warping on the barycentric coordinates generated
by the refinement stage. The warping itself is performed by
a quadratic Bezier triangle patch. The triangular patch is a

(© The Eurographics Association 2010.

Figure 7: Overview over our adaptive quad generation
scheme: In order to match the different resolutions for a
given patch, we create strips from left to right. Utilising a
snapping algorithm, the middle strip’s right side is pinched
to a single vertex in order to match the provided resolution
for the right edge. By using linear interpolation for coordi-
nate generation the change of resolution is distributed over
the quad.

quadratic function:

f:R3b—>R37u+v+w§1,u7v7w20 1

flu,v,w) = Z Cijk*ui*vj*wk)
i+jth<2

(v, w) = Cagou” + Conov” + Copaw” 3

+Criouv + Cor1vw + Croruw 4

It provides 6 control points. Three control points re-
semble the corners of a triangle (Czp0;Co20;Co02). The
remaining three represent points on the triangle edges
(Cr10:Co11:Ci01)-

< ©
Ca00 Cooz

Yoy
1000000000001 1 4

Figure 8: Coordinate warping of barycentric coordinates
generated from the refinement: Using a triangular Bezier
patch of degree two allows us to change the density of the
generated structures on the patch. We compute a level of de-
tail (LOD) on each vertex. The proportion of the two lod
levels of an edge is used to place the corresponding edge
control vertex of the patch. Equal levels result in placing the
control point on the centre of the edge. The mesh stays in its
original state (Left). Increasing the level of a vertex results
in moving the control points and the resulting density toward
this vertex (middle and right)

26 M. Knuth & J. Kohlhammer & A. Kuijper / A Geometry-Shader-Based Adaptive Mesh Refinement Scheme

The corner control positions are initialised with their cor-
responding barycentric positions.

Ca00 = (1,0,0))
Coxo = (0,1,0) (6)
Coo2 = (0,0,1))

The edge control points represent the relation of the ver-
tex refinement level projected onto their common edge. Ad-
ditionally, we have a set of level of detail values for the three
corner points (Lgo;Lo10;Loo1).- We compute the 6 neces-
sary weighting values (Wz10;Wi20: Wo21; Wo12; Wao1: Wio2)
as follows:

Wa10 = Lioo/(L100 + Loto) ®)
Wi20 = Lo1o/(L10o +Loto))
W10 = Lioo/(Lo1o + Loo1) (10)
Wi20 = Loio/(Loo + Loo1) an
Wao1 = Lioo/(Loot +L1oo) (12)
Wio2 = Loo1 / (Lot +L1oo) (13)

To compute an edge control point we linearly blend be-
tween their endpoints with the weights:

C110 = Ca00 * Waio + Cono * Wino (14)
Co11 = Co20 * Woz1 + Cooz * Wor2 (15)
Cio1 = Cago * Wao1 + Cooz * Wio2 (16)

This way the control points stay on the edge, always guar-
anteeing a straight triangular outline (See Figure 8). The re-
sult of this process is a mesh with a varying distribution of
triangles (See Figure 9). In contrast to [LCNV09] we not
only use barycentric coordinates to represent coordinates on
the patch, but we manipulate them prior to their usage to get
a better distribution of the generated Triangles.

4. Implementation

We implemented this method utilising the OpenGL Shad-
ing Language (GLSL) with the geometry shader extension
within an OpenGL based rendering system. The process in-
side the shader is roughly divided in 3 stages (See Figure
10). In the setup phase we prepare data, which is consis-
tent for the whole triangle patch. For surface smoothing we
use the PN triangle patch approach presented by Vlachos
in [VPBMOL1]. Additionally, a quadratic Bezier patch is set
up to perform the coordinate warping post process. Initial
splitting into the quad and the triangle refinement pattern is
performed as well. The refinement stage hosts the two refine-
ment processes and their setup. Finally, the quadratic patch

i

$
AV.'

SR
)
oY

AVAVAV

VAV

/N

V4
v&ﬂAﬁVA§

71
i AVAVAVAY S
%’A‘

f

/nl
X

VA

vy

ol

Figure 9: Coordinate warping used on an icosahedron: The
low polygon count of the initial mesh and its high curvature
introduces high changes in the LOD level for the vertices. In
the left image we see the refinemence without warping. The
middle image shows refinement in conjunction with warping.
The right image visualises the difference of both images. The
result is a smoother transition of the structure size on patch
borders.

is evaluated to compute the final coordinates used in the sur-
face evaluation by the Cubic PNTriangle Bezier patch.

I Control Points
—

Curvature
Patch
Setup

Warping
Patch
Setup

LOD
Comp.

Split
Logic

7. N

S-0S

HHH

E
v
a

l
u
a
©
e

IN

IEva]uation
14

| ‘ Setup | | Refinement |

Figure 10: Overview of our geometry shader: We start with
the control coefficient computation for surface and warping
patch. This is followed by view dependent refinement compu-
tations. Dependent on the refinement data, a split is chosen
dividing the patch into a quad and a triangular area. Af-
ter the refinement the generated coordinates are warped and
then evaluated.

4.1. View Dependency

Our presented refinement method is independent of the LOD
computation mechanism used. However, for refinement test-
ing purposes we have to choose one. We decided to combine
a simple distance-based refinement mechanism and a silhou-
ette refinement mechanism.

Distance based refinement aims to define different detail
levels according to the distance of the object to the observer.
Our computation is roughly inspired by the technique pre-
sented in Sander et al. [SMO5]. The observer is a point in
3D space, which describes the camera position O € R3. The
distance to a mesh vertex V is now simply the length of the
vector from point O to point V. In order to get the current
LOD for a distance we additionally define a min and a max
distance, which define where to use the minimum and the
maximum LOD. The distance is then scaled and normalised

(© The Eurographics Association 2010.

M. Knuth & J. Kohlhammer & A. Kuijper / A Geometry-Shader-Based Adaptive Mesh Refinement Scheme 27

to represent a refinement level of one at the max distance and
the maximal refinement level at the min distance. Addition-
ally, a logarithmic falloff between both is chosen to take into
account the effects of perspective projection. On the other
hand, the main intention behind silhouette refinement is to
increase the detail on the surface’s creasing angle. We use
a simple approach which is roughly based on the technique
described by Hoppe in [Hop97]. The factor is computed per
vertex by the dot product of the normalised distance vector
from O to V and the provided surface normal at the position
of V.

5. Experimental results

We tested our concept on two different hardware architec-
tures, both capable of performing geometry operations. An
NVIDIA GTX 280 was chose as a representative of the
shader model 4 league. Additionally, an AMD Radeon 5770
was used as a representative of the shader model 5 league.
Besides differences in the computational power, the second
GPU has a larger geometry shader output buffer for gener-
ated geometry data. This allows us to achieve higher tessel-
lation levels in hardware.

We compared our solution against an implementation of
dyadic semiuniform adaptive tessellation and PNTriangles.
All tests were performed with geometry shader based imple-
mentations to create comparable results.

FPSa
800

0 1 2 3 4 5 6 7 8 LOD

Figure 11: Comparison: The black line represents a sim-
ple uniform refinement scheme like it is used by the PNTri-
angles scheme. The blue line represents a dyadic adaptive
semiuniform tessellation scheme. The green line represents
our method without warping applied. The red line shows the
same experiment with warping enabled. Y axis: frames per
second. X axis: refinement level. Since the dyadic sheme can-
not represent all refinement levels it’s curve has a stair like
structure.

We have tested and compared different refinement strate-
gies and LOD computation methods. Additionally, we per-
formed a worst-case scenario test for our scheme (See Figure
11). The test was performed on the NVIDIA system. In ad-
dition, we have compared the performance of the ATI and
the NVIDIA-based systems (See Figure 12). As a reference
we used a simple uniform refinement strategy (black line)
which is, in practise, a geometry-shader-based implementa-
tion of the PNTriangle technique. For our method we tested
two candidates. In number one (green line) the coordinate

(© The Eurographics Association 2010.

FPS

400
300
200
100

2 3 4 5 6 7 8 LOD

Figure 12: Comparison of a DX11 class ATI 5770 (red line)
to a DX10 class NVIDIA GTX 250 (green line). The ATI per-
forms much better on the geometry shader tessellation; even
though it is the less powerful GPU in other disciplines. A Ge-
ometry shader program performs much better on DX11 class
hardware in comparison to DX10 class hardware. Thus, both
GPUs perform similarly at low tessellation levels. At higher
tessellation levels they are strongly separated.

warping was disabled. In number two (red line) it was en-
abled. Additionally, both create the maximum triangles for a
given refinement level using the longest path in the shader.
This way a worst case scenario is created. The best case for
our method is a uniform grid. Thus, in practise, performance
ranges between the values of the red (green) and the black
line.

Figure 13: Overhead view rendering of a tablecloth draped
over a torus: In the upper Image we see the direct output of
the cloth simulator. Since we want to perform real-time sim-
ulation the resolution of the simulation mesh is quite low.
Using our tessellation method inside the rendering pipeline
smoothes the appearance of the folds of the tablecloth no-
ticeably (lower Image).

28 M. Knuth & J. Kohlhammer & A. Kuijper / A Geometry-Shader-Based Adaptive Mesh Refinement Scheme

In our tests the warping adds a loss of approximately nine
percent of the frames per second to the overall process. As
seen in Figure 13, 14 and 15, our proposed scheme grants a
much smoother grid density control. Especially in the table-
cloth and torus example the sagging of the tablecloth in its
centre is clearly noticeable.

6. Conclusion

We have presented a GPU-based approach for adaptive mesh
refinement. Our approach makes use of the GPU’s geom-
etry shader to perform the necessary geometry processing
in real time within an existing rendering pipeline. In con-
trast to existing work we use a quad and a triangle-shaped
refinement strategy to combine on the fly topology compu-
tation with LOD transition inside the patch. It allows creat-
ing reasonable tessellations on thin triangles by utilizing the
quad mesh independency of vertical and horizontal resolu-
tion. The non dyadic tessellation scheme allows a finer con-
trol of the generated triangles as opposed to a dyadic scheme.
This finer resolution step size results in additional smaller
transitions of level changes on patch borders. To grant an
additional smoothing of this border transition we have intro-
duced a warping mechanism which manipulates the gener-
ated barycentric coordinates of the patch. This allows con-
trol of the density of generated triangles inside the patch.
The method presented is intended to be used for silhouette
refinement of a garment’s geometry. Especially the creasing
angle of folds and curvatures reveal rough triangular struc-
tures, which have to be smoothed.

The geometry-shader-based approach has the advantage
of allowing full control over the complete refinement pro-
cess. However, the size of generated refinement meshes is
limited, which is not a problematic aspect in our use case.
The garment mesh already has a good resolution and our
goal is to smooth the simulator’s output mesh. DX11 Hard-
ware tessellation, on the other hand, allows a smooth transi-
tion of refinement levels. However, its tessellation method
seems to introduce two new vertices per refinement step.
Our method has a finer granularity in this case, but is lim-
ited to fixed LOD transitions. Future work can address this
issue. Currently our approach uses a simple split algorithm
which could be extended to feature recursive splits. Allow-
ing a much finer control over the generated mesh structure,
it would be a nice tradeoff between accuracy and speed. Re-
placing the uniform triangle mesh generator in our approach
with a semiuniform one would increase the number of pos-
sible splits of the split logic. This can result in better refine-
ment meshes and is a topic of future research.

References

[BAO8] BOUBEKEUR T., ALEXA M.: Phong tessellation. In SIG-
GRAPH Asia '08: ACM SIGGRAPH Asia 2008 papers (2008),

pp. 1-5.

[Bly06] BLYTHE D.: The direct3d 10 system. In SIGGRAPH
"06: ACM SIGGRAPH 2006 Papers (New York, NY, USA, 2006),
ACM, pp. 724-734.

[BRS05] BOUBEKEUR T., REUTER P., SCHLICK C.: Scalar
tagged pn triangles. In EUROGRAPHICS 2005 (Short Papers)
(2005), Eurographics.

[BSO5] BOUBEKEUR T., SCHLICK C.: Generic mesh refine-
ment on gpu. In HWWS °05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(2005), ACM, pp. 99-104.

[BSO8] BOUBEKEUR T., SCHLICK C.: A flexible kernel for adap-
tive mesh refinement on gpu. Computer Graphics Forum 27, 1
(2008), 102—-114.

[CYKKO09] CHUNGK., YU C.-H., KiMm D., Kim L.-S.: Techni-
cal section: Shader-based tessellation to save memory bandwidth
in a mobile multimedia processor. Comput. Graph. 33,5 (2009),
625-637.

[DRS08] DYKEN C., REIMERS M., SELAND J.: Real-time gpu
silhouette refinement using adaptively blended bézier patches.
Comput. Graph. Forum 27, 1 (2008), 1-12.

[DRS09] DYKEN C., REINERS M., SELAND J.: Semi-uniform
adaptive patch tessellation. Computer Graphics Forum 28(8), 8
(2009), 2255-2263.

[FMHFO8] FUNFzIG C., MULLER K., HANSFORD D., FARIN
G.: Pngl triangles for tangent plane continuous surfaces on the
gpu. In GI '08: Proceedings of graphics interface 2008 (2008),
pp. 219-226.

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. In SSIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1997), ACM Press/Addison-Wesley Publishing
Co., pp. 189-198.

[LCNV09] LENZ R., CAVALCANTE-NETO J. B., VIDAL C. A.:
Optimized pattern-based adaptive mesh refinement using gpu. In
SIBGRAPI ’09: Proceedings of the 2009 XXII Brazilian Sympo-
sium on Computer Graphics and Image Processing (2009), IEEE
Computer Society, pp. 88-95.

[LDO8] LORENZ H., DOLLER J.: Dynamic mesh refinement on
gpu using geometry shaders. In WSCG’2008 Full Papers Con-
ference Proceedings (2008), pp. 97-104.

[LSNC09] Loopr C., SCHAEFER S., NI T., CASTA NO I.: Ap-
proximating subdivision surfaces with gregory patches for hard-
ware tessellation. In SIGGRAPH Asia '09: ACM SIGGRAPH
Asia 2009 papers (New York, NY, USA, 2009), ACM, pp. 1-9.

[RMM10] R.CONCHEIRO, M.AMOR, M.B0O.: Synthesis of
bezier surfaces on the gpu. In Proceedings of the Interna-
tional Conference on Computer Graphics Theory and Applica-
tions (GRAPP 2010) (2010).

[SGP03] SHIUE L.-J., GOEL V., PETERS J.: Mesh mutation in
programmable graphics hardware. In HWWS °03: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware (2003), pp. 15-24.

[SMO5] SANDER P. V., MITCHELL J. L.: Progressive buffers:
view-dependent geometry and texture lod rendering. In SGP "05:
Proceedings of the third Eurographics symposium on Geometry
processing (Aire-la-Ville, Switzerland, Switzerland, 2005), Eu-
rographics Association, p. 129.

[VPBMO1] VLACHOS A., PETERS J., BoyD C., MITCHELL
J. L.: Curved pn triangles. In I3D ’01: Proceedings of the 2001
symposium on Interactive 3D graphics (2001), pp. 159-166.

[www10] WWW.OPENGL.ORG: Opengl 4.0 specification.

(© The Eurographics Association 2010.

29

M. Knuth & J. Kohlhammer & A. Kuijper / A Geometry-Shader-Based Adaptive Mesh Refinement Scheme

Sy

SEORIAN
SRERRNR
Y
ARVARARN

Pz

KRN TSN

IR TSSISSY
NATATY
NP

P~ A v
A N S S e
LVAVAV A gy A Va AN NS IS SRS
ORI RSSO oo

i
L

9 L
gz
L

a maximum resolution is reached here which is slightly over the trigger level of the next dyadic

X)
v
X

>

Nz
0
%
YA
X
>
P%
S
VAVAY
&

N7
oA

<

1

a5
SIS
Y
v 0%
3
>
<[
s
AR
5
C0

V2
A%AVA
RN/
o
A
yVAVA Vﬁ
74

vAYY
o
2
2
o

N/
o

TAYS

vAV;
57
20

A%
AV
N>
R
o
<K
Vi
>0

VA
KA
|2
S

;}
;A
1%

7

N
N
N/

N)
D

L=

A
AN

N HOORH
N
AR
> »\V‘“N»‘V e AEVLVQW\ MWM«»D&“! =
SELOOOReaklee==

===

%
0
-

N7
Auﬁ
KK

N
%‘g

VAV ANVAR

=

X

[

N

NV ARIE
SRS

Teapot example: the left side was created using dyadic adaptive semi uniform tessellation. The right side used

.

Figure 14

our algorithm. Two different metrics for LOD computations were used: In the upper row we used a distance-and-angle-based

scheme. In the lower row the LOD is chosen to reach a maximal edge length. The 3D teapot model used has its longest triangle

edges on the side surfaces. Thus

refinement level. This results in the sudden increase of resolution visible in the bottom left image.

Cloth example: Tablecloth on a torus (top row) and a pair of trousers (bottom row). The left side shows the original

Figure 15

mesh. In the centre column we applied dyadic adaptive semiuniform tessellation. On the right side our algorithm was used.

Using a non dyadic scheme a finer granularity of the possible refinement steps is applied. In conjunction with the proposed

warping scheme a much smoother appearance of the refined mesh is created.

(© The Eurographics Association 2010.

