
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2008)
F. Faure, M. Teschner (Editors)

Hierarchical Position Based Dynamics

Matthias Müller

NVIDIA

Abstract

The Position Based Dynamics approach (PBD) recently introduced allows robust simulations of dynamic systems
in real time. The simplicity of the method is due to the fact, that the solver processes the constraints one by one
in a Gauss-Seidel type manner. In contrast to global Newton-Raphson solvers, the local solver can easily handle
non-linear constraints as well as constraints based on inequalities. Unfortunately, this advantage comes at the
price of much slower convergence.
In this paper we propose a multi-grid based process to speed up the convergence of PBD significantly while
keeping the power of the method to process general non-linear constraints. Several examples show that the new
approach is significantly faster than the original one. This makes real time simulation possible at a higher level of
detail in interactive applications such as computer games.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object ModelingPhysically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
RealismAnimation and Virtual Reality

1. Introduction

Simulation methods need to meet four major requirements
to be applicable in computer games. They must be fast, sta-
ble, controllable and easy to code in order for game de-
velopers to pick them up and use them in their projects.
There is still a significant gap between the academic research
community and game developers today. This gap seems to
get even wider because simulation techniques in computer
graphics get more and more mathematically involved as they
get closer to methods used in computational sciences. This
increase in complexity is necessary to achieve all the aston-
ishing effects we see in movies today.

In contrast, a majority of the physics in computer games
is still rigid body dynamics. Other effects like water, cloth
or soft bodies are mainly done with procedural approaches
because procedural methods are computationally cheap and
cannot get unstable. The Position Based Dynamics approach

recently introduced by [MHR06] is an attempt to bridge
this gap. It generalizes and extends the method proposed
by [Jak01]. A Verlet-based integrator is used which bypasses
the force and velocity layers and directly modifies the posi-
tions of particles or vertices of a mesh. These modifications
are computed using a non-linear Gauss-Seidel type solver.
The main advantages of the approach are its simplicity, un-
conditional stability, its ability to handle non-linear unilat-
eral (inequality) and bilateral (equality) constraints directly
and the possibility of manipulating positions which gives the
user a high level of control over the simulation process.

Unfortunately, Gauss-Seidel type solvers have one signifi-
cant drawback. Because they handle constraints individually
one by one, information propagates slowly through a mesh.
The slow convergence lets cloth or soft bodies look stretchy,
especially when high resolution meshes are used. This is def-
initely an undesirable effect which produces visual artifacts
because in the real world the high deformability of cloth is

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

Matthias Müller / Hierarchical Position Based Dynamics

not an effect of a low stretching stiffness but is due to its low
bending resistance.

Convergence can be significantly increased by using
global solvers. The most popular method for solving non-
linear systems of equations is Newton-Raphson iteration.
This approach is both computationally expensive and com-
plex to code because the system of equations has to be
linearized and solved multiple times per simulation time
step. While not practical for real-time application, it can
handle stiff equations effectively in off line applications as
[GHF∗07] show. In order for the method to be global, each
linear system has be be solved using a global linear solver
like Preconditioned Conjugate Gradients (PCG). There is no
easy way of extending PCG to handle unilateral constraints
because they turn the system into a quadratic programming
or linear complementarity problem [Ebe04]. Multigrid meth-
ods are an important alternative to (PCG). They are designed
for linear system as well and cannot handle inequalities ei-
ther because it is not clear how to propagate these to higher
hierarchy levels.

One nice feature of the Multigrid approach is the fact that
each level is typically solved by a simple Jacobi or Gauss-
Seidel iteration. The core idea of our new approach is to
use this fact and replace the linear Gauss-Seidel solver by
the non-linear variant used in PBD which results in a non-
linear Multigrid solver. There are several questions arising
with this approach that we answer in this paper: How to re-
strict unilateral constraints to coarser meshes, how to trans-
late non-linear constraint functions to coarser levels or how
to prolongate the solutions back to finer levels. Thus, our
main contribution is a method to turn the non-linear Gauss-
Seidel Solver of (PBD) into a non-linear Multigrid based al-
gorithm thereby significantly increasing the speed of con-
vergence of the PBD approach while keeping all its nice fea-
tures.

2. Related Work

In this paper we focus on the simulation of deformable ob-
jects. The state of the art reports [GM97] and [NMK∗05]
give a comprehensive overview of methods used in this field
of research.

Since the early work of [TPBF87] in the 80’s, many tech-
niques have been proposed to simulate deformable solids
and cloth. While early simulations were done as offline com-
putations, the computing power available today allows for
real-time simulation of such effects. One of the first sys-
tems that made real-time interaction with deformable objects
possible was ArtDefo described in [JP99]. An effective way
to speed up the simulation of deformable objects is to use
reduced models such as in [HSO03] and [BJ07]. [MG04]
worked with all the degrees of freedom but reduced the non-
linear governing equations to a linear system while prevent-
ing artifacts from large rotational deformations. Our method

also targets real-time simulation although there is nothing
that prevents it from being used in hight quality off-line set-
tings with higher resolution models.

As an extension of the PBD approach described in [Jak01]
and generalized in [MHR06] our method is based on con-
straint projection. This idea has been used in cloth simu-
lation by [BFA02] to resolve collisions geometrically and
by [VCMT95] in their kinematic collision correction step.
Desbrun [DSB99], Provot [Pro95] and [GHF∗07] used con-
straint projection in mass spring systems to prevent springs
from overstretching. For the efficient animation of de-
formable solids [Fau98] represent object by linearized dis-
placement constraints. For the stable simulation of soft bod-
ies [MHTG05] project the positions of particles onto a con-
figuration obtained via shape matching of original to current
positions.

The Multigrid method has been used successfully in com-
putational sciences for many decades (see [McC87] for
an introduction). Recently, it has been introduced to com-
puter graphics, mainly in connection with the Finite Ele-
ment Method such as in [DDCB01,CGC∗02,WT04,GW06].
To solve the linear Poisson equation arising in incompress-
ible fluid simulation [CFL∗07] use an algebraic Multigrid
method while [OGRG07] leverage the hierarchical nature of
the method to adaptively simulate deformations.

The latter paper uses the Multigrid approach to locally
refine objects where stresses are high. In contrast, our ap-
proach is able to generate fine detail everywhere in the ob-
ject. Neither locations of refinement nor the number of hi-
erarchy levels used change during the simulation which pre-
vents visual artifacts typically produced by adaptive simula-
tions.

3. Position Based Simulation

Since we propose an acceleration technique for the Position
Based Dynamics approach and because we want to keep the
paper as self contained as possible we briefly summarize the
core ideas of PBD. The objects to be simulated are repre-
sented by a set of N particles and a set of M constraints.
Each particle i has three attributes, namely

mi mass

xi position

vi velocity

Table 1: Attributes of a particle

A constraint j is defined by the five attributes shown in Ta-
ble 2. With type bilateral is satisfied if Cj(xi1 , . . . ,xin j

) = 0.
If its type is unilateral then it is satisfied if Cj(xi1 , . . . ,xin j

)≥
0. The stiffness parameter k j defines the strength of the con-
straint in a range from zero to one.

c© The Eurographics Association 2008.

2

Matthias Müller / Hierarchical Position Based Dynamics

n j cardinality

Cj : R3n j → R scalar constraint function

{i1, . . . in j}, ik ∈ [1, . . .N] set of indices

k j ∈ [0 . . .1] stiffness parameter

unilateral or bilateral type

Table 2: Attributes of a constraint

Given this data and a time step ∆t, the simulation proceeds
as follows:

(1) forall particles i
(2) initialize xi = x0

i ,vi = v0
i ,wi = 1/mi

(3) endfor
(4) loop
(5) forall particles i do vi ← vi +∆twifext(xi)
(6) forall particles i do pi ← xi +∆tvi
(7) forall particles i do generateCollisionConstraints(xi → pi)
(8) loop solverIterations times
(9) projectConstraints(C1, . . . ,CM+Mcoll ,p1, . . . ,pN)
(10) endloop
(11) forall particles i
(12) vi ← (pi−xi)/∆t
(13) xi ← pi
(14) endfor
(15) endloop

Since the algorithm simulates a system which is second
order in time, both the positions and the velocities of the
particles need to be specified in (1)-(3) before the simulation
loop starts. Lines (5)-(6) perform a simple explicit forward
Euler integration step on the velocities and the positions. The
new locations pi are not assigned to the positions directly but
are only used as predictions. Non-permanent external con-
straints such as collision constraints are generated at the be-
ginning of each time step from scratch in line (7). Here the
original and the predicted positions are used in order to per-
form continuous collision detection. The solver (8)-(10) then
iteratively corrects the predicted positions such that they sat-
isfy the Mcoll external as well as the M internal constraints.
Finally the corrected positions pi are used to update the po-
sitions and the velocities. It is essential here to update the
velocities along with the positions. If this is not done, the
simulation does not produce the correct behavior of a sec-
ond order system.

4. The System to be solved

In the rest of the paper we will focus on the solver (8)-(10)
because this is the part of the algorithm where almost all of
the simulation time is spent. Let us first look at the original
Gauss-Seidel Solver proposed in [MHR06].

The goal of the solver step is to correct the predicted

positions pi of the particles such that they satisfy all con-
straints. The problem that needs to be solved comprises of a
set of M equations for the 3N unknown position components,
where M is now the total number of constraints. This system
does not need to be symmetric. If M > 3N (M <3N) the
system is over-determined (under-determined). In addition
to the asymmetry, the equations are in general non-linear.
The function of a simple distance constraint C(p1,p2) =
(p1−p2)2− d2 yields a non-linear equation. What compli-
cates things even further is the fact that collisions produce
inequalities rather than equalities. Solving a non-symmetric,
non-linear system with equalities and inequalities is a tough
problem.

Let p be the concatenation [pT
1 , . . . ,pT

N]T and let all the
constraint functions Cj take the concatenated vector p as in-
put while only using the subset of coordinates they are de-
fined for. We can now write the system to be solved as

C1(p) Â 0

. . .

CM(p) Â 0,

where the symbol Â denotes either = or ≥. Newton-
Raphson iteration is a method to solve non-linear symmet-
ric systems with only equalities. The process starts with a
first guess of a solution. Each constraint function is then lin-
earized in the neighborhood of the current solution using

C(p+∆p) = C(p)+∇pC(p) ·∆p+O(|∆p|2) = 0. (1)

This yields a linear system for the global correction vector
∆p

∇pC1(p) ·∆p =−C1(p)

. . .

∇pCM(p) ·∆p =−CM(p),

where ∇pCj(p) is the 1×N dimensional vector containing
the derivatives of the function Cj w.r.t. all its parameters, i.e.
the N components of p. It is also the jth row of the linear sys-
tem. Both the rows ∇pCj(p) and the right hand side scalars
−Cj(p) are constant because they are evaluated at the loca-
tion p before the system is solved. When M = 3N and only
equalities are present, the system can be solved by any linear
solver, e.g. PCG. Once it is solved for ∆p the current solution
is updated as p← p+∆p. A new linear system is generated
by evaluating ∇pCj(p) and −Cj(p) at the new location after
which the process repeats.

If M 6= 3N the resulting matrix of the linear system is
non-symmetric and not invertible. [GHF∗07] solve this prob-
lem by using the pseudo-inverse of the system matrix which
yields the best solution in the least-squares sense. Still, han-
dling inequalities is not possible directly.

c© The Eurographics Association 2008.

3

Matthias Müller / Hierarchical Position Based Dynamics

5. The Non-Linear Gauss-Seidel Solver

The non-linear Gauss-Seidel solver of PBD solves each con-
straint equation separately. Each constraint yields a single
scalar equation C(p) Â 0 for all the particle positions as-
sociated with it. The subsystem is therefore highly under-
determined. PBD solves this problem as follows. Again,
given p we want to find a correction ∆p such that C(p +
∆p) = 0. It is important to notice that PBD also linearizes
the constraint function but individually for each constraint.
The constraint equation is approximated by

C(p+∆p)≈C(p)+∇pC(p) ·∆p = 0. (2)

The problem of the system being under-determined is solved
by restricting ∆p to be in the direction of ∇pC which con-
serves the linear and angular momenta. This means that only
one scalar λ - a Lagrange multiplier - has to be found such
that the correction

∆p = λ∇pC(p). (3)

solves Eq. (2). This yields the following formula for the cor-
rection vector of a single particle i

∆pi =−s wi∇piC(p), (4)

where

s =
C(p)

∑ j w j|∇p jC(p)|2 (5)

and wi = 1/mi.

As mentioned above, this solver linearizes the constraint
functions. However, in contrast to the Newton-Raphson
method, the linearization happens individually per con-
straint. Solving the linearized constraint function of a single
distance constraint for instance yields the correct result in a
single step. Because the positions are immediately updated
after a constraint is processed, these updates will influence
the linearization of the next constraint because the lineariza-
tion depends on the actual positions. Asymmetry poses no
problem because each constraint produces one scalar equa-
tion for one unknown Lagrange multiplier λ . Inequalities are
handled trivially by first checking whether C(p) ≥ 0. If this
is the case, the constraint is simply skipped.

6. The Multi-Grid Solver

In this section we present our non-linear Multi-Grid solver.
The crucial part is the construction of a data structure - a hi-
erarchy of constrained particle systems. Once this data struc-
ture is constructed, the solution process is straight forward.

6.1. Hierarchical Particle Systems

The constrained particle system composed of the set of N
particles and the set of M constraints represents the finest

level 0 of the hierarchy. In specific settings, this level 0 par-
ticle system has a specific structure. In the case of cloth sim-
ulation it represents a triangle mesh while deformable solids
are typically represented by tetrahedral meshes.

A particle system at a coarser level l contains a proper
subset of the particles at level l−1. Thus, a particle present
at level l is contained in all finer level particle systems l−
1 . . .0. We define the level of a particle to be the coarsest
level which contains it even though it is contained in all finer
levels as well (see Fig. 5).

Two types of constraint are distinguished. Cardinality-1
constraints and cardinality-n constraints with n > 1. Each
particle system in the hierarchy has its own set of cardinality-
n constraints while cardinality-1 constraints are associated
with their particles and are used in all levels of the hierarchy
in which the particle is present.

We define two particles to be connected (or neighbors)
at level l if they share at least one cardinality-n constraint on
this level. To be able to propagate information from one level
to the next, a level l particle must be connected to at least one
level l +1 particle on level l. This must hold for all levels but
the coarsest. We call the set of level l +1 particles connected
to a level l particle the parents of the level l particle. Thus, all
particles except the ones on the coarsest level need to have
al least one parent (see Fig. 1).

This definition of the data structure solves one main prob-
lem brought up in the introduction, namely how to restrict
unilateral constraints to coarser levels. In the simulation sce-
narios we target, the only unilateral constraints are colli-
sion constraints which typically have cardinality 1. Since
cardinality-1 constraints are bound to the associated parti-
cle, they are simply processed as in PBD on each level the
particle exists. The same is true for other cardinality-1 con-
straints such as attachments.

6.2. Particle Restriction

We first describe how the particle subsets on each level are
selected. Given the particles of a fine level (level l say) and
the connectivity on the fine level, one has to choose a proper
subset of the particles to form the set of particles of coarse
level l +1. Many choices are possible as long as the restric-
tion is met that each fine particle is connected on the fine
level to at least one coarse particle. As [CFL∗07] note, this is
the so-called vertex or node cover problem [Pap97] known
to be NP-complete. Fortunately, there is no need to work
with the optimal solution, a good suboptimal solution is fine
too. The better the solution the faster the method becomes,
though.

In [CFL∗07] the authors use a heuristic greedy algorithm.
They first mark all the particles as fine. Then, while travers-
ing the mesh certain particles are marked as coarse. If the
mesh is not connected the process has to be restarted for each

c© The Eurographics Association 2008.

4

Matthias Müller / Hierarchical Position Based Dynamics

disconnected component. We propose a simpler algorithm
that processes a disconnected mesh in one sweep. It can also
handle a restricted version of the original constraint, namely
the constraint that each fine vertex has at least k parents. For
k > 1 the number of particles from fine to coarser levels de-
creases more slowly. This yields smoother error propagation
but more projection work on coarser levels. We use k = 2 in
our examples.

First all particles are marked as coarse. Each particle also
stores the number of coarse neighbors. This value is ini-
tialized with the total number of neighbors. Then, all the
particles are traversed in an arbitrary order. A particle is
marked fine if two conditions are met. First, the number of
its coarse neighbors must be greater or equal k and second,
all the neighboring fine vertices must have strictly more than
k coarse neighbors. If the particle is marked as fine, the num-
ber of coarse neighbors of all its neighbors is decreased by
one.

The convergence of the solver is improved if attached par-
ticles are kept in the coarse levels of the hierarchy. However,
keeping all of them in all levels makes coarser meshes un-
necessarily dense. One way to solve this problem is to mark
coarse attached vertices as fine only with a certain proba-
bility. An alternative solution is to handle attached vertices
last because the probability that a particle is marked as fine
decreases towards the end of the process.

To make the solver faster, each particle pi stores pointers
to its parents p j on the next coarser level plus corresponding
weights wi j . The weights are computed as

ŵi j =
1

di j/max j(di j)+ ε
, (6)

where di j is the distances between child and parent in
the original mesh. We use the normalized weights wi j =
ŵi j/∑ j ŵi j . The important feature of these weights is the fact
that if the particle coincides with one of its parents this par-
ent gets a weight of 1 where all other get zero weights. This
is true for ε = 0 which yields ŵi j = ∞ for the non-normalized
weight. To prevent this numerically problematic situation we
add a small ε to the denominator.

6.3. Constraint Restriction

A question still open is how to generate the cardinality-n
constraints on coarser levels. Here we handle the case of
cardinality-2 distance constraints and discuss higher order
constraints later. The algorithm for generating the level l
constraints given the level l− 1 constraints proceeds as fol-
lows:

First all level l− 1 constraints are copied to level l. Now
certain constraints contain fine particles not present in level
l. This problem is solved by processing all fine particles one
by one. Each fine particle pi is collapsed into one of its
coarse neighbors p j (see Fig. 2). The constraint connecting

Figure 1: A fine level l is composed of all the particles shown
and the dashed constraints. The next coarser level l +1 con-
tains the proper subset of back particles and the solid con-
straints. Each fine white particle needs to be connected to
at least k (=2) black particles – its parents – shown by the
arrows.

pi and p j is removed. For all neighbors pk of particle pi, if
pk is also a neighbor of p j the constraint between pk and pi
is removed. Otherwise, it is replaced by a constraint connect-
ing pk and p j . Two question remain open. How to choose p j
among the coarse neighbors of pi and how to compute the
distance for the new constraint from pk to p j .

To choose a coarse neighbor p j we first compute the av-
erage of the positions of all coarse neighbors of pi using the
original positions of the particles. For p j we then choose the
neighbor that is closest to the averaged position. This choice
produces evenly distributed edge lengths.

There are multiple ways to compute the rest distance of
the new constraint from pk to p j . One possibility is to use
the sum of the rest distances of the constraints pk − pi and
pi− p j (see Fig. 2 (b)). This definition mimics geodetic dis-
tances within the manifold of the mesh. If a cut runs through
the original mesh the distance constraints will not bridge the
gap but will correctly measure the distance around the cut.
However, this definition might yield constraints that are too
loose because the paths along the mesh edges are only ap-
proximations of geodesics.

Another possible way of computing the distance of the
coarser constraints is to measure the distance between pk and
p j in the original pose of the particle system or mesh. For
initially flat pieces of cloth for instance, this measure is the
correct one while for non flat pieces the resulting constraints
might be too tight because they force the cloth back to the
original curved state. Also, such constraints will bridge cuts
which results in incorrect behavior. Both approaches have
applications they are best suited for.

One useful property of this algorithm is the fact that if
the distance constraints on the finest level form a triangle
mesh, all coarser meshes will be triangle meshes as well,
because edge collapses conserve the triangle mesh property.
This is particularly useful for level of detail physics because

c© The Eurographics Association 2008.

5

Matthias Müller / Hierarchical Position Based Dynamics

p
i

p
j

p
k

p
j

p
k

(a) (b)

Figure 2: Fine particle pi is collapsed into the coarse neigh-
bor p j. The dashed edges in (a) are removed. Constraint
pk − pi in (a) becomes the new constraint pk − p j in (b).
The new constraint length is computed from the constraints
pk− pi and pi− p j.

for objects far from the camera, only coarse meshes can be
used for both simulation and visualization.

Higher order constraints such as bending constraints
might be generalized in a similar way. However, as men-
tioned in the introduction, deformable objects typically have
low bending resistance and therefore, handling those con-
straints in coarser levels is not necessary. Also, bending is a
local phenomenon that appears when the material is in a non
stretched state.

7. Hierarchical Solver

Once the hierarchical data structure is in place, the Multigrid
algorithm is fast and simple to implement:

1. Start at the coarsest level: l ← lmax
2. Save all positions pi of the level l particles in additional

state variables qi.
3. Run one (or more) PBD solver steps on the current level,

i.e. project all the cardinality-1 constraints of all the level
l particles plus all the cardinality-n constraints of this
level using non-linear Gauss-Seidel.

4. If l = 0 stop, else go to the next finer level: l ← l−1
5. Correct the position of each particle i on level l using

pi ← pi + ∑
j∈P(i)

wi j (p j−q j), (7)

where P(i) is the set of the indices of the parents of par-
ticle i.

6. Go to step 2.

8. Discussion

More sophisticated schemes are possible. Typical Multigrid
schemes perform multiple passes up and down the hierar-
chy. However, we found, that this simple and fast scheme is
sufficient to achieve the desired stiffness of the deformable
objects.

It is important to note that only the corrections com-
puted on a level are propagated down the hierarchy and not

the newly computed positions themselves. This guarantees
that all the small detail in the high resolution levels is pre-
served. Coarse geodesic-based distance constraints only grip
if the entire material between the adjacent particles is fully
stretched as desired. They do not affect the simulation other-
wise. For this to be true, we define all higher level distance
constraint to be unilateral upper limit constraints.

One of the main reasons developers use physics in games
is to make environments destructible. Destructible cloth is
tearable cloth. In case of tearing, the hierarchy needs to be
updated. The tearing algorithm described in [MHR06] is
based on particle splitting. Such a split clones a particle mul-
tiple times an assigns subsets of adjacent triangles to each of
the clones. In case of a particle split, the parent links as well
as the adjacent constraints in the hierarchy get invalid. If they
were kept they would potentially bridge cut lines resulting in
ghost influences across the cut. We take a conservative ap-
proach to solve this problem. First all the parent links and
adjacent constraints of the split particle are removed. The
algorithm then proceeds recursively up the hierarchy along
the parent links and removes constraints and parent links of
parents on coarser levels as well (see Fig. 8).

Besides the simplicity and effectiveness of the method,
it also has its drawbacks. With very low iteration counts of
the PBD solver, visual artifacts may occur if the hierarchi-
cal meshes are of poor quality. This effect is removed by
increasing the iteration count of the subsequent PBD step
to three or four. Also, the hierarchical solver cannot be par-
allelized as easily as the Gauss-Seidel type solver of PBD.
Currently, we run the hierarchical solver sequentially before
we start the parallel PBD solver. We already mentioned that
we do not consider the bending constraints in higher levels
which is a restriction of the current implementation. How-
ever, while increased stretching stiffness increases the qual-
ity of the simulation, increased bending stiffness typically
removes small detail and wrinkles. Such an effect can be
achieved simply by making the simulation mesh coarser.

9. Results

We have integrated the method into a real time physics
engine. The results presented here and in the video were
recorded using a Intel Core2 CPU at 2.66 GHz, 2 GB of
main memory and an NVIDIA GeForce 8800 GTX graphics
card.

Position Based Dynamics has become quite popular in
the field of game physics. It has recently been used in the
open source physics engine Bullet for adding the new soft
body feature. Our method is especially designed for devel-
opers who use PDB and want to make it substantially faster.
Therefore, we compare the performance of the new approach
against the original method and not against more complex
solvers.

The diagram in Fig. 3 depicts the number of solver itera-

c© The Eurographics Association 2008.

6

Matthias Müller / Hierarchical Position Based Dynamics

0

5

10

15

20

25

30

25 23 21 19 17 15 13 11 9 7 5

N
u

m
b

e
r

o
f

it
e

ra
!

o
n

s

Rela!ve stretch (percent)

0 hierarchy levels

3 hierarchy levels

5 hierarchy levels

Figure 3: Number of regular PBD iterations needed to re-
strict the stretch of a piece of cloth with 126 rows of trian-
gles under gravity to a specific value without a hierarchy and
with 3 and 5 hierarchy levels.

tions needed to restrict stretching under gravity to a certain
value. The measurements were done for the piece of cloth
shown in Fig. 6. It contains 126 rows of triangles which
makes the propagation of pressure waves through the cloth
quite slow if the hierarchy is not used. The numbers clearly
show the benefit of using the hierarchical approach.

Fig. 7 shows the effect of the Multigrid solver and the in-
fluence of the iteration count. At each time step, we first run
the Multigrid solver as described in Section 7. After that,
the original Gauss-Seidel solver is run because the Multigrid
solver does not consider the original constraints on level 0.
We run the Gauss-Seidel solver two times while processing
the constraints in the opposite order in the second iteration.
This makes the process symmetric. The piece of cloth shown
is composed of 11,500 triangles and simulated at 60 frames
per second. Next, the Multigrid part is switched off while
keeping the number of iterations at two. There is almost no
performance gain because the total number of constraints in
the entire hierarchy is typically smaller than the number of
constraints on level 0. With only two iterations the material
gets very stretchy. Increasing the number of iterations makes
the cloth stiffer but at the same time slows the simulation
down. Only with about 20 iterations the stiffness gets com-
parable with the one using Multigrid. The frame rate in that
case drops to about 12 frames per second however. In this
example we used a regular base mesh (see Fig. 6) which is
suitable for objects like flags or canvases. The hierarchy in
this case can be generated directly by using coarser versions
of the base structure in coarser levels.

In order to test the algorithm with irregular meshes we
simulated a woman with a long dress (see Fig. 5). The final
results are shown in Fig. 4. The entire simulation including
character animation and character - cloth interaction runs at
about 30 frames per second. Without the Multigrid solver,
wind and friction on the floor stretch the dress significantly.
As the second and the fourth image show, the Multigrid ap-

proach makes the simulation of inextensible cloth possible
at interactive rates.

10. Conclusions and Future Work

We have presented a non-linear multigrid algorithm to
speedup position based dynamics significantly. With this
method, the nice features of PBD such as simplicity and sta-
bility are kept while the problem of slow error propagation
is removed.

One line of future work is the improvement of the tear-
ing algorithm. As mentioned earlier, our procedure is con-
servative. It typically removes more constraints then neces-
sary which makes the cloth around the tear line weaker than
it should. We also work on other methods to generate the
coarser meshed in the hierarchy.

So far we have tested the method on cloth only. As a next
step we will port it to our soft body simulation engine which
we expect to be a straight forward task because the method
is not restricted to triangles.

c© The Eurographics Association 2008.

7

Matthias Müller / Hierarchical Position Based Dynamics

References

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Ro-
bust treatment of collisions, contact and friction for cloth
animation. Proceedings of ACM Siggraph (2002), 594–
603.

[BJ07] BARBIČ J., JAMES D.: Time-critical distributed
contact for 6-dof haptic rendering of adaptively sampled
reduced deformable models. In SCA ’07: Proceedings of
the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation (Aire-la-Ville, Switzerland, Switzer-
land, 2007), Eurographics Association, pp. 171–180.

[CFL∗07] CHENTANEZ N., FELDMAN B. E., LABELLE

F., O’BRIEN J. F., SHEWCHUK J. R.: Liquid simulation
on lattice-based tetrahedral meshes. In SCA ’07: Proceed-
ings of the 2007 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (Aire-la-Ville, Switzerland,
Switzerland, 2007), Eurographics Association, pp. 219–
228.

[CGC∗02] CAPELL S., GREEN S., CURLESS B.,
DUCHAMP T., POPOVIĆ Z.: A multiresolution frame-
work for dynamic deformations. In in proceedings of
SCA 2002 (2002), pp. 41–47.

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P.,
BARR A. H.: Dynamic real-time deformations using
space and time adaptive sampling. In Computer Graph-
ics Proceedings (Aug 2001), Annual Conference Series,
ACM Press / ACM SIGGRAPH. Proceeding.

[DSB99] DESBRUN M., SCHRÖDER P., BARR A.: In-
teractive animation of structured deformable objects. In
Proceedings of Graphics Interface ’99 (1999), pp. 1–8.

[Ebe04] EBERLY D. H.: Game Physics. Elsevier, ISBN
1-55860-740-4, 2004.

[Fau98] FAURE F.: Interactive solid animation using lin-
earized displacement constraints. In Eurographics Work-
shop on Computer Animation and Simulation (EGCAS)
(1998), pp. 61–72.

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient simulation of
inextensible cloth. ACM Trans. Graph. 26, 3 (2007), 49.

[GM97] GIBSON S. F., MIRTICH B.: A survey of de-
formable models in computer graphics. Technical Report
TR-97-19, MERL (1997).

[GW06] GEORGII J., WESTERMANN R.: A multigrid
framework for real-time simulation of deformable bodies.
Computers & Graphics 30, 3 (2006), 408–415.

[HSO03] HAUSER K. K., SHEN C., O’BRIEN J. F.: Inter-
active deformation using modal analysis with constraints.
In Graphics Interface ’03 (2003).

[Jak01] JAKOBSEN T.: Advanced character physics Ű the
fysix engine. www.gamasutra.com (2001).

[JP99] JAMES D. L., PAI D. K.: Artdefo, accurate real

time deformable objects. In Computer Graphics Proceed-
ings (Aug. 1999), Annual Conference Series, ACM SIG-
GRAPH 99, pp. 65–72.

[McC87] MCCORMICK S. F.: Multigrid Methods. Indus-
trial and Applied Mathematics, Philidelphia, 1987.

[MG04] MÜLLER M., GROSS M.: Interactive virtual ma-
terials. In GI ’04: Proceedings of Graphics Interface
2004 (School of Computer Science, University of Water-
loo, Waterloo, Ontario, Canada, 2004), Canadian Human-
Computer Communications Society, pp. 239–246.

[MHR06] MÜLLER M., HENNIX B. H. M., RATCLIFF J.:
Position based dynamics. Proceedings of Virtual Reality
Interactions and Physical Simulations (2006), 71–80.

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHER

M., GROSS M.: Meshless deformations based on shape
matching. Proceedings of ACM Siggraph (2005), 471–
478.

[NMK∗05] NEALEN A., MÜLLER M., KEISER R., BOX-
ERMAN E., CARLSON M.: Physically based deformable
models in computer graphics. Eurographics 2005 state of
the art report (2005).

[OGRG07] OTADUY M. A., GERMANN D., REDON S.,
GROSS M.: Adaptive deformations with fast tight
bounds. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (Aire-la-Ville, Switzerland, Switzerland, 2007), Eu-
rographics Association, pp. 181–190.

[Pap97] PAPADIMITRIOU C. H.: Computational Com-
plexity. Addison-Wesklay Publishing Company, ISBN 0-
201-53082-1, 1997.

[Pro95] PROVOT X.: Deformation constraints in a mass-
spring model to describe rigid cloth behavior. Proceed-
ings of Graphics Interface (1995), 147Ű–154.

[TPBF87] TERZOPOULOS D., PLATT J., BARR A.,
FLEISCHER K.: Elastically deformable models. In Com-
puter Graphics Proceedings (July 1987), Annual Confer-
ence Series, ACM SIGGRAPH 87, pp. 205–214.

[VCMT95] VOLINO P., COURCHESNE M., MAGNENAT-
THALMANN N.: Versatile and efficient techniques for
simulating cloth and other deformable objects. Proceed-
ings of ACM Siggraph (1995), 137–144.

[WT04] WU X., TENDICK F.: Multigrid integration for
interactive deformable body simulation. In ISMS (2004),
pp. 92–104.

c© The Eurographics Association 2008.

8

Matthias Müller / Hierarchical Position Based Dynamics

Figure 4: The Multigrid solver presented in this paper makes possible the simulation of high resolution cloth in real time. In
the first and third image, friction and wind forces let cloth simulated with conventional methods look stretchy. In the second and
fourth image, this artifact is removed without noticeable performance drop.

.

Figure 5: The particle system defined by the irregular cloth mesh is reduced step by step to build a hierarchy. A particle
contained in a certain level of the hierarchy is contained in all the finer levels as well.

Figure 6: Often regular meshes can be used, e.g. for flags or canvases. In this case the hierarchy can be generated directly
without using the general reduction algorithm.

c© The Eurographics Association 2008.

9

Matthias Müller / Hierarchical Position Based Dynamics

Figure 7: The piece of cloth on the left is simulated using the Multigrid algorithm and two regular iterations. The other pieces
are simulated conventionally using 2, 5, 10 and 20 iterations. The same stiffness is achieved only with 20 iterations but at about
a fifth of the framerate.

Figure 8: When the cloth is torn, the hierarchy needs to be updated on all levels.

c© The Eurographics Association 2008.

10

