
4th Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2007)
J. Dingliana, F. Ganovelli (Editors)

Refraction of Water Surface Intersecting Objects
in Interactive Environments

H. Cords†

Institute of Computer Science, University of Rostock, Germany

Abstract

This paper presents a rapid method to render dynamic water surfaces with penetrating obstacles in real-time.
Taking the surface boundary into account, our method allows the rendering of single reflections and single refrac-
tions of objects even intersecting the water surface, including a physically approximative perspective refraction
mapping. Thereby, water surfaces are represented as 2.5D height fields and obstacles as polygonal objects. In
principle, we determine approximating virtual reflection and refraction eye coordinates. With respect to the water
surface, the reflected and refracted objects and parts of objects are projected onto the surface from separate, vir-
tual eye coordinates. Since we are using per-pixel reflection and refraction mapping, our multi-pass, image-based
technique is suitable for GPU-based implementations. Moreover, we demonstrate the interactive application of the
method for height field based data sets extracted from interactive 3D Smoothed Particle Hydrodynamics (SPH)
simulations in real-time. Thereby, the presented approach achieves high frame rates and plausible results.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Real-time rendering of dynamic water surfaces requires sim-
plifications of complex physical effects like reflections, re-
fractions and caustics. Refraction is a fundamental visual
feature if a refracting material can be seen at varying angles,
e.g. a glass of water. Therefore, refractions should be han-
dled by an accurate approximation in the rendering process
in order to achieve convincing results.

This paper addresses the problem of polygonal objects
intersecting (or lying under) the water surface. We focus
on real-time applications and approximated reflections and
refractions of these polygonal objects, since realistic and
rapid reflections and refractions at strongly curved height
field based surfaces are still a practically unsolved prob-
lem: Fast standard environment mapping techniques can-
not handle curved surfaces with intersecting objects. Hence,
we present a rapid, image-based approximation of single re-
flections and refractions at strongly curved, dynamic water

† e-mail: hilko.cords@uni-rostock.de

surfaces. Due to the excellent performance of a GPU-based
implementation, our method results in high framerates on
consumer graphics hardware. Moreover we applied the pre-
sented technique to a physically based, interactive and rapid
real-time fluid solver – based on a 3D SPH simulation, but
the surface is reconstructed as a height field. Thus, a virtual
pool of water can be handled interactively like e.g. a glass
of water in reality (cf. fig. 12c). Beside SPH, our approach
can be adapted to any other height field based water surface
generation technique easily. In practise, our approach can
be used to reflect and refract e.g. a pontoon, an avatar, fish,
rocks in a river, or a boat intersecting water surface. Fast ap-
proximating techniques simulating those effects are favored
by current video games.

The basic idea of our visualization approach is to approx-
imate the curved surface surrounding an object by a plane.
This plane is necessary for calculating the virtual reflected
and refracted eye positions to generate approximated im-
ages of the refl./refr. object (Sec. 2.1). For each object, this
procedure is repeated separately. Afterwards, the generated
images are mapped onto the surface according to physical

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

(a) (b) (c)

Figure 1: Principle of planar reflections and refractions: A planar, 100% specular reflecting mirror is seen from eye coordinates
E (a). Three example viewing rays v1, v2 and v3 are reflected. All reflected rays focus at the virtual reflected eye position Erefl.
Using a refractive plane (example b,c: refraction ratio of water), no focus occurs (b). In theory, the virtual refracted camera
vectors can be determined for each point seen on the plane p1, p2 and p3. Therefore, the distances between E and p1, p2, p3
are equated to the distances between Erefr and p1, p2, p3 (c).

refl./refr. of the real, curved surface (Sec. 2.2). Hence, re-
fraction properties like virtual angle shift or virtual scaling
of objects intersecting the water surface can be simulated.
Those phenomena can not be approximated accurately at
high framerates with the techniques used e.g. in today’s com-
puter games. Particular attention is paid to objects which are
intersecting the water surface, with the ambition to minimize
artifacts at the visual transition at the surface-layer between
object parts lying above and under water surface. Our ap-
proach achieves convincing results at reasonable framerates
for curved surfaces, as shown for surfaces resulting from
real-time SPH simulations (Sec. 3 and 4).

1.1. Related Work

Due to the complexity of interaction between light and
water, an exact simulation of these physical effects (e.g.
raytracing) is not affordable for real-time applications. In
fact, the simulation and rendering time for even approxi-
mated photo-realistic water lies beyond real-time [CMT04]
[HK05]. Thus, a lot of work has been done in the field of
computer graphics simplifying or approximating the physi-
cal behavior of liquids (e.g. [Sta99], [MCG03], [Har05]), as
well as the physically based visual appearance.

Specular reflections or single refractions can be approx-
imated by using static or dynamic environment maps. The
scene is rendered into the environment map from the view
of the reflecting and refracting object. The map generated
that way is accessed according to view direction and surface

orientation during the final rendering pass, usually GPU-
driven [NC02] [RKL∗06]. This technique works well for
small objects, but for large objects with flat or close to flat
surface areas (e.g. water surfaces) the environment map ap-
proach suffers. This problem can be solved for specular re-
flections with an algorithm determining projected reflection
vertices [RH06] [EMDT06], which allows accurate reflec-
tions even for intersecting objects. Planar single reflections
can be realized with a second rendering pass: The scene
is rendered from the mirrored viewpoint into the reflecting
plane [BMG∗99]. Planar refractions can be approximated in
a similar way, but are more complex in practise. The scene in
refraction space is distorted into image space. Thus a tran-
sition function has to be calculated, which transforms the
refracted scene into the image space [DB94]. Image-based
double refraction (meaning refraction through two surface
borders) using an environment map can be realized with a
two pass rendering approach [Wym05]: The refractive object
is split into back and front faces. Restricted to static environ-
ment maps (lying at infinite distance), the approach achieves
reasonable results at high frame rates.

Approaches towards the real-time rendering of water sur-
faces including reflections and refractions are usually ei-
ther based on approximating raytracing techniques or en-
vironment mapping techniques. The real-time raytracing
approaches include e.g. a simplified raytracing algorithm
[BD06] using two height fields: The water surface and the
ground surface. The intersection of refracted and reflected
rays with the ground surface is calculated on the GPU

c© The Eurographics Association 2007.

60

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

for reasonable frame rates. This technique achieves pleas-
ing results for height field based grounds, including height
field humps penetrating the surface. Other GPU-based ap-
proaches towards real-time raytracing built upon some ma-
jor simplifications have recently been proposed [SKALP05]
[PMDS06]. However, the raytracing approaches achieve
good results, but the lack of high framerates does not allow
the use e.g. in actual computer games.

The environment mapping approaches include a fast tech-
nique used in today’s computer games: The scene parts are
drawn into an environment map from eye coordinates, which
is accessed during the surface rendering pass with an offset
depending on the surface height and surface normal to sim-
ulate the typical wobbling behavior of reflecting and refract-
ing water surfaces [Sou05]. This empiric approach achieves
good visual results and performances but cannot represent
the typical refraction effects like angle shifts or object scal-
ing. Another approach generates the environment maps de-
pending on a global planar approximation of the water sur-
face [Bel03], visualizing lakes and oceans: The refraction
map is generated from camera view. This approach achieves
good results for slightly curved surfaces, but cannot handle
the perspective shift of objects lying under water or the oc-
currence of strongly curved waves. In [SW01] a GPU-based
approach is presented, using a noise function to generate the
surface. This method includes standard environment map-
ping for approximating sky reflections and ground refrac-
tions, but cannot handle objects intersecting the surface.

2. Our Approach

In this work, we solve the following problems of currently
used techniques (see previous section) for rapid rendering of
reflections and, particularly, refractions of 2.5D water sur-
faces: Highly curved surfaces, objects intersecting the sur-
face, objects lying underwater. Except for special scenar-
ios (e.g. splashing, breaking waves), most water surfaces are
2.5D. Thus, choosing height fields for the surface represen-
tation is an intuitive approach. Moreover, we observe that
except for small wavelengths, the surface of water surround-
ing an object can be approximated by a plane (Fig. 6 top).
Hence, this plane is used to determine reflective and refrac-
tive views of this object. We demonstrate that these planar
approximations can be mapped neatly onto the surface with
respect to the laws of reflection and refraction, resulting in
plausible optical properties. The basic steps of our method
are the following:

1. A surface approximative plane around the handled object
is generated.

2. This plane is used to determine the refl./refr. virtual eye
coordinates.

3. These virtual eye coordinates are used to generate the
refl./refr. environment map.

4. During surface rendering, this env. map is accessed using
refl./refr. vectors of the slightly modified surface.

The virtual eye coordinates are used to generate an ap-
proximating perspective refl./refr. map. In detail, these vec-
tors are introduced in section 2.1. The final intensity ratio of
reflection and refraction is calculated by the Fresnel equa-
tions.

It must be pointed out that each refl./refr. object is handled
separately. Objects intersecting the surface should be split
into two parts: One part lying above surface and one part
lying under surface. We assume that reflected and refracted
rays do not intersect the surface again. Hence, single reflec-
tion and refraction is sufficient. In the majority of cases, this
simplification is valid. Thus, just the object parts lying above
surface can be reflected and just the object parts lying under
surface can be refracted.

In detail, we describe the basic planar refl./refr. in section
2.1 and the extension to curved water surfaces in section 2.2.
Furthermore, we demonstrate an approximation technique,
to reduce the visual artifacts occurring at surface penetrating
objects and multiple objects fairly (Sec. 2.3), resulting in a
good tradeoff between performance and realism. A simple
and rough, but fast caustic approach is presented in section
2.4. The final composition is described in section 2.5.

2.1. Basic Approach

We start with planar reflections. For planar refractions, we
introduce our idea afterwards:

Single planar reflections are simple, due to the virtual fo-
cus of reflected view rays (Fig. 1a): Using the plane normal
nplane, a point pplane lying on the plane (e.g. p1,p2,p3), the
camera position E and the scalar product 〈a,b〉, the virtual
reflected eye position Erefl can be determined:

Erefl = E− 2 · 〈E−pplane,nplane〉nplane. (1)

Hence, the scene lying above the plane can easily be ren-
dered from virtual eye vector Erefl and mapped onto the
plane, according to a physically correct planar mirror. As
you may see, the distance between eye vector E and reflec-
tion position pn (n = 1,2,3, . . .) equals the distance between
virtual eye vector Erefl and the corresponding reflection po-
sition pn. These equal distances are important for correct
perspective mapping and the correct distance between eye
vector and any virtual reflected point.

The difficulty of planar refractions depends on one ma-
jor difference with respect to reflections, making the real-
time simulation of refractions more difficult: A focus of re-
fracted rays does not exist as shown for reflection rays. Fig.
1b shows the three virtual refracted eye vectors Erefr, result-
ing from intersection of refracted viewing rays v1refr, v2refr
and v3refr. Principally, the refracted rays do not focus. Fur-
thermore, figure 1c exemplifies the calculated virtual cam-
era vectors for different refracted viewing rays – with equal
distance between eye vector E and refraction position pn

c© The Eurographics Association 2007.

61

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

Reality

Our Approximation

E

E

Set of Erefr: Erefr 1...Erefr n

V1...n

Vrefr 1...n

Erefr n

Vn

Vrefr n

a

b

a’

b’

env.map

Figure 2: The basic idea of planar refractions: The set of
virtual refracted eye vectors Erefr 1. . . n (top) is reduced to
just one vector Erefr n (bottom). At the best, today’s computer
games uses E for a rough approximation of refraction (also
see figure 10).

(n = 1,2,3, . . .) and virtual eye vectors Erefr and the same
refraction position pn.

The basic idea of our planar refraction method compared
to reality or e.g. raytracing is shown in figure 2: The set of
virtual eye coordinates per object Erefr 1. . . n (Fig. 2 top) in re-
ality is simplified to one virtual eye position Erefr n per object
(Fig. 2 bottom). Erefr n is the virtual eye position, calculated
with the refraction vector vrefr n of vn refracted at a:

Erefr n = a−‖E− a‖ vrefr n

‖vrefr n‖
. (2)

In 3D, a is the closest point to E, lying on the plane and on
the object. Consequently, according to a, Erefr n matches the
reality. In practise, a is determined by the cut of an object’s
bounding box and the straight line between E projected on
the plane and the cut of the object’s principal axis and the
plane. vrefr n is determined by Snellius’ law with respect to
the ratio of refraction indices η and view direction I:

k = 1−η2(1−〈I,n〉2)

Rrefr =
{

ηI− (η〈I,n〉+
√

k)n : k ≥ 0
0 : k < 0.

(3)

E

Erefr

v1

v2

v1refr

v2refr

a

b

a’

b’b’real

env.map

scaling

Figure 3: Fixing the scaling problem.

Objects intersecting the surface have to be split into two
parts to prevent refraction of object parts lying above the
water surface: A multi-pass per-pixel culling (stencil- and
depth-buffer based) results in less artifacts but is also reduc-
ing the framerate. Thus, we use the approximating planes
described above for hardware accelerated single-pass plane
culling on a per-object basis. Usually, the resulting artifacts
are minor. The object parts lying under water surface are
rendered into an environment map, using this eye position
Erefr n. This environment map is accessed during rendering
pass by a shader program: According to surface position and
normal, the correct per pixel reflection and refraction vec-
tors are calculated and used for environment map look-up.
Hence, the point a is seen at the same position as in real-
ity, if the environment map is accessed at a with the associ-
ated refraction vector vrefr n. However, the described proce-
dure leads to an error in the virtual size of refracted object
parts (Fig. 3): Physically, viewing rays v1 and v2 result in
refraction rays v1refr and v2refr. Hence, object points a and
b would be seen at a′ and b′real. Our method projects a cor-
rectly onto a′, but b would be projected onto b′. This would
result in an inadequate size of refracted object parts. A scal-
ing of the rendered underwater object parts adjusts the object
size according to reality. Therefore, we suggest a linear scal-
ing around a′, such as b′ is scaled onto b′real. Technically,
we determine the scale factor of the main axis of the bound-
ing box and interpolate linearly. Thus, the underwater parts
of objects get about the same virtual length as refracted in
reality.

c© The Eurographics Association 2007.

62

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

(a) (b)

Figure 4: An obstacle is reflected and refracted on a planar
surface. Take notice of the perspective change of view for
reflected and refracted object parts: The left and right side of
the cuboid can be seen in the refracted and reflected images,
although these polygons are directly invisible from actual
eye coordinates.

(a) (b)

Figure 5: A woman (8690 polygons) is reflected and re-
fracted by a plane (a) and an artificial surface (b). The sur-
face is generated by superposition of dynamic wave func-
tions.

Summarizing our refractive plane approximation b is
seen in reality from view position Erefr 1 – with our approach
from view position Erefr n. The corresponding error occurs
for object parts between a and b: In reality, the perspective
would change. Our approach interpolates this area linearly,
seen from viewpoint Erefr n. However, this imprecision can
be accepted, because it is usually just small. An example of
the presented planar reflections and refractions is given in
figure 4 and 5a.

2.2. Extensions

The described algorithm for planar refl./refr. can be ex-
panded to refl./refr. of curved water surfaces. We assume a
height field, describing the surface and a polygonal object in-
tersecting the surface. We approximate the surface surround-
ing area of an object with a plane (Fig. 6 top). The plane is

E

E

Nplane

Generate environment map:

Access environment map:

Plane

old surface

Nplanenew surface

Figure 6: Generation of and access to environment maps.

determined by the average height information and normals
of the surrounding local surface. This plane is used to gener-
ate a dynamic environment map according to Sec. 2.1, using
the virtual refl./refr. eye vectors.

Later, this map is accessed within a shader, using the real
surface positions and normals (Fig. 6 bottom). These can be
calculated according to the law of reflection and Snellius’
law (Eq. 3), using the eye position E, surface positions and
normals. In general, a water surface is highly dynamic – the
environment map has to be recalculated every frame. A static
one can only be used in special scenarios with sparse wave
dynamics.

To guarantee an appropriate visual transition at the sur-
face for objects lying partly above and partly under water,
we introduce a linear interpolation method using normals
and surface positions (Fig. 6 bottom): The visual transition
depends on the accuracy of the planar approximation of the
surface. Therefore, the surface reflection and refraction rays
(eye coordinates) have to fit the reflection and refraction rays
determined by the plane. Thus, the surface close to the object
is adapted linearly, in a way that it approximates the plane in
the surroundings of the object. The normals in this region are
also interpolated linearly, to be congruent with the normal
Nplane. Hence, the visual transition of reflected and refracted
objects seen on and through the water, respectively, to the
parts lying above the water surface is guaranteed – even for
highly curved surfaces (Fig. 10).

c© The Eurographics Association 2007.

63

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

Recapitulating the idea, the algorithm outline is the fol-
lowing:

E ← eye position

// environment map generation

for each object i:

if (obj. i intersects surface)

split obj. i according to surf.

pi ← planar approx. of surface (surrounding the object)

Erefl i← determine virtual refl. eye coords (E, pi)

Erefr i← determine virtual refr. eye coords (E, pi)

env. map ← render obj./obj. parts above water (view Erefl i)

env. map ← render obj./obj. parts under water (view Erefr i)

// scene rendering

modify surface (surrounding each obj. i) according to planes pi

render water surface with refl./refr. shader (view E)

↓

- per surface pixel:

determine refl. ray vrefl
determine refr. ray vrefr

- final color = fresnel (env.map(vrefl),

 env.map(vrefr))

2.3. Multiple Objects

In principle, the described method can be used directly to
reflect and refract several polygonal objects (Fig. 7). All ob-
jects are rendered successively into the environment map,
using different virtual refraction eye coordinates. As a re-
sult, one environment map stores the refraction information
for all objects – with their own refraction perspective.

Due to the image-based approach, in case of high wave
amplitudes or objects nearby, visibility mismatches can oc-
cur. The reason are strong normal-gradients, which lead to
major reflection and refraction vectors changes. E.g. an ob-
ject in the environment map can hide another one, because of
different refraction directions. We therefore suggest to com-
bine close objects for refractions. In general, these effects

E

a

a’

b’

b

c

c’

d

d’

e

e’

f

f’

env.map

Figure 7: Principle of environment map generation for sev-
eral refracted objects.

E

b

a

t

r
x

x’

m

d

Figure 8: Calculation of the trapezium, to determine which
environment map to use. The trapezium is laid around an
obstacle (grey area) reverse to the view direction.

occur just in highly curved and dynamic situations. During
animation, these unwanted artifacts are hardly noticeable.

However, in the following we present a method to reduce
at least visibility mismatches behind or next to objects. E.g.
a wave behind an object can lead to an environment map ac-
cess, returning refraction data of the same object. In general,
this is physically not valid. Therefore, we use two different
environment maps. A static map contains the full static en-
vironment data, but no data of refracted, polygonal objects.
A dynamic map is used in the inverse areas, similar to the
static one, but including the dynamic refracted objects. This
map is generated with the approach described in Sec. 2.1.

The main area of object refractions obviously lies between
the object and the view point. We use a trapezium to blend
between both environment maps (Fig. 8). The parameters a
and b can be used by the animator for fine tuning.

The trapezium is aligned from object center to viewpoint
E projected on the surface. The decision which environment
map to use depends on the position m relative to an object
with position x (Fig. 8).

An environment map blending depending on the distance
between m and the centerline x+ sr (s > 0) of the trapezium
solves the problem of hard transitions between both environ-
ment maps. Hence, the inaccurate reflections and refractions
behind or next to objects are, if not completely removed,
at least reduced to an visual inconsiderable or acceptable
amount. Moreover, using x′, positioned in view direction
behind the object center x solves the problem of strong ar-
tifacts behind and close to the collision object. Figures 12a
and 12c exemplify the reflection and refraction of several ob-
jects with just one environment map – note that the table-legs
(Fig. 12c) are handled as single objects.

c© The Eurographics Association 2007.

64

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

(a) (b) (c)

Figure 9: A dynamic liquid flow around an obstacle. The translated and scaled surface normal field or height field can be used
to approximate the intensive physical caustics (a). Physically based caustics, resulting from a light source on a planar ground
(b). A superposition of both increases contrast and realism and mapping caustics onto the pool above water surface simulates
light reflections (c).

2.4. Caustics

Caustics arise from light that is focused by reflective or re-
fractive objects, producing remarkable light effects. A wa-
ter rendering system should include some caustics to en-
hance realism. In fact, many approaches simulating caustics
at interactive rates have been proposed for special cases. For
physical accurate caustics, a backward raytracing approach
is recommended. Due to the complex and fast-changing
composition of caustics, depending on water motion, -height
and -surface, light and ground structures, the accuracy of
caustics can normally not be validated by the human eye,
which usually promotes strong simplification in caustics al-
gorithms.

By taking advantage of the usual translated affinity ac-
cording to the light source between the caustics on a planar
ground and the water surface height and gradient field, an
interpolation between the height and gradient field can ap-
proximate the caustics (Fig. 9a): The height field z-values
and corresponding normals n = (nx,ny,nz) are mapped into
a caustic-representing intensity value I:

I = a · z− zmin

zmax − zmin
+b · ‖nx +ny‖+ c. (4)

The constants a,b and c are used to adjust the intensity of
caustics. However, some caustics-specific light interferences
are lost – in particular, the high frequencies of interferences.
Being inaccurate, but with a shader based implementation
virtually free of charge (Table 1), this approach can reach
convincing and plausible results. In the following, we ref-
erence to this intuitive approach as "simple caustics". For
comparison, we also use a second, standard texture-based
approach to simulate caustics: A planar light map is gener-
ated via backward raytracing using Eq. 3, which is projected
onto the scene from light view. In the following, we refer-
ence to this approach as "physically based caustics" (Fig.

9b). A superposition of both caustics approaches is shown in
figure 9c.

2.5. Final composition

The intensity of reflections and refractions are determined
according to the Fresnel equations, which can be stored in a
texture or calculated with one of the existing approximation
formulas. The composition of the intensities and their cor-
responding color values is very suitable to be performed on
the GPU – as well as the handling of caustics, the handling
of absorption or e.g. the handling of dispersion.

3. Simulation and Surface Extraction

We use a speed-optimized 3D SPH-Algorithm comparable
to [MCG03] for solving the Navier-Stokes equations, using
the smoothing kernels described there. The system includes
collision handling as well as a fast 2.5D surface generation
algorithm. With it, the simulation of 3000 particles on a sin-
gle processor machine excluding refractions and caustics at
frame rates above 100 Hz is possible. Another benefit of 3D
SPH is the possibility of full user-interaction with a water
volume. As mentioned before, the virtual water can be han-
dled interactively like a glass of water. However, the use of a
height field based rendering technique limits the rendering to
curved surfaces – complex 3D water effects (e.g. splashes)
cannot be visualized.

The surface is created by means of an implicit function,
which is defined by the n particle positions xi (i = 1 . . .n)
and spherical potentials (h: iso-radius):

φ(x) =
n

∑
i=1

√
1− r2

i

h2 (5)

ri = ‖x− xi‖. (6)

c© The Eurographics Association 2007.

65

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

(a) (b)

Figure 10: Visual transition of refraction at the surface bor-
der: Our method provides an accurate transition, even at
strongly curved surfaces (a). Actual techniques use E instead
of Erefr n to generate the environment map (see figure 2) – the
visual transition can be disrupted (b).

The square root (Eq. 5) can be approximated to increase per-
formance. In principle, this approach equals a volume recon-
structing marching cubes algorithm, but instead of 3 dimen-
sions, 2.5 dimensions are used: Just a height field is deter-
mined by the potential. Hence, the performance is increased
significantly, compared to a full 3D surface extraction. The
surface information necessary for the rendering step are the
height field and the extracted normal field.

4. Implementation and Results

We implemented the proposed rendering algorithm as well
as the simulating SPH method in C++, using OpenGL 2.0
and the related shading language GLSL. The presented ex-
amples were performed on a dual-core desktop PC with a
2,6 GHz AMD Athlon 64 CPU, 2GBs of RAM and a graph-
ics card based on an ATI Radeon x1900 GPU. We use a
parallel implementation with one CPU core simulating the
physics with SPH and one CPU core extracting the surface
from the particle system, creating the textures required for
reflections, refractions, caustics and rendering. A simulation
time step of 0.003s and a maximum of 3 time steps per frame
were used. We use cubemaps as environment maps, due to
the intuitive access with reflection and refraction vectors, but
a neat use of 2D textures is possible.

The measured frame rates for the given examples are
shown in table 1 (Resolution: 950 × 950 pixel). The most
performance expensive parts are the simulation and surface
extraction, due to their numerical complexity. The reflec-
tion and refraction calculations only need little CPU power.
Hence, the major advantage of our algorithm is the high
frame rate, being suitable for real-time environments such
as VR or computer game applications. The benefit of our
method lies in the application to highly curved surfaces.
Even in those scenarios, the perspective accurate refraction
of objects intersecting the surface is possible at high fram-

E

m’r

m’proj

p

nplane

Figure 11: Artifacts may occur at high wave amplitudes. The
approximating plane refracts m’ to m’proj on the environ-
ment map, such as m’ can also be seen at r.

erates. Moreover, our method provides an continuous transi-
tion at the surface border for objects intersecting the water
surface (Fig. 10). These effects cannot be achieved with the
existing rapid refraction techniques (Sec. 1.1) or basic envi-
ronment mapping techniques. However, our algorithm is not
a substitution for physical accurate off-line approaches, e.g.
raytracing, even though our rough method achieves plausi-
ble and visual pleasing results in scenes with strongly curved
surfaces (Fig. 12, Fig. 13).

However, the amount of simulated water is still small
(usually < 5000 particles), due to the high computational
costs of simulation and surface generation. But the presented
rendering technique can be added to any 2.5D surface gener-
ating system, not only those ones resulting from physically
based simulations. In these cases, a real-time visualization
of a large amount of water is possible.

The presented refraction method approximates reality for
planar and slightly curved surfaces. However, the wave
structure of curved surfaces affects the physical accuracy.
For example, artifacts may occur if the wavelength with a
high amplitude is small compared to the width of an object
(Fig. 11). Furthermore, the width of the refracted object is
proportional to the physical inaccuracy: the thinner the ob-
ject, the higher the accuracy. For objects with large width,
this problem can be solved by the calculation of the refracted
position for every point of the bounding box of an object and
their corresponding projection. Artifacts may also occur due
to overlapping of close objects in the environment map, or
due to intensive surface variations. Despite these facts, the
approximation of reality is visually convincing and in gen-
eral, the artifacts for objects intersecting the surface during
animation are minor.

Additionally, we demonstrated the high performance of
height field based rendering of 3D SPH simulations, re-
sulting in a rapid and strongly interactive liquid simulation
(see accompanying video) - including reflections and re-

c© The Eurographics Association 2007.

66

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

(a) (b) (c)

Figure 12: Examples of the proposed rendering technique.

Example 1. Refl./Refr. (FPS) 2. Simple Caustics (FPS) 3. Phys. Caust. (FPS) 4. Simulation 5. No. of CPUs
Fig. 4 91 91 - artificial 1

Fig. 5(b) 51 51 - artificial 1
Fig. 9 102 102 77 SPH (2000P) 2
Fig. 9 84 84 71 SPH (3000P) 2

Fig. 12(a) 75 64 64 SPH (2000P) 2
Fig. 12(b) 55 55 45 SPH (2000P) 2
Fig. 12(b) 52 52 41 SPH (3000P) 2
Fig. 12(c) 51 51 44 SPH (2000P) 2

Table 1: Performance measurements of the presented algorithm for different scenarios. Due to the shader based approach,
simple caustics are virtually free of charge (column 1 and 2). The artificial surface (line 1 and 2) is generated by simple
superposition of dynamic wave functions. The framerates shown for figure 12a-c include the SPH-based liquid simulation, 2.5D
surface extraction and rendering.

fractions of collision objects. Such interactivity cannot be
achieved with just surface-waves simulating techniques (e.g.
[Gom00]). The presented method is one of the first fully in-
teractive liquid simulation achieving such high framerates on
a desktop PC including an approximating refraction method
– however, due to the height field based rendering approach,
no complex 3D liquid effects can be visualized.

5. Conclusion and Future Work

The motivation for the presented approach was to create a
rapid, real-time rendering system for water surfaces result-
ing from interactive Computational Fluid Dynamics (CFD)-
simulation, including reflections and refractions. Our new,
image-based approach approximates these optical effects for
polygonal objects intersecting the water surface. This is an
important effect to visualize e.g. a pontoon, an avatar, or
rocks in water.

Due to the high performance, the presented approach can
be used in applications in the fields of VRs and computer
games. We demonstrated the interactive application within

a physically-based real-time SPH-Simulation on a desktop
PC: To increase performance immensely, the simulated 3D
water volume is rendered as a height field. Although arti-
facts may occur in the surroundings of surface penetrating
objects, the illusion of water during animation is convinc-
ing. Our approach does not claim to be universally valid,
but successfully targets the rapid reflections, refractions and
caustics of highly dynamic height field based water surfaces
including obstacles.

Currently, we are working on accurate refractions for ob-
jects with large widths and the automatic detection of splash-
ing areas (with the need for a 3D representation), to solve
the mentioned problems of height field based rendering. Our
future investigation includes the development of rendering
methods for reducing artifacts that occur at strongly curved
surfaces, as well as extensions using several environment
maps to tackle the problem of overlapping objects. Also,
we would like to integrate further optimizations, including
a fully shader-based approach to our method and the use of
LoD models.

c© The Eurographics Association 2007.

67

H. Cords / Refraction of Water Surface Intersecting Objects in Interactive Environments

(a) (b) (c) (d)

Figure 13: Comparison of raytracing (a,c) and the presented real-time approach (b,d) (slightly different field of view). A planar
water surface (left) and a curved surface (right) is shown. The presented real-time approach (b,d) is not as accurate as a
raytracing approach. However, render times: Raytracing (Autodesk 3ds Max) ∼ 4s, Real-Time approach: 0,025s = 41FPS.

References

[BD06] BABOUD L., DECORET X.: Realistic water vol-
umes in real-time. In Eurographics Workshop on Natural
Phenomena (2006), Eurographics.

[Bel03] BELYAEV V.: Real-time simulation of water sur-
face. In GraphiCon-2003 (2003), OOO "MAX Press",
pp. 131–138.

[BMG∗99] BLYTHE D., MCREYNOLD T., GRANTHAM

B., KILGARD M., SCOTT R.: Programming with opengl:
Advanced rendering. In Computer Graphics (Siggraph-
99) Conf. proceedings (1999), Siggraph.

[CMT04] CARLSON M., MUCHA P., TURK G.: Rigid
fluid: Animating the interplay between rigid bodies and
fluid. In ACM Transactions on Graphics (2004), vol. 23,
pp. 377–384.

[DB94] DIEFENBACH P. J., BADLER N. I.: Pipeline Ren-
dering: Interactive Refractions, Reflections, and Shadows.
Displays (Special Issue on Interactive Computer Graph-
ics) 15, 3 (1994), 173–180.

[EMDT06] ESTALELLA P., MARTIN I., DRETTAKIS G.,
TOST D.: A GPU-driven Algorithm for Accurate Interac-
tive Reflections on Curved Objects. In Proceedings of Eu-
rographics Symposium on Rendering (2006), Eurograph-
ics Association, pp. 313–318.

[Gom00] GOMEZ M.: Interactive simulation of water sur-
faces. In Game Programming GEMS (2000), Charles
River Media Inc., pp. 187–194.

[Har05] HARRIS M.: Fast fluid dynamics simulation on
the gpu. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses (2005), ACM Press.

[HK05] HONG J.-M., KIM C.-H.: Discontinuous flu-
ids. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers
(2005), ACM Press, pp. 915–920.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.:

Particle-based fluid simulation for interactive applica-
tions. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (2003), Eurographics Association, pp. 154–159.

[NC02] NIELSEN K. H., CHRISTENSEN N. J.: Real-
time recursive specular reflections on planar and curved
surfaces using graphics hardware. In Journal of WSCG
(2002), vol. 10, University of West Bohemia, pp. 91–98.

[PMDS06] POPESCU V., MEI C., DAUBLE J., SACKS E.:
Reflected-scene impostors for realistic reflections at in-
teractive rates. Computer Graphics Forum 25, 3 (Sept.
2006), 313–322.

[RH06] ROGER D., HOLZSCHUCH N.: Accurate specular
reflections in real-time. Computer Graphics Forum (Pro-
ceedings of Eurographics 2006) 25, 3 (Sept. 2006).

[RKL∗06] ROST R., KESSENICH J., LICHTENBELT B.,
MALAN H., WEIBLEIN M.: OpenGL Shading Language,
Second Edition. Addison-Wesley, 2006.

[SKALP05] SZIRMAY-KALOS L., ASZÓDI B., LAZÁNYI

I., PREMECZ M.: Approximate ray-tracing on the gpu
with distance impostors. In Computer Graphics Forum
(Proc. of Eurographics 2005) (2005), vol. 24.

[Sou05] SOUSA T.: Generic refraction simulation. In
GPU Gems 2 (2005), Addison-Wesley, pp. 295–305.

[Sta99] STAM J.: Stable fluids. In Siggraph 1999,
Computer Graphics Proceedings (1999), Addison Wesley
Longman, pp. 121–128.

[SW01] SCHNEIDER J., WESTERMANN R.: Towards
real-time visual simulation of water surfaces. Proceed-
ings of the Vision Modelling and Visualization Conference
(2001), 211–218.

[Wym05] WYMAN C.: An approximate image-space ap-
proach for interactive refraction. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Papers (2005), ACM Press,
pp. 1050–1053.

c© The Eurographics Association 2007.

68

