
3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)
C. Mendoza, I. Navazo (Editors)

Collision Detection between a Complex Solid and a Particle
Cloud assisted by Programmable GPU

Juan J. Jiménez, Carlos J. Ogáyar, Rafael J. Segura & Francisco R. Feito 1

1Departamento de Informática de la Universidad de Jaén. Campus las Lagunillas s/n. 23071 Jaén (Spain)
{juanjo, cogayar, rsegura, ffeito}@ujaen.es

Abstract
In this work the problem of collision detection (CD) between a Complex Solid and a Particle cloud with au-
tonomous movement is studied. In order to do this, some algorithms and data have been adapted to suit new
extensions of the new generations of programmable graphics cards. These types of graphics cards allow more flex-
ible programming in order to solve problems not-related to visualization process. We use a representation based
on simplicial coverings as well as a structure named Tetra-Tree in order to represent and classify the simplices of
complex objects. With this type of representation the operations carried out in CD are more robust and efficient
than those used in classic algorithms, so it is not necessary to decompose the complex object into more simple
pieces. We also propose some implementation alternatives and give a study of their performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms,
languages and systems; Curve, surface, solid, and object representations. I.3.6 [Computer Graphics]: Methodol-
ogy and Techniques; Graphics data structures and data types.

Additional Key words and Phrases: barycentric coordinates, collision detection, covering by means of
tetrahedra, programmable GPU, tetra-tree.

1. Introduction

The possibility of programming graphics cards arose several
years ago. The number of instructions and the limitations on
program size and the number of control structures available
have restricted the use of such programmable graphics cards
for rendering.

However, the appearance of the Geforce 6 series of
NVidia supposed a great advance due to the elimination of
some restrictions. These include:

• The elimination of the limitations on the number of oper-
ations per program (vertex and fragment programs).

• The incorporation of the iteration control structure in the
fragment programs.

• The possibility of accessing textures from the vertex pro-
grams.

To these improvements we must add the greater calcu-
lating power of the new graphics processors and the high

bandwidth of the memory transferences within the graphics
card [KF05].

These and other developments have led many researchers
towards the possibility of using the GPU (Graphics Process-
ing Unit) as one more general processor, so more and more
solutions to general problems are being achieved by means
of the use of graphics processors.

The problem here, however is that graphics cards and pro-
gramming languages are designed more for rendering than
for general purpose computing, and so a (usually expensive)
conversion of the initial problem to a graphics one becomes
necessary. And even when an adaptation of an algorithm to
the GPU is found, the change in the approach and in the
operation mode can cause the CPU solution to be more effi-
cient, although still less powerful.

A particle system can be defined as a set of particles in
which their dimension is not important, only their position,
mass, movement and behaviour toward diverse phenomena

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

44 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

[Ebe04]. The movement of these particles can be chaotic or
can be induced by certain physical laws like gravity, pres-
sure, etc.

For most applications, a particle system can be seen in two
ways: as a representation of a point in a continuous medium,
or as a description of the dynamic state of a solid.

In the context of modelling, particles are used fundamen-
tally in the first way, so that a particle system describes
a continuous medium in a non-continuous (discreet) way
[TF88] [Sta99] [JP02]. Particles can also be used for implicit
surfaces sampling [WH94].

In this work the problem of collision detection between a
particle system and a solid has been solved by using a spe-
cific representation of the solid based on simplicial cover-
ings [FT97a] as well as a new space decomposition named
tetra-tree [JFSO06] that uses tetra-cones.

The main objective of this work consists of verifying the
possibility of implementation of geometric algorithms for
collision detection in the GPU, and the posterior compari-
son with the implementation in the CPU. In order to do this,
we have extended and adapted a point in solid inclusion al-
gorithm so it can be used in the collision detection between
a particle system and a solid in the GPU.

The paper is organized in the following way. Firstly, we
will review some methods used by other authors for colli-
sion detection using the GPU and the CPU. Next, we will
describe the foundations and the algorithm used in colli-
sion detection. In the Implementation section we will ex-
plain different methods of using the GPU to solve this prob-
lem. Later, we will compare the solutions developed by us-
ing the GPU with the CPU-based solution. Finally, in the
Conclusions section we will summarize the most important
achievements of this method as well as the future work to be
undertaken.

2. Previous work

Most collision detection techniques for particle systems us-
ing graphics hardware are image-based because they are
oriented towards the visualization of particles. Thus, Kolb
[KLR04] proposes an algorithm based on depth maps which
represent the solid boundary, distance values and normal
vectors are stored in this data structure. These maps are cod-
ified on 8-bits textures.

Knott [Kno03] proposes a method for collision detection
with generic particle systems, based on the use of graph-
ics hardware, although he uses only one stage in the GPU
pipeline and restricts the number of particles to the number
of cycles supported by the GPU.

Baciu [BW03] suggests an image-based collision detec-
tion method between solids. The Z-buffer algorithm is mod-
ified so that the depth values are stored in a matrix structure,

needing more than one iteration for the collision determina-
tion.

Govindaraju [GLM05] presents a collision detection al-
gorithm based on the occlusion extensions of new graphics
cards.

Jiménez [JFSO06] proposes a robust method for collision
detection between a particle and a complex solid. In order
to do this they decompose the solid (represented by means
of simplicial coverings) using a tetrahedra hierarchy and use
barycentric coordinates for the particle-in-solid inclusion de-
termination. The authors affirm that a GPU implementation
is possible, but they do not provide information on how this
could be achieved.

Additional information concerning different methods and
techniques for collision detection can be consulted in
[TKH∗04] [LG98] [JTT01].

3. Collision detection

The collision detection between a particle and a solid goes
through several stages:

• In pre-processing, a simplicial covering of the polyhedron
is generated in linear time and by means of tetrahedra.
This is followed by the classification in a tetra-tree of
these tetrahedra of the covering. A tetra-tree [JFSO06] is
a spatial decomposition structure based on tetra-cones.

• In the first stage, particles are classified in the tetra-tree
(obtaining the greater depth tetra-cones where particles
are located). A particle is discarded if it is outside the
bounding tetrahedron of the tetra-cone where it is situ-
ated.

• In the second stage, particles not-discarded in the previous
stage are classified with regard to tetrahedra classified in
the corresponding tetra-cone. The inclusion of the particle
in this part of the polyhedron is determined and the result
is extended to the complete polyhedron.

The first and second stages are iterated for each move-
ment of a particle. In case of a particle cloud, these stages
are applied to each particle.

3.1. Pre-processing

From a solid representation by means of a simplicial cov-
ering [FT97a] we made a hierarchical space decomposition
based on a tetra-tree [JFSO06].

The simplicial covering of a solid allows the decomposi-
tion of a complex solid (with non-convex faces, holes, etc.)
into more simple pieces like tetrahedra each with an associ-
ated sign. This decomposition will allow us to perform the
calculations involved in collision detection with the tetra-
hedra of the covering instead of performing these calcula-
tions with the solid. These calculations between tetrahedra

c© The Eurographics Association 2006.

Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU 45

are simpler and the algorithms obtained are more robust and
efficient [FT97b].

A tetra-tree is a hierarchical data structure formed by
eight initial tetra-cones. Each tetra-cone S0 (with an asso-
ciated tetrahedron T (P0P1P2P3)) is divided into four sub-
tetra-cones (S00,S01,S02,S03), Figure 1.a. These eight initial
tetra-cones cover the whole space without overlapping. Each
sub-tetra-cone is recursively divided into four tetra-cones in
the same way (Figure 1.b).

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

sub-tetra-cone is recursively divided into four tetra-cones
in the same way (Figure 1.b).

a)

b)

Figure 1. A tetra-cone and sub-tetra-cones (a). A tetra-tree

of level 1 and level 3 (b).

A polyhedron is decomposed by a tetra-tree with the origi-
nal vertex situated on the centroid of the solid, so tetrahe-
dra of the covering of the polyhedron are classified in the
tetra-cones of this tetra-tree. The tetra-tree depth can be
fixed or a tetra-cone can not be subdivided when the num-
ber of tetrahedra classified in that tetra-cone is smaller than
a given value.

We use this data structure because it fits to the solid
more precisely than other structures like an octree, its cal-
culation being faster [JFSO06]. Furthermore, we can use
the barycentric coordinates of a point with regard to a tet-
rahedron for calculating the inclusion of a point in a tetra-
hedron or a tetra-cone, as well as for the intersection be-
tween tetrahedra and tetra-cones, needed for tetrahedra
classification.

3.2. First stage: classification and prune

In order to determine whether a collision between a particle
and a polyhedron takes place or not, this particle is first
recursively classified within the tetra-tree, obtaining a max
depth tetra-cone where the particle is located.

This information is stored between frames, so coherence
in the movement of particles is used. In the next frame, it is
probable that the particle will be in the same tetra-cone as
in the previous frame, so we check first if this occurs.

Each tetra-cone has an associated bounding tetrahedron,
so if a point is not inside this tetrahedron, the point will not
be inside any tetrahedra of the covering classified in this
tetra-cone, and this particle is discarded.

3.3. Second stage: inclusion in a tetra-cone field

Particles that passed the first stage must be classified with
regard to the tetrahedra of a tetra-cone.

In order to detect the inclusion of a particle in these tet-
rahedra, we use the inclusion algorithm developed by
[FT97b]. This algorithm has been modified and adapted, so
barycentric coordinates are used in order not only to deter-
mine whether a point is inside a tetrahedron, but to deter-
mine the position of the particle (if it is in a vertex, edge,
face or in the interior of the tetrahedron).

The barycentric coordinates of a point with regard a tet-
rahedron are well known. Given four points that form a
tetrahedron, a point P ∈ R3 satisfies that P =αA + βB + γC
+ δD, being A,B,C,D the vertices of the tetrahedron and
α,β,γ,δ ∈ R four unique values so that α+β+γ+δ=1. The
numbers α,β,γ,δ are the barycentric coordinates of P with
regard to the tetrahedron ABCD, and can be calculated as
follows:

α = |PBCD| / |ABCD|
β = |PCBA| / |ABCD|
γ = |PABD| / |ABCD|
δ = |PADC| / |ABCD|

We can determine the inclusion of a point in a tetrahe-
dron by using the barycentric coordinates. The point is
inside the tetrahedron iff [Bad90]:

0 α,β,γ,δ 1.

Additionally, the barycentric coordinates allow us to de-
termine the position of the point in the tetrahedron, that is,
if a point is on a concrete vertex, edge or face [JFSO06],
see Figure 2.

Figure 2. Geometric interpretation of the barycentric co-

ordinates of a point.

The inclusion algorithm allows us to determine if the
particle is in the part of the solid classified in a tetra-cone
by obtaining the inclusion of the particle in each tetrahe-
dron of this tetra-cone. In order to do this, it performs a
signed summation with the tetrahedra in which this particle
is included. A particle will be inside the polyhedron if this
sum is equal to one.

Figure 1: A tetra-cone and sub-tetra-cones (a). A tetra-tree
of level 1 and level 3 (b).

A polyhedron is decomposed by a tetra-tree with the orig-
inal vertex situated on the centroid of the solid, so tetrahe-
dra of the covering of the polyhedron are classified in the
tetra-cones of this tetra-tree. The tetra-tree depth can be fixed
or a tetra-cone can not be subdivided when the number of
tetrahedra classified in that tetra-cone is smaller than a given
value.

We use this data structure because it fits to the solid more
precisely than other structures like an octree, its calculation
being faster [JFSO06]. Furthermore, we can use the barycen-
tric coordinates of a point with regard to a tetrahedron for
calculating the inclusion of a point in a tetrahedron or a tetra-
cone, as well as for the intersection between tetrahedra and
tetra-cones, needed for tetrahedra classification.

3.2. First stage: classification and prune

In order to determine whether a collision between a parti-
cle and a polyhedron takes place or not, this particle is first
recursively classified within the tetra-tree, obtaining a max
depth tetra-cone where the particle is located.

This information is stored between frames, so coherence
in the movement of particles is used. In the next frame, it is

probable that the particle will be in the same tetra-cone as in
the previous frame, so we check first if this occurs.

Each tetra-cone has an associated bounding tetrahedron,
so if a point is not inside this tetrahedron, the point will
not be inside any tetrahedra of the covering classified in this
tetra-cone, and this particle is discarded.

3.3. Second stage: inclusion in a tetra-cone field

Particles that passed the first stage must be classified with
regard to the tetrahedra of a tetra-cone.

In order to detect the inclusion of a particle in these tetra-
hedra, we use the inclusion algorithm developed by [FT97b].
This algorithm has been modified and adapted, so barycen-
tric coordinates are used in order not only to determine
whether a point is inside a tetrahedron, but to determine the
position of the particle (if it is in a vertex, edge, face or in
the interior of the tetrahedron).

The barycentric coordinates of a point with re-
gard a tetrahedron are well known. Given four points
that form a tetrahedron, a point P ∈ <3 satisfies that
P = αA+βB+ γC +δD, being A,B,C,D the vertices of the
tetrahedron and α,β,γ,δ ∈ <3 four unique values so that
α+β+ γ+δ = 1. The numbers α,β,γ,δ are the barycentric
coordinates of P with regard to the tetrahedron ABCD, and
can be calculated as follows:

α = |PBCD|/|ABCD|
β = |PCBA|/|ABCD|
γ = |PABD|/|ABCD|
δ = |PADC|/|ABCD|

We can determine the inclusion of a point in a tetrahedron
by using the barycentric coordinates. The point is inside the
tetrahedron iff [Bad90]:

0 ≤ α,β,γ,δ ≤ 1

Additionally, the barycentric coordinates allow us to de-
termine the position of the point in the tetrahedron, that is,
if a point is on a concrete vertex, edge or face [JFSO06], see
Figure 2.

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

sub-tetra-cone is recursively divided into four tetra-cones
in the same way (Figure 1.b).

a)

b)

Figure 1. A tetra-cone and sub-tetra-cones (a). A tetra-tree

of level 1 and level 3 (b).

A polyhedron is decomposed by a tetra-tree with the origi-
nal vertex situated on the centroid of the solid, so tetrahe-
dra of the covering of the polyhedron are classified in the
tetra-cones of this tetra-tree. The tetra-tree depth can be
fixed or a tetra-cone can not be subdivided when the num-
ber of tetrahedra classified in that tetra-cone is smaller than
a given value.

We use this data structure because it fits to the solid
more precisely than other structures like an octree, its cal-
culation being faster [JFSO06]. Furthermore, we can use
the barycentric coordinates of a point with regard to a tet-
rahedron for calculating the inclusion of a point in a tetra-
hedron or a tetra-cone, as well as for the intersection be-
tween tetrahedra and tetra-cones, needed for tetrahedra
classification.

3.2. First stage: classification and prune

In order to determine whether a collision between a particle
and a polyhedron takes place or not, this particle is first
recursively classified within the tetra-tree, obtaining a max
depth tetra-cone where the particle is located.

This information is stored between frames, so coherence
in the movement of particles is used. In the next frame, it is
probable that the particle will be in the same tetra-cone as
in the previous frame, so we check first if this occurs.

Each tetra-cone has an associated bounding tetrahedron,
so if a point is not inside this tetrahedron, the point will not
be inside any tetrahedra of the covering classified in this
tetra-cone, and this particle is discarded.

3.3. Second stage: inclusion in a tetra-cone field

Particles that passed the first stage must be classified with
regard to the tetrahedra of a tetra-cone.

In order to detect the inclusion of a particle in these tet-
rahedra, we use the inclusion algorithm developed by
[FT97b]. This algorithm has been modified and adapted, so
barycentric coordinates are used in order not only to deter-
mine whether a point is inside a tetrahedron, but to deter-
mine the position of the particle (if it is in a vertex, edge,
face or in the interior of the tetrahedron).

The barycentric coordinates of a point with regard a tet-
rahedron are well known. Given four points that form a
tetrahedron, a point P ∈ R3 satisfies that P =αA + βB + γC
+ δD, being A,B,C,D the vertices of the tetrahedron and
α,β,γ,δ ∈ R four unique values so that α+β+γ+δ=1. The
numbers α,β,γ,δ are the barycentric coordinates of P with
regard to the tetrahedron ABCD, and can be calculated as
follows:

α = |PBCD| / |ABCD|
β = |PCBA| / |ABCD|
γ = |PABD| / |ABCD|
δ = |PADC| / |ABCD|

We can determine the inclusion of a point in a tetrahe-
dron by using the barycentric coordinates. The point is
inside the tetrahedron iff [Bad90]:

0 α,β,γ,δ 1.

Additionally, the barycentric coordinates allow us to de-
termine the position of the point in the tetrahedron, that is,
if a point is on a concrete vertex, edge or face [JFSO06],
see Figure 2.

Figure 2. Geometric interpretation of the barycentric co-

ordinates of a point.

The inclusion algorithm allows us to determine if the
particle is in the part of the solid classified in a tetra-cone
by obtaining the inclusion of the particle in each tetrahe-
dron of this tetra-cone. In order to do this, it performs a
signed summation with the tetrahedra in which this particle
is included. A particle will be inside the polyhedron if this
sum is equal to one.

Figure 2: Geometric interpretation of the barycentric coor-
dinates of a point.

c© The Eurographics Association 2006.

46 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

The inclusion algorithm allows us to determine if the par-
ticle is in the part of the solid classified in a tetra-cone by
obtaining the inclusion of the particle in each tetrahedron of
this tetra-cone. In order to do this, it performs a signed sum-
mation with the tetrahedra in which this particle is included.
A particle will be inside the polyhedron if this sum is equal
to one.

There are special cases when a feature of a tetrahedron
(vertex, edge or face) is shared with other tetrahedra. Given
a tetrahedron with ordered vertices as we can see in Figure
3; we use a variable for accumulating some values:

• If the particle is on edge V2V3 then the particle is inside
the polyhedron and it is not necessary to check additional
tetrahedra.

• If the particle is strictly inside a tetrahedron or in a non-
shared face (V1V2V3), we accumulate the value +1 or −1
according to the sign of the tetrahedron.

• If the particle is inside a face shared by two tetrahedra or
on an edge of the 2D covering of a face of the polyhedron
(faces and edges shared only by two tetrahedra), we accu-
mulate the values +1/2 or −1/2 according to the sign of
the tetrahedron.

• In other cases, the particle is on an edge or vertex shared
by an indeterminate number of tetrahedra. It is necessary
to accumulate +1 only one time per positive feature and
−1 one time per negative feature. Thus, we create two sets
of features, one for positive features and one for negative
ones. When a particle is on one feature, the set of features
is consulted according to the sign of the tetrahedron, and
a value +1 or −1 is accumulated once. If the feature of
a given set has been accumulated previously, no further
operation is performed.

The algorithm that shows the second stage of the collision
detection between a particle and a tetra-cone can be seen in
Algorithm 1.

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

There are special cases when a feature of a tetrahedron
(vertex, edge or face) is shared with other tetrahedra. Given
a tetrahedron with ordered vertices as we can see in Figure
3; we use a variable for accumulating some values:

• If the particle is on edge V2V3 then the particle is in-
side the polyhedron and it is not necessary to check
additional tetrahedra.

• If the particle is strictly inside a tetrahedron or in a
non-shared face (V1V2V3), we accumulate the value
+1 or –1 according to the sign of the tetrahedron.

• If the particle is inside a face shared by two tetrahedra
or on an edge of the 2D covering of a face of the
polyhedron (faces and edges shared only by two tetra-
hedra), we accumulate the values +1/2 or –1/2 accord-
ing to the sign of the tetrahedron.

• In other cases, the particle is on an edge or vertex
shared by an indeterminate number of tetrahedra. It is
necessary to accumulate +1 only one time per positive
feature and –1 one time per negative feature. Thus, we
create two sets of features, one for positive features
and one for negative ones. When a particle is on one
feature, the set of features is consulted according to
the sign of the tetrahedron, and a value +1 or –1 is ac-
cumulated once. If the feature of a given set has been
accumulated previously, no further operation is per-
formed.

The algorithm that shows the second stage of the collision
detection between a particle and a tetra-cone can be seen in
Algorithm 1.

Algorithm 1: Second stage of the collision detection be-

tween a particle and a tetra-cone. Calculations are multi-

plied by two in order to use integer arithmetic.

4. Implementation

Nowadays it is possible to program graphics cards so that
operations related to rendering are programmed in vertex
shaders and fragment shaders. These programs can be im-
plemented by means of a high-level language specialized
and similar to C, denominated Cg. This language contains a
series of specific and optimized instructions for these tasks.
These instructions are suitable for geometric treatment, so
we think they are appropriate for some geometric problems
in which some tasks can be split and performed in parallel.
These capacities lead us to use this language in the imple-
mentation of collision detection between a particle cloud
and a polyhedron in the GPU.

Figure 3: Features of a tetrahedron of the simplicial cov-

ering of a face.

4.1. Data codification

In order to perform this collision detection it is necessary to
send some information about the polyhedron and particles
to the GPU.

The idea consists of providing the GPU with each parti-
cle on which collision detection will be performed, as well
as information about the polyhedron geometry and tetrahe-
dra of the tetra-tree.

The result from the GPU is obtained in the frame-buffer,
codified in RGBA components which represents the pixel
colour. For this reason, information of the 2D coordinate of
a pixel in the frame-buffer will be sent. This information
represents the position of the result of a particle/polyhedron
collision detection. Therefore, variable information will be
sent to the GPU for each particle. This consists of the
frame-buffer position of the result, the position of the parti-
cle and the tetra-cone in which the particle was located in
the previous frame.

As particles move from frame to frame, it is more appro-
priate to store this information in data structures which
allow modifications between frames. With OpenGL, the
position of the result and the previous tetra-cone are stored
in a Vertex-Array, and the particles positions in Normal-

1. Initialize positive and negative features sets to empty.
Initialize sum=0.

2. For each k tetrahedron in the Tetra-Cone:

2.1. If the point is on edge v2v3 or on vertices v2 or v3:
return IN

2.2. If the point is strictly inside the tetrahedron or on
the outer face: sum+=2·sign(tetrahedron)

2.3. If the point is on an inner face or on edge v1v2 or
edge v3v1: sum+=sign(tetrahedron)

2.4. In other cases (inner edge or vertex v0 or vertexv1)

2.4.1. If sign(tetrahedron)=1: Check whether the
related feature is in the set of positive features,
if not: sum+=2 and the feature is included in the
set of positive features.

2.4.2.If sign(tetrahedron)=-1: Check whether the
related feature is in the set of negative features,
if not: sum-=2 and the feature is included in the
set of negative features.

3. If sum=2 return IN; otherwise, return OUT.

Figure 3: Features of a tetrahedron of the simplicial cover-
ing of a face.

1. Initialize positive and negative features sets to empty. Ini-
tialize sum = 0.

2. For each k tetrahedron in the Tetra-Cone:

a. If the point is on edge V2V3 or on vertices V2 or V3:
return IN.

b. If the point is strictly inside the tetrahedron or on the
outer face: sum+ = 2 · sign(tetrahedron)

c. If the point is on an inner face or on edge V1V2 or edge
V3V1: sum+ = sign(tetrahedron)

d. In other cases (inner edge or vertex V0 or vertex V1)

i. If sign(tetrahedron) = 1: Check whether the re-
lated feature is in the set of positive features, if not:
sum+ = 2 and the feature is included in the set of
positive features.

ii. If sign(tetrahedron) = −1: Check whether the re-
lated feature is in the set of negative features, if not:
sum− = 2 and the feature is included in the set of
negative features.

3. If sum = 2 return IN; otherwise, return OUT.
Algorithm 1: Second stage of the collision detection be-
tween a particle and a tetra-cone. Calculations are multi-
plied by two in order to use integer arithmetic.

4. Implementation

Nowadays it is possible to program graphics cards so that
operations related to rendering are programmed in vertex
shaders and fragment shaders. These programs can be im-
plemented by means of a high-level language specialized
and similar to C, denominated Cg. This language contains a
series of specific and optimized instructions for these tasks.
These instructions are suitable for geometric treatment, so
we think they are appropriate for some geometric problems
in which some tasks can be split and performed in parallel.
These capacities lead us to use this language in the imple-
mentation of collision detection between a particle cloud and
a polyhedron in the GPU.

4.1. Data codification

In order to perform this collision detection it is necessary to
send some information about the polyhedron and particles to
the GPU.

The idea consists of providing the GPU with each particle
on which collision detection will be performed, as well as
information about the polyhedron geometry and tetrahedra
of the tetra-tree.

The result from the GPU is obtained in the frame-buffer,
codified in RGBA components which represents the pixel
colour. For this reason, information of the 2D coordinate
of a pixel in the frame-buffer will be sent. This information
represents the position of the result of a particle/polyhedron
collision detection. Therefore, variable information will be
sent to the GPU for each particle. This consists of the frame-
buffer position of the result, the position of the particle and

c© The Eurographics Association 2006.

Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU 47

the tetra-cone in which the particle was located in the previ-
ous frame.

As particles move from frame to frame, it is more appro-
priate to store this information in data structures which al-
low modifications between frames. With OpenGL, the po-
sition of the result and the previous tetra-cone are stored in
a Vertex-Array, and the particles positions in Normal-Array,
so we can use the glDrawArrays function from OpenGL.

The general concept of this implementation consists of
sending particles to the vertex shader. Each particle causes
only one program execution in the fragment shader, in order
to obtain the collision result of this particle with the part of
the polyhedron classified in a tetra-cone.

The way to send information on the polyhedron and tetra-
tree consists of codifying this information in textures. For
each one two textures are used, one storing indices and the
other vertices.

We use a texture of vertices for the codification of the ge-
ometry of the polyhedron: Vertex[Rows,Columns,3]; so in
Vertex[i,j] three coordinates of a vertex are stored. A tex-
ture of indices is also used: Index[Rows,Columns,4]; so in
Index[i,j] three indices of three external vertices (V1,V2,V3)
of a tetrahedron of the covering of the polyhedron and the
sign of this tetrahedron in the fourth component are stored.
The original vertex of the covering (V0) is sent to GPU as a
shared uniform parameter.

In each row of the Index texture, the indices of tetrahe-
dra of the covering classified in a tetra-cone are stored. Each
row represents a tetra-cone with the tetrahedra classified in
it. The first column of a row is reserved and represents the
number of tetrahedra classified in that tetra-cone.

The tetra-tree has been stored in a similar way. We
use a vertex texture for the vertices which represents the
tetra-tree: VertexTT[Rows,Columns,3]; and an index tex-
ture: IndexTT[Levels,Tetra-Cone,3]; in this, each row rep-
resents a level of the tetra-tree, that is to say, stores the
tetra-cones of a level. Thus, a position in the texture, In-
dexTT[3,48] for example, stores three indices of the vertices
of the tetrahedron of tetra-cone 48 of level 3. Tetrahedra that
represent tetra-cones are bounding tetrahedra of the tetrahe-
dra classified in that tetra-cone.

4.2. Vertex & Fragment Shader implementation

The GPU programmable pipeline, divided into two pro-
grammable stages, vertex shader and fragment shader, along
with the nature of the previous algorithm, lead us to imple-
ment, in a natural way, the collision between a particle cloud
and a solid by implementing each stage of the proposed al-
gorithm in each programmable stage in the GPU.

The vertex program classifies particles in a tetra-tree and
obtains the tetra-cone in which the particle is located (if this
particle is not inside the same tetra-cone from the previous

frame). Additionally it discards particles that are outside the
bounding tetrahedron of this tetra-cone.

For each particle, as input to the vertex program, the fol-
lowing information is provided:

Variable for each particle:

• With POSITION semantics, the 2D coordinates in the
frame-buffer of the collision result, as well as the tetra-
cone from previous frame: (x,y,tetra-cone).

• With NORMAL semantics, the 3D position of the parti-
cle: (x,y,z).

Constant for all particles (uniform):

• Modelling and Viewing transformation, and Object trans-
formation.

• Centroid of the polyhedron (Vertex V0). This vertex is
shared with all tetrahedra of the covering and with all
tetrahedra of the tetra-tree.

• Maximum level of the tetra-tree.
• Textures with the geometry of the polyhedron and tetra-

tree.

A general representation of the inputs and outputs be-
tween CPU and GPU is shown in Figure 4. This diagram
is valid for all implementations proposed in this paper.

The vertex program returns the particle position and the
tetra-cone in which the particle is located, using TEXCO-
ORD0 semantics. This information is the input to the frag-
ment program. COLOR semantics can not be used because
the output range is restricted to the interval [0.0−1.0]. It is
necessary to return the particle position to the fragment pro-
gram because this information can not be obtained directly
from CPU.

Particles that are outside the bounding tetrahedra can be
discarded by applying a transformation that moves them,
for example, behind the back-plane, so that the pipeline ex-
cludes them from later processes. In this case, it is not pos-
sible to obtain the tetra-cone in which the particle is classi-
fied for the next frame. Therefore, we send an exit flag using
TEXCOORD1 semantics which indicates if the particle is
discarded or not in the following stage.

The second stage of the algorithm has been implemented
in the fragment shader. The input contains information about
the particle position and the tetra-cone in which it is classi-
fied. We have included a flag in order to discard particles not
included in the bounding tetrahedron. The geometry of the
polyhedron is stored in textures.

In this stage, the inclusion of each particle in the tetrahe-
dra that are classified in the input tetra-cone is studied by
applying Algorithm 1. If the particle is inside the polyhe-
dron, the R (red) component of the output pixel is written
with the value 1. Obviously, the frame-buffer has been ini-
tialized to 0. Special cases (when sets of positive and neg-
ative features are needed) are implemented in the CPU and

c© The Eurographics Association 2006.

48 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU
 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

Framebuffer
GPU

Programmable

Textures
Polyhedron

Particle
Positions and

Tetra - Cones
previous

Textures
Tetra-Tree

Output
Position

in the Frame
Buffer

Application from CPU

Original Vertex
 (V0)

Number of
Levels

Model and
 View

Transform.

Geometry Geometry

Collision
Result

Tetra-Cone

Tetra - Cone
 New

Position

Object
Transformation

Figure 4: Information flow between elements from CPU and GPU.

The output of this stage consists of a set of particles that
collide with the polyhedron, stored in the R component of
the frame-buffer. The tetra-cone in which each particle is
classified is also obtained in the GB components (green
and blue) and this tetra-cone is used in the next frame. This
information is codified in these two components because
the range in the frame-buffer is within the [0.0–1.0] inter-
val and 8 bits per component are used.

The previous process, consisting of two stages, is sum-
marized in Figure 5. The vertex program and fragment
program are shown in the Appendix section.

Figure 5: Solution based on a Vertex and Fragment

Shader implementation.

4.3. Fragment Shader implementations

We could think that the previous implementation using
both, vertex and fragment shaders for the algorithm stages
would be optimal. However, the times obtained in collision
detection show that this is not completely correct. The
problem which arises is due to a synchronization fault in
the texture access present in current graphics cards. This
occurs when both fragment and vertex programs access
simultaneously to textures and is due to the new character-
istics of the Shader Model 3.0 which allow the access to
texture from vertex programs, an operation that slows the
global process down considerably.

On the other hand, the fragment shader must wait for the
output from the vertex shader, the fragment shader being
faster than the vertex shader. In this two-stage configura-
tion there is one execution of the fragment program per
execution of the vertex program, and the first must wait for
the tetra-cones and particles positions obtained from the
vertex program. Thus it is not possible to take advantage of
the parallelism of several kernel units and the high speed of
the fragment shader.

For this reason, we have performed some alternative im-
plementations in order to solve this problem efficiently,
although in a less natural form. In these implementations
we use the vertex shader to pass the input information to
the fragment shader. These implementations are the follow-
ing:

• First stage implemented in the CPU, and the second in
the fragment shader (Figure 6.a).

• A fragment program implementation of the first stage
and a fragment program implementation of the second
stage. There is a change of the program used in the
fragment shader between stages (Figure 6.b).

Tetra-Cones

Vertex Program

Obtain Tetra-Cone
If (particle IN B.Tetrahedron)
 flag = 0
Else
 flag = 1
Return flag, particle, Tetra-Cone

Fragment Program

If (particle IN tetrahedra)
 Colour.R=1
ELSE
 colour.R=0
Colour.GB = TetraCone

Texture

Texture

Particles

Particles

Tetra-Cones

Collision Particles
Tetra-Cones

Collision
Particles

Figure 4: Information flow between elements from CPU and GPU.

1/2 value is written in the R component. This is due to the
impossibility of implementing sets or similar structures in
the GPU because of the language used. In these cases the
collision is calculated in the CPU. Nevertheless, the proba-
bility of these cases is very small (<1%) and the performance
is not severely affected.

The output of this stage consists of a set of particles that
collide with the polyhedron, stored in the R component of
the frame-buffer. The tetra-cone in which each particle is
classified is also obtained in the GB components (green and
blue) and this tetra-cone is used in the next frame. This in-
formation is codified in these two components because the
range in the frame-buffer is within the [0.0−1.0] interval
and 8 bits per component are used.

The previous process, consisting of two stages, is summa-
rized in Figure 5. The vertex program and fragment program
are shown in the Appendix section.

4.3. Fragment Shader implementations

We could think that the previous implementation using both,
vertex and fragment shaders for the algorithm stages would
be optimal. However, the times obtained in collision detec-
tion show that this is not completely correct. The problem
which arises is due to a synchronization fault in the texture
access present in current graphics cards. This occurs when
both fragment and vertex programs access simultaneously to
textures and is due to the new characteristics of the Shader
Model 3.0 which allow the access to texture from vertex pro-
grams, an operation that slows the global process down con-
siderably.

On the other hand, the fragment shader must wait for the

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

Framebuffer
GPU

Programmable

Textures
Polyhedron

Particle
Positions and

Tetra - Cones
previous

Textures
Tetra-Tree

Output
Position

in the Frame
Buffer

Application from CPU

Original Vertex
 (V0)

Number of
Levels

Model and
 View

Transform.

Geometry Geometry

Collision
Result

Tetra-Cone

Tetra - Cone
 New

Position

Object
Transformation

Figure 4: Information flow between elements from CPU and GPU.

The output of this stage consists of a set of particles that
collide with the polyhedron, stored in the R component of
the frame-buffer. The tetra-cone in which each particle is
classified is also obtained in the GB components (green
and blue) and this tetra-cone is used in the next frame. This
information is codified in these two components because
the range in the frame-buffer is within the [0.0–1.0] inter-
val and 8 bits per component are used.

The previous process, consisting of two stages, is sum-
marized in Figure 5. The vertex program and fragment
program are shown in the Appendix section.

Figure 5: Solution based on a Vertex and Fragment

Shader implementation.

4.3. Fragment Shader implementations

We could think that the previous implementation using
both, vertex and fragment shaders for the algorithm stages
would be optimal. However, the times obtained in collision
detection show that this is not completely correct. The
problem which arises is due to a synchronization fault in
the texture access present in current graphics cards. This
occurs when both fragment and vertex programs access
simultaneously to textures and is due to the new character-
istics of the Shader Model 3.0 which allow the access to
texture from vertex programs, an operation that slows the
global process down considerably.

On the other hand, the fragment shader must wait for the
output from the vertex shader, the fragment shader being
faster than the vertex shader. In this two-stage configura-
tion there is one execution of the fragment program per
execution of the vertex program, and the first must wait for
the tetra-cones and particles positions obtained from the
vertex program. Thus it is not possible to take advantage of
the parallelism of several kernel units and the high speed of
the fragment shader.

For this reason, we have performed some alternative im-
plementations in order to solve this problem efficiently,
although in a less natural form. In these implementations
we use the vertex shader to pass the input information to
the fragment shader. These implementations are the follow-
ing:

• First stage implemented in the CPU, and the second in
the fragment shader (Figure 6.a).

• A fragment program implementation of the first stage
and a fragment program implementation of the second
stage. There is a change of the program used in the
fragment shader between stages (Figure 6.b).

Tetra-Cones

Vertex Program

Obtain Tetra-Cone
If (particle IN B.Tetrahedron)
 flag = 0
Else
 flag = 1
Return flag, particle, Tetra-Cone

Fragment Program

If (particle IN tetrahedra)
 Colour.R=1
ELSE
 colour.R=0
Colour.GB = TetraCone

Texture

Texture

Particles

Particles

Tetra-Cones

Collision Particles
Tetra-Cones

Collision
Particles

Figure 5: Solution based on a Vertex and Fragment Shader
implementation.

output from the vertex shader, the fragment shader being
faster than the vertex shader. In this two-stage configuration
there is one execution of the fragment program per execu-
tion of the vertex program, and the first must wait for the
tetra-cones and particles positions obtained from the vertex
program. Thus it is not possible to take advantage of the par-
allelism of several kernel units and the high speed of the
fragment shader.

For this reason, we have performed some alternative im-

c© The Eurographics Association 2006.

Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU 49

plementations in order to solve this problem efficiently, al-
though in a less natural form. In these implementations we
use the vertex shader to pass the input information to the
fragment shader. These implementations are the following:

• First stage implemented in the CPU, and the second in the
fragment shader (Figure 6.a).

• A fragment program implementation of the first stage and
a fragment program implementation of the second stage.
There is a change of the program used in the fragment
shader between stages (Figure 6.b).

• Implementation of the first and second stages combined in
one fragment program, with no program change between
stages (Figure 6.c).

• Implementation of the first and second stages combined in
one fragment program, without feed-back, that is without
information about the tetra-cone from the previous frame
(Figure 6.d).

5. Performance study

A 1.6 GHz Pentium IV processor with a Nvidia GeForce
6600 graphics card has been used. The algorithms have
been implemented in a Linux platform with C++, Cg and
OpenGL.

In the mixed solution based on CPU + Fragment-Shader
(CPU+FS) we have obtained promising results, mainly due
to two factors: Firstly, because there is no interference in the
texture access between fragment and vertex shaders. This
feature is common to all the fragment-based implementa-
tions. Second, the tetra-cones between frames are stored in
main memory, and the reading of this data from the frame-
buffer is not necessary. Frame-buffer reading is very expen-
sive because transferences to the main memory are not opti-
mized as in the other direction, i.e. from the main memory
to the frame-buffer.

The Fragment-Shader + Fragment-Shader (FS+FS) solu-
tion presents a set of disadvantages that make this method
slower than expected. In this case, it is necessary to read
information from the frame-buffer (tetra-cones obtained in
stage 1) in order to send this information to stage 2 af-
ter loading its associated program in the fragment shader.
Therefore, it is necessary to read information from the
frame-buffer one time and to load a fragment program two
times per frame. Loading a program in the GPU supposes a
small additional cost, but this is only taken into account for
implementations which produce a change of the fragment
program.

In order to solve some of the previous problems, a
Fragment-Shader implementation with only one stage has
been performed (FS with f-b). This stage is composed of
the two aforementioned stages. So the fragment program
is always in memory. The information on tetra-cones from
frame-buffer feeds back the vertex shader that passes this

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

• Implementation of the first and second stages com-
bined in one fragment program, with no program
change between stages (Figure 6.c).

• Implementation of the first and second stages com-
bined in one fragment program, without feed-back,
that is without information about the tetra-cone from
the previous frame (Figure 6.d).

Figure 6: Solutions based on Fragment-Shader implemen-

tations.

5. Performance study

A 1.6 GHz Pentium IV processor with a Nvidia GeForce
6600 graphics card has been used. The algorithms have
been implemented in a Linux platform with C++, Cg and
OpenGL.

In the mixed solution based on CPU+Fragment-Shader
(CPU+FS) we have obtained promising results, mainly due
to two factors: Firstly, because there is no interference in
the texture access between fragment and vertex shaders.
This feature is common to all the fragment-based imple-
mentations. Second, the tetra-cones between frames are
stored in main memory, and the reading of this data from
the frame-buffer is not necessary. Frame-buffer reading is
very expensive because transferences to the main memory
are not optimized as in the other direction, i.e. from the
main memory to the frame-buffer.

The Fragment-Shader + Fragment-Shader (FS+FS) solu-
tion presents a set of disadvantages that make this method
slower than expected. In this case, it is necessary to read
information from the frame-buffer (tetra-cones obtained in
stage 1) in order to send this information to stage 2 after
loading its associated program in the fragment shader.
Therefore, it is necessary to read information from the
frame-buffer one time and to load a fragment program two
times per frame. Loading a program in the GPU supposes a
small additional cost, but this is only taken into account for
implementations which produce a change of the fragment
program.

In order to solve some of the previous problems, a Frag-
ment-Shader implementation with only one stage has been
performed (FS with f-b). This stage is composed of the two
aforementioned stages. So the fragment program is always
in memory. The information on tetra-cones from frame-
buffer feeds back the vertex shader that passes this infor-
mation to the fragment shader. This solution is named
"Fragment-Shader with feed-back".

Finally, a solution based on "Fragment-Shader without
feed-back" has been implemented (FS without f-b). This
solution is similar to the previous one, but no feed-back is
performed. So tetra-cones are always calculated and the
algorithm does not take advantage of the coherence in the
movement of the particles. Due to the high cost of the
transferences between frame-buffer and main memory, this
algorithm is more efficient than the others, as shown in
Figures 7 to 9.

In these Figures we measure the number of frames per
second using a logarithmic scale.

a) CPU + Fragment Shader b) Fragment Shader +
 Fragment Shader

c) Fragment Shader
 with feed-back

d) Fragment Shader
 without feed-back

Texture

Texture

Vertex
Program

BYPASS

Fragment
Program

STAGE 2

CPU
STAGE 1

Particles
Tetra-Cones

Particles
Tetra-Cones

Collision
Particles

Collision Particles

Texture

Vertex
Program

BYPASS

Fragment
Program

STAGE 1

Tetra-Cones

Particles

Particles
Tetra-Cones

Tetra-Cones

Texture

Vertex
Program

BYPASS

Fragment
Program

STAGE 2

Collision
Particles

Tetra-Cones

Particles
Tetra-Cones

Particles

Collision Particles

Particles

Texture

Vertex
Program

BYPASS

Fragment
Program

STAGE 1

STAGE 2

Tetra-Cones

Particles
Tetra-Cones

Collision
Particles
Tetra-Cones

Texture

Collision
Particles

Particles

Texture

Vertex
Program

BYPASS

Fragment
Program

STAGE 1

STAGE 2

Particles

Collision
Particles

Texture

Collision
Particles

Figure 6: Solutions based on Fragment-Shader implemen-
tations.

information to the fragment shader. This solution is named
"Fragment-Shader with feed-back".

Finally, a solution based on "Fragment-Shader without
feed-back" has been implemented (FS without f-b). This so-
lution is similar to the previous one, but no feed-back is per-
formed. So tetra-cones are always calculated and the algo-
rithm does not take advantage of the coherence in the move-
ment of the particles. Due to the high cost of the transfer-
ences between frame-buffer and main memory, this algo-
rithm is more efficient than the others, as shown in Figures
7 to 9.

c© The Eurographics Association 2006.

50 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

In these Figures we measure the number of frames per
second using a logarithmic scale.

We performed several tests to measure the speed of the
different implementations. The number of tetrahedra of the
covering (Figure 10), the number of subdivisions performed
with the tetra-tree (according to different levels), and the
number of particles are parameters which we have measured.
We have generated particles inside the bounding-box of each
polyhedron and they move randomly. We have measured the
number of frames per second in the collision detection.
 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

0,01

0,10

1,00

10,00

100,00

1000,00

VS + FS 0,95 0,68 0,42 0,07

FS+FS 59,17 38,91 13,35 9,12

CPU+FS 227,27 153,85 46,73 14,77

FS with f-b 63,29 41,84 13,19 9,57

FS without f-b 212,77 166,67 128,21 28,90

CPU 140,85 81,30 22,68 5,91

136 760 7172 46205

Figure 7: Frames/sec. in the collision of 1024 particles

and some polyhedra. X axis shows the number of tetrahe-

dra of the covering of each polyhedron.

1,00

10,00

100,00

1000,00

FS+FS 1,86 6,59 21,83 38,91 48,78

CPU+FS 5,49 20,12 99,01 153,85 142,86

FS with f-b 1,88 6,76 30,58 41,84 51,02

FS without f-b 232,56 256,41 131,58 166,67 217,39

CPU 12,47 31,65 60,98 81,30 84,03

8 32 128 512 2048

Figure 8: Frames/sec. in the collision of 1024 particles

and the polyhedron named "Cat". X axis shows the number

of subdivisions performed with the tetra-tree (level).

1,00

10,00

100,00

1000,00

10000,00

100000,00

FS+FS 10000,00 10000,00 5000,00 1000,00

CPU+FS 100000,00 10000,00 5000,00 1428,57

FS with f-b 5000,00 1428,57 357,14 90,91

FS without f-b 100000,00 100000,00 10000,00 10000,00

CPU 10000,00 2500,00 555,56 140,85

256 1024 4096 16384

Figure 9: Frames/sec. in the collision of some particles

and the polyhedron named "Horse". X axis shows the num-

ber of particles.

We performed several tests to measure the speed of the
different implementations. The number of tetrahedra of the
covering (Figure 10), the number of subdivisions per-
formed with the tetra-tree (according to different levels),
and the number of particles are parameters which we have
measured. We have generated particles inside the bound-
ing-box of each polyhedron and they move randomly. We
have measured the number of frames per second in the
collision detection.

Complex

136 tetrahedra
40 vertices

Cat

760 tetrahedra
382 vertices

Horse

7172 tetrahedra
3582 vertices

Golfball

46205 tetrahedra
23363 vertices

Figure 10: Polyhedra used in the tests.

The tests performed are:

• Collision detection in frames/second for different
objects and a particle cloud formed by 1024 particles.
We have fixed the tetra-tree depth to 2048 subdivi-
sions, see Figure 7.

• Collision detection in frames/second for the object
"Cat" and a particle cloud formed by 1024 particles.
We have change the tetra-tree depth (number of sub-
divisions), see Figure 8.

• Collision detection in frames/second for the object
"Horse" and a particle cloud formed by a varying
number of particles. We have fixed the tetra-tree depth
to 2048 subdivisions, see Figure 9.

Particle movement has been calculated in CPU, so it is
possible to send GPU a direction vector for each particle
and actualize their positions in the vertex or fragment
shader.

Figure 7: Frames/sec. in the collision of 1024 particles and
some polyhedra. X axis shows the number of tetrahedra of
the covering of each polyhedron.

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

0,01

0,10

1,00

10,00

100,00

1000,00

VS + FS 0,95 0,68 0,42 0,07

FS+FS 59,17 38,91 13,35 9,12

CPU+FS 227,27 153,85 46,73 14,77

FS with f-b 63,29 41,84 13,19 9,57

FS without f-b 212,77 166,67 128,21 28,90

CPU 140,85 81,30 22,68 5,91

136 760 7172 46205

Figure 7: Frames/sec. in the collision of 1024 particles

and some polyhedra. X axis shows the number of tetrahe-

dra of the covering of each polyhedron.

1,00

10,00

100,00

1000,00

FS+FS 1,86 6,59 21,83 38,91 48,78

CPU+FS 5,49 20,12 99,01 153,85 142,86

FS with f-b 1,88 6,76 30,58 41,84 51,02

FS without f-b 232,56 256,41 131,58 166,67 217,39

CPU 12,47 31,65 60,98 81,30 84,03

8 32 128 512 2048

Figure 8: Frames/sec. in the collision of 1024 particles

and the polyhedron named "Cat". X axis shows the number

of subdivisions performed with the tetra-tree (level).

1,00

10,00

100,00

1000,00

10000,00

100000,00

FS+FS 10000,00 10000,00 5000,00 1000,00

CPU+FS 100000,00 10000,00 5000,00 1428,57

FS with f-b 5000,00 1428,57 357,14 90,91

FS without f-b 100000,00 100000,00 10000,00 10000,00

CPU 10000,00 2500,00 555,56 140,85

256 1024 4096 16384

Figure 9: Frames/sec. in the collision of some particles

and the polyhedron named "Horse". X axis shows the num-

ber of particles.

We performed several tests to measure the speed of the
different implementations. The number of tetrahedra of the
covering (Figure 10), the number of subdivisions per-
formed with the tetra-tree (according to different levels),
and the number of particles are parameters which we have
measured. We have generated particles inside the bound-
ing-box of each polyhedron and they move randomly. We
have measured the number of frames per second in the
collision detection.

Complex

136 tetrahedra
40 vertices

Cat

760 tetrahedra
382 vertices

Horse

7172 tetrahedra
3582 vertices

Golfball

46205 tetrahedra
23363 vertices

Figure 10: Polyhedra used in the tests.

The tests performed are:

• Collision detection in frames/second for different
objects and a particle cloud formed by 1024 particles.
We have fixed the tetra-tree depth to 2048 subdivi-
sions, see Figure 7.

• Collision detection in frames/second for the object
"Cat" and a particle cloud formed by 1024 particles.
We have change the tetra-tree depth (number of sub-
divisions), see Figure 8.

• Collision detection in frames/second for the object
"Horse" and a particle cloud formed by a varying
number of particles. We have fixed the tetra-tree depth
to 2048 subdivisions, see Figure 9.

Particle movement has been calculated in CPU, so it is
possible to send GPU a direction vector for each particle
and actualize their positions in the vertex or fragment
shader.

Figure 8: Frames/sec. in the collision of 1024 particles and
the polyhedron named "Cat". X axis shows the number of
subdivisions performed with the tetra-tree (level).

The tests performed are:

• Collision detection in frames/second for different objects
and a particle cloud formed by 1024 particles. We have
fixed the tetra-tree depth to 2048 subdivisions, see Figure
7.

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

0,01

0,10

1,00

10,00

100,00

1000,00

VS + FS 0,95 0,68 0,42 0,07

FS+FS 59,17 38,91 13,35 9,12

CPU+FS 227,27 153,85 46,73 14,77

FS with f-b 63,29 41,84 13,19 9,57

FS without f-b 212,77 166,67 128,21 28,90

CPU 140,85 81,30 22,68 5,91

136 760 7172 46205

Figure 7: Frames/sec. in the collision of 1024 particles

and some polyhedra. X axis shows the number of tetrahe-

dra of the covering of each polyhedron.

1,00

10,00

100,00

1000,00

FS+FS 1,86 6,59 21,83 38,91 48,78

CPU+FS 5,49 20,12 99,01 153,85 142,86

FS with f-b 1,88 6,76 30,58 41,84 51,02

FS without f-b 232,56 256,41 131,58 166,67 217,39

CPU 12,47 31,65 60,98 81,30 84,03

8 32 128 512 2048

Figure 8: Frames/sec. in the collision of 1024 particles

and the polyhedron named "Cat". X axis shows the number

of subdivisions performed with the tetra-tree (level).

1,00

10,00

100,00

1000,00

10000,00

100000,00

FS+FS 10000,00 10000,00 5000,00 1000,00

CPU+FS 100000,00 10000,00 5000,00 1428,57

FS with f-b 5000,00 1428,57 357,14 90,91

FS without f-b 100000,00 100000,00 10000,00 10000,00

CPU 10000,00 2500,00 555,56 140,85

256 1024 4096 16384

Figure 9: Frames/sec. in the collision of some particles

and the polyhedron named "Horse". X axis shows the num-

ber of particles.

We performed several tests to measure the speed of the
different implementations. The number of tetrahedra of the
covering (Figure 10), the number of subdivisions per-
formed with the tetra-tree (according to different levels),
and the number of particles are parameters which we have
measured. We have generated particles inside the bound-
ing-box of each polyhedron and they move randomly. We
have measured the number of frames per second in the
collision detection.

Complex

136 tetrahedra
40 vertices

Cat

760 tetrahedra
382 vertices

Horse

7172 tetrahedra
3582 vertices

Golfball

46205 tetrahedra
23363 vertices

Figure 10: Polyhedra used in the tests.

The tests performed are:

• Collision detection in frames/second for different
objects and a particle cloud formed by 1024 particles.
We have fixed the tetra-tree depth to 2048 subdivi-
sions, see Figure 7.

• Collision detection in frames/second for the object
"Cat" and a particle cloud formed by 1024 particles.
We have change the tetra-tree depth (number of sub-
divisions), see Figure 8.

• Collision detection in frames/second for the object
"Horse" and a particle cloud formed by a varying
number of particles. We have fixed the tetra-tree depth
to 2048 subdivisions, see Figure 9.

Particle movement has been calculated in CPU, so it is
possible to send GPU a direction vector for each particle
and actualize their positions in the vertex or fragment
shader.

Figure 9: Frames/sec. in the collision of some particles and
the polyhedron named "Horse". X axis shows the number of
particles.

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

0,01

0,10

1,00

10,00

100,00

1000,00

VS + FS 0,95 0,68 0,42 0,07

FS+FS 59,17 38,91 13,35 9,12

CPU+FS 227,27 153,85 46,73 14,77

FS with f-b 63,29 41,84 13,19 9,57

FS without f-b 212,77 166,67 128,21 28,90

CPU 140,85 81,30 22,68 5,91

136 760 7172 46205

Figure 7: Frames/sec. in the collision of 1024 particles

and some polyhedra. X axis shows the number of tetrahe-

dra of the covering of each polyhedron.

1,00

10,00

100,00

1000,00

FS+FS 1,86 6,59 21,83 38,91 48,78

CPU+FS 5,49 20,12 99,01 153,85 142,86

FS with f-b 1,88 6,76 30,58 41,84 51,02

FS without f-b 232,56 256,41 131,58 166,67 217,39

CPU 12,47 31,65 60,98 81,30 84,03

8 32 128 512 2048

Figure 8: Frames/sec. in the collision of 1024 particles

and the polyhedron named "Cat". X axis shows the number

of subdivisions performed with the tetra-tree (level).

1,00

10,00

100,00

1000,00

10000,00

100000,00

FS+FS 10000,00 10000,00 5000,00 1000,00

CPU+FS 100000,00 10000,00 5000,00 1428,57

FS with f-b 5000,00 1428,57 357,14 90,91

FS without f-b 100000,00 100000,00 10000,00 10000,00

CPU 10000,00 2500,00 555,56 140,85

256 1024 4096 16384

Figure 9: Frames/sec. in the collision of some particles

and the polyhedron named "Horse". X axis shows the num-

ber of particles.

We performed several tests to measure the speed of the
different implementations. The number of tetrahedra of the
covering (Figure 10), the number of subdivisions per-
formed with the tetra-tree (according to different levels),
and the number of particles are parameters which we have
measured. We have generated particles inside the bound-
ing-box of each polyhedron and they move randomly. We
have measured the number of frames per second in the
collision detection.

Complex

136 tetrahedra
40 vertices

Cat

760 tetrahedra
382 vertices

Horse

7172 tetrahedra
3582 vertices

Golfball

46205 tetrahedra
23363 vertices

Figure 10: Polyhedra used in the tests.

The tests performed are:

• Collision detection in frames/second for different
objects and a particle cloud formed by 1024 particles.
We have fixed the tetra-tree depth to 2048 subdivi-
sions, see Figure 7.

• Collision detection in frames/second for the object
"Cat" and a particle cloud formed by 1024 particles.
We have change the tetra-tree depth (number of sub-
divisions), see Figure 8.

• Collision detection in frames/second for the object
"Horse" and a particle cloud formed by a varying
number of particles. We have fixed the tetra-tree depth
to 2048 subdivisions, see Figure 9.

Particle movement has been calculated in CPU, so it is
possible to send GPU a direction vector for each particle
and actualize their positions in the vertex or fragment
shader.

Figure 10: Polyhedra used in the tests.

• Collision detection in frames/second for the object "Cat"
and a particle cloud formed by 1024 particles. We have
change the tetra-tree depth (number of subdivisions), see
Figure 8.

• Collision detection in frames/second for the object
"Horse" and a particle cloud formed by a varying num-
ber of particles. We have fixed the tetra-tree depth to 2048
subdivisions, see Figure 9.

Particle movement has been calculated in CPU, so it is

c© The Eurographics Association 2006.

Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU 51

Figure Complex Cat Horse Golfball
Tetrahedra 136 760 7172 46205

Vertices 40 382 3582 23363
CPU+FS 61% 89% 106% 150%

FS without f-b 51% 105% 465% 389%

Table 1: Improvement percentages of some implementations
with regard to CPU implementation.

possible to send GPU a direction vector for each particle and
actualize their positions in the vertex or fragment shader.

Table 1 shows the improvement percentage of the most
important implementations with regard to the CPU imple-
mentation for the first test (Figure 7).

6. Conclusions and Future work

On one hand we have developed an exact and robust object-
based method for collision detection between a complex ob-
ject and a particle cloud by using the programmable GPU.
On the other hand, we have shown the advantages of using
several implementations based on programmable GPU.

The solution proposed does not need to decompose a com-
plex object into convex pieces, the simplicial covering being
a simple, elegant and fast solution to deal with this type of
objects.

We can conclude that at present, it is less efficient to
access texture information simultaneously from the ver-
tex and fragment shader. In the first stage of the problem
posed it would be more adequate to develop a hash func-
tion [THM∗03] in order to obtain the tetra-cone in which
the particle is included, it not being necessary to recursively
classify the particle in the tetra-tree. Additionally, it is neces-
sary to provide a mechanism in order to avoid the one-to-one
vertex program and fragment program execution and thus to
achieve the maximum performance of the fragment shader.

In addition, it is necessary to avoid information transfer-
ence between frame-buffer and main memory, as well as pro-
gram changing between frames in the GPU, in order to ob-
tain efficient implementations.

The algorithms developed can be easily modified to use
spherical particles. We can use tetrahedra with an offset
equal to the sphere radius and use point-based particles
[JFSO06].

We can extend this algorithm in order to obtain the colli-
sion determination, that is to say, the parts of the polyhedron
which are involved in the collision. In order to do this we
can use a p-buffer that allows a wider output range.

7. Acknowledgments

This work has been partially funded by the Ministry of
Science and Technology of Spain and the European Union

by means of the ERDF funds, under the research project
TIN2004-06326-C03-03.

References

[Bad90] BADOUEL F.: An efficient Ray-Polygon intersec-
tion, Graphics Gems. Academic Press, 1990. 45

[BW03] BACIU G., WONG W.: Image-based techniques
in a hybrid collision detector. IEEE Transaction on graph-
ics 9, 2 (2003). 44

[Ebe04] EBERLY D. H.: Game Physics. Morgan Kauf-
mann publishers, Elsevier, 2004. 44

[FT97a] FEITO F. R., TORRES J. C.: Boundary represen-
tation of polyhedral heterogeneous solids in the context of
a graphic object algebra. The Visual Computer 13 (1997),
64–77. 44

[FT97b] FEITO F. R., TORRES J. C.: Inclusion test for
general polyhedra. Computer & Graphics 21, 1 (1997),
23–30. 45

[GLM05] GOVINDARAJU N., LIN M., MANOCHA
D.: Quick-cullide: Fast inter- and intra-object collision
culling using graphics hardware. In Proc. IEEE VR
(2005). 44

[JFSO06] JIMÉNEZ J. J., FEITO F. R., SEGURA
R. J., OGAYAR C. J.: Particle oriented collision detec-
tion using simplicial coverings and tetra-trees. Computer
Graphics Forum 25, 1 (2006), 53–68. 44, 45, 51

[JP02] JAMES D. L., PAI D. K.: Dynamic response tex-
tures for real time deformation simulation with graphics
hardware. ACM Transactions on Graphics 21, 3 (2002),
582–585. 44

[JTT01] JIMENEZ P., THOMAS F., TORRAS C.: 3d
collision detection: a survey. Computer & Graphics 25
(2001), 269–285. 44

[KF05] KILGARIFF E., FERNANDO R.: The Geforce
6 Series GPU Architecture, GPU Gems 2. NVidia, 2005.
43

[KLR04] KOLB A., LATTA L., REZKSALAMA C.:
Hardware-based simulation and collision detection for
large particle systems. Graphics Hardware (2004). 44

[Kno03] KNOTT D.: Collision and Interference Detection
in Real Time Using Graphics Hardware. PhD, University
of British Columbia., 2003. 44

[LG98] LIN M., GOTTSCHALK S.: Collision detec-
tion between geometric models: A survey. In Proc. IMA
Conf. on Mathematics of Surfaces. (1998). 44

[Sta99] STAM J.: Stable fluids. In Proc. SIGGRAPH 99.
(1999), pp. 121–128. 44

[TF88] TERZOPOULOS D., FLEISCHER K.: De-
formable models. The Visual Computer. 4, 6 (1988). 44

c© The Eurographics Association 2006.

52 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

[THM∗03] TESCHNER M., HEIDELBERGER B.,
MULLER M., POMERANETS D., GROSS M.: Op-
timized spatial hashing for collision detection on de-
formable objects. In Proc. VMV (2003). 51

[TKH∗04] TESCHNER M., KIMMERLE S., HEIDEL-
BERGER B., ZACHMANN G., RAGHUPATHI L.,
FUHRMANN A., CANI M.-P., FAURE F., MAGNETAT-
THALMANN N., STRASSER W., VOLINO P.: Collision
detection for deformable objects. Computer Graphics
Forum. 23, 1 (2004), 61–81. 44

[WH94] WITKIN A. P., HECKBERT P. S.: Using par-
ticles to sample and control implicit surfaces. In Proc.
SIGGRAPH 94. (1994), pp. 269–278. 44

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

[TF88] TERZOPOULOS D., FLEISCHER K.: Deform-
able models. The Visual Computer, 4 (6), 1988.

[THM*03] TESCHNER M, HEIDELBERGER B.,
MÜLLER M., POMERANETS D., GROSS M.: Opti-
mized Spatial Hashing for Collision Detection on De-
formable Objects. VMV, 2003.

[TKH*04] TESCHNER M., KIMMERLE S.
HEIDELBERGER B., et. al. Collision Detection for

Deformable Objects. Computer Graphics Forum 23,
(1), pp. 61-81, 2004.

[WH94] WITKIN A.P., HECKBERT P.S.: Using particles
to sample and control implicit surfaces. In Proceedings

of SIGGRAPH 94. Computer Graphics Proceedings, pp
269-278, 1994.

Appendix A: Vertex Program

#define MAX_COL_VERTICES 1024

#define getVertex(tetracone, level) { \
 v = texRECT(indexTT, float2(tetracone, level)).xyz; \
 v_fil = v / MAX_COL_VERTICES; \
 v_col = v % MAX_COL_VERTICES; \
 v1 = texRECT(vertexTT, float2(v_col.x, v_fil.x)).xyz; \
 v2 = texRECT(vertexTT, float2(v_col.y, v_fil.y)).xyz; \
 v3 = texRECT(vertexTT, float2(v_col.z, v_fil.z)).xyz; \
 v1 = mul(transf,float4(v1.xyz,1)).xyz; \
 v2 = mul(transf,float4(v2.xyz,1)).xyz; \
 v3 = mul(transf,float4(v3.xyz,1)).xyz; \
}

int is_in_tetra_cone (float3 v0, float3 v1, float3 v2, float3 v3, float3 particle) {

 int s1, s2, s3;
 int s0;
 float3 v0_particle, v1_particle, v2_particle, v3_particle;

 v0_particle = v0 – particle;
 v1_particle = v1 – particle;
 v2_particle = v2 – particle;
 v3_particle = v3 – particle;

 int result = 0; // out of tetra-cone
 s1 = sign(determinant(float3x3(v0_particle, v3_particle, v2_particle)));
 if (s1>=0) {
 s2 = sign(determinant(float3x3(v3_particle,v0_particle, v1_particle)));
 if (s2>=0) {
 s3 = sign(determinant(float3x3(v0_particle, v2_particle,
 v1_particle)));
 if (s3>=0) {
 s0 = sign(determinant(float3x3(v1_particle, v2_particle,
 v3_particle)));
 if (s0 < 0) {
 result = 2;//out of bounding tetra., but in tetra-cone
 } else
 result = 1;//in bounding tetra, in tetra-cone
 }
 }
 }
 return result;
}

void main (
 float3 position : POSITION,//(x,y,0) frame-buffer output position
 float4 particle : NORMAL, //(x,y,z,tetracone) particle pos. & tetra-cone

 uniform float4x4 ModelViewProj,
 uniform float4 v0, //original vertex (tetrahedra) and its inclusion
 uniform float level, //level of tetra-tree
 uniform float4x4 transf,//Transformation matrix of polyhedron & tetra-tree

 const samplerRECT indexTT : texunit3,//Indices of vertices for tetra-cones
 //(iv1,iv2,iv3)
 const samplerRECT vertexTT : texunit4,//Vertex coordinates (x,y,z)

 out float4 oPosition : POSITION,//frame-buffer output coord. (x,y,0,1)
 out float4 oParticle : TEXCOORD0,//Particle coord. & tetra-cone
 //(x,y,z,tetra-cone)
 out float4 oInfo : TEXCOORD1) //(x,0,0,0), in or out the bounding tetra.
{
 int tetracone, tcone, lev, I, is_in;
 float3 v1, v2, v3;
 int3 v, v_fil, v_col;

 oPosition = mul(ModelViewProj,float4(position.xy,0,1));
 oInfo.w = 0;
 tetracone = particle.w;
 v0 = mul(transf,float4(v0.xyz,1));

 getVertex(tetracone, level);
 is_in = is_in_tetra_cone(v0.xyz, v1, v2, v3, particle.xyz);
 if (is_in == 0) {
 for (I=0;I<8;I++) {
 getVertex(I, 0);
 is_in = is_in_tetra_cone(v0.xyz, v1, v2, v3, particle.xyz);
 if (is_in >=1) {
 tetracone = I;
 break;
 }
 }
 for (lev = 1; lev<=level; lev++) {
 for (I=0;I<4;I++) {
 tcone = 4 * tetracone + i ;
 getVertex(tcone, lev);
 is_in = is_in_tetra_cone(v0.xyz, v1, v2, v3, particle.xyz);
 if (is_in >= 1) {
 tetracone = tcone;
 break;
 }
 }
 }
 }

 if (is_in == 2) oInfo.x = 1; //out of the bounding tetra.
 OParticle = float4(particle.xyz, tetracone);
}

Appendix B: Fragment Program

void main (
 float4 particle : TEXCOORD0,//(x,y,z,tetra-cone) particle pos.& tetra-cone
 float4 info : TEXCOORD1, // (x,0,0,0), in or out the bounding tetra.

 uniform float4 v0, // Original vertex (tetrahedra) and its inclusion
 uniform float level, // Tetra-Tree depth
 uniform float4x4 transf,// Polyhedron and Tetra-Tree transformation

 const samplerRECT index: texunit1, //Indices of vertices for tetrahedra
 //(i1,i2,i3,sign)
 const samplerRECT vertex: texunit2, //Vertex coordinates (x,y,z)

 out float4 oResult : COLOR) // (r,g,b,0) r=collision, gb=tetra-cone code
{
 int tetracone = particle.w;
 oResult = float4(0, (tetracone / 256) / 256.0, (tetracone % 256) / 256.0, 0);
 if (info.x==0) {
 int4 index_v; //v1,v2,v3 indices
 float3 v[4];
 float3 v0_particle, v1_particle, v2_particle, v3_particle;
 int sign_, pos_x, sum;
 int s0, s1, s2, s3;
 float numTetra = texRECT(index, float2(0, tetracone)).r; // (y,x).r
 v[0] = mul(transf,float4(v0.xyz,1)).xyz;
 sum = 0;
 for (int i=1;i<=numTetra;i++) {
 index_v = texRECT(index, float2(i, tetracone));
 pos_x = index_v.x / 1024;
 index_v = index_v % 1024;
 sign_ = index_v.w;
 if (sign_ == 2) sign_ = -1;
 v0_particle = v[0] - particle.xyz;
 v[1] = texRECT(vertex, float2(index_v.x, pos_x)).rgb;
 v[1] = mul(transf,float4(v[1],1)).xyz;
 v[2] = texRECT(vertex, float2(index_v.y, pos_x)).rgb;
 v[2] = mul(transf,float4(v[2],1)).xyz;
 v[3] = texRECT(vertex, float2(index_v.z, pos_x)).rgb;
 v[3] = mul(transf,float4(v[3],1)).xyz;
 v1_particle = v[1] - particle.xyz;
 v2_particle = v[2] - particle.xyz;
 v3_particle = v[3] - particle.xyz;
 float b0 = determinant(float3x3(v1_particle, v2_particle,
 v3_particle));
 s0 = sign_ * sign(b0);
 if (s0 >= 0) {
 float b1 = determinant(float3x3(v0_particle, v3_particle,
 v2_particle));
 s1 = sign_ * sign(b1);
 if (s1 >= 0) {
 float b2 = determinant(float3x3(v3_particle,
 v0_particle, v1_particle));
 s2 = sign_ * sign(b2);
 if (s2 >= 0) {
 float b3 = determinant(float3x3(v0_particle,
 v2_particle, v1_particle));
 s3 = sign_ * sign(b3);
 if (s3 >= 0) {
 int vert = -1;
 // inside v0v1v2v3, face v1v2v3
 if (s1 > 0 && s2 > 0 && s3 > 0)
 sum += 2 * sign_;
 // vert. v2, v3, edge v2v3
 else if (s0==0 && s1==0) {
 oResult.r = 1;
 break;
 }
 // vert. v1, edge v0v1
 else if (s1>0 && s2==0 && s3==0)
 vert = 1;
 // edge v0v2
 else if (s0>0 && s1==0 && s2>0 && s3==0)
 vert = 2;
 // edge v0v3
 else if (s0>0 && s1==0 && s2==0 && s3>0)
 vert = 3;
 // vert. v0
 else if (s0>0 && s1==0 && s2==0 && s3==0) {
 oResult.r = v0.w;
 break;
 }
 // Face v3v2v0,v3v0v1,v0v1v2, edge v1v2,v2v1
 else sum += sign_;
 // Special cases, calculated in CPU
 if (vert != -1) {
 oResult.r = 0.5;
 sum = 0;
 break;
 }
 }
 }
 }
 }
 }
 if (sum==2) oResult.r = 1;
 }
}

Figure 11: Appendix A: Vertex Program

 Juan J. Jiménez et. al / Collision Detection between a Complex Solid and a Particle Cloud assisted by Programmable GPU

 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

[TF88] TERZOPOULOS D., FLEISCHER K.: Deform-
able models. The Visual Computer, 4 (6), 1988.

[THM*03] TESCHNER M, HEIDELBERGER B.,
MÜLLER M., POMERANETS D., GROSS M.: Opti-
mized Spatial Hashing for Collision Detection on De-
formable Objects. VMV, 2003.

[TKH*04] TESCHNER M., KIMMERLE S.
HEIDELBERGER B., et. al. Collision Detection for

Deformable Objects. Computer Graphics Forum 23,
(1), pp. 61-81, 2004.

[WH94] WITKIN A.P., HECKBERT P.S.: Using particles
to sample and control implicit surfaces. In Proceedings

of SIGGRAPH 94. Computer Graphics Proceedings, pp
269-278, 1994.

Appendix A: Vertex Program

#define MAX_COL_VERTICES 1024

#define getVertex(tetracone, level) { \
 v = texRECT(indexTT, float2(tetracone, level)).xyz; \
 v_fil = v / MAX_COL_VERTICES; \
 v_col = v % MAX_COL_VERTICES; \
 v1 = texRECT(vertexTT, float2(v_col.x, v_fil.x)).xyz; \
 v2 = texRECT(vertexTT, float2(v_col.y, v_fil.y)).xyz; \
 v3 = texRECT(vertexTT, float2(v_col.z, v_fil.z)).xyz; \
 v1 = mul(transf,float4(v1.xyz,1)).xyz; \
 v2 = mul(transf,float4(v2.xyz,1)).xyz; \
 v3 = mul(transf,float4(v3.xyz,1)).xyz; \
}

int is_in_tetra_cone (float3 v0, float3 v1, float3 v2, float3 v3, float3 particle) {

 int s1, s2, s3;
 int s0;
 float3 v0_particle, v1_particle, v2_particle, v3_particle;

 v0_particle = v0 – particle;
 v1_particle = v1 – particle;
 v2_particle = v2 – particle;
 v3_particle = v3 – particle;

 int result = 0; // out of tetra-cone
 s1 = sign(determinant(float3x3(v0_particle, v3_particle, v2_particle)));
 if (s1>=0) {
 s2 = sign(determinant(float3x3(v3_particle,v0_particle, v1_particle)));
 if (s2>=0) {
 s3 = sign(determinant(float3x3(v0_particle, v2_particle,
 v1_particle)));
 if (s3>=0) {
 s0 = sign(determinant(float3x3(v1_particle, v2_particle,
 v3_particle)));
 if (s0 < 0) {
 result = 2;//out of bounding tetra., but in tetra-cone
 } else
 result = 1;//in bounding tetra, in tetra-cone
 }
 }
 }
 return result;
}

void main (
 float3 position : POSITION,//(x,y,0) frame-buffer output position
 float4 particle : NORMAL, //(x,y,z,tetracone) particle pos. & tetra-cone

 uniform float4x4 ModelViewProj,
 uniform float4 v0, //original vertex (tetrahedra) and its inclusion
 uniform float level, //level of tetra-tree
 uniform float4x4 transf,//Transformation matrix of polyhedron & tetra-tree

 const samplerRECT indexTT : texunit3,//Indices of vertices for tetra-cones
 //(iv1,iv2,iv3)
 const samplerRECT vertexTT : texunit4,//Vertex coordinates (x,y,z)

 out float4 oPosition : POSITION,//frame-buffer output coord. (x,y,0,1)
 out float4 oParticle : TEXCOORD0,//Particle coord. & tetra-cone
 //(x,y,z,tetra-cone)
 out float4 oInfo : TEXCOORD1) //(x,0,0,0), in or out the bounding tetra.
{
 int tetracone, tcone, lev, I, is_in;
 float3 v1, v2, v3;
 int3 v, v_fil, v_col;

 oPosition = mul(ModelViewProj,float4(position.xy,0,1));
 oInfo.w = 0;
 tetracone = particle.w;
 v0 = mul(transf,float4(v0.xyz,1));

 getVertex(tetracone, level);
 is_in = is_in_tetra_cone(v0.xyz, v1, v2, v3, particle.xyz);
 if (is_in == 0) {
 for (I=0;I<8;I++) {
 getVertex(I, 0);
 is_in = is_in_tetra_cone(v0.xyz, v1, v2, v3, particle.xyz);
 if (is_in >=1) {
 tetracone = I;
 break;
 }
 }
 for (lev = 1; lev<=level; lev++) {
 for (I=0;I<4;I++) {
 tcone = 4 * tetracone + i ;
 getVertex(tcone, lev);
 is_in = is_in_tetra_cone(v0.xyz, v1, v2, v3, particle.xyz);
 if (is_in >= 1) {
 tetracone = tcone;
 break;
 }
 }
 }
 }

 if (is_in == 2) oInfo.x = 1; //out of the bounding tetra.
 OParticle = float4(particle.xyz, tetracone);
}

Appendix B: Fragment Program

void main (
 float4 particle : TEXCOORD0,//(x,y,z,tetra-cone) particle pos.& tetra-cone
 float4 info : TEXCOORD1, // (x,0,0,0), in or out the bounding tetra.

 uniform float4 v0, // Original vertex (tetrahedra) and its inclusion
 uniform float level, // Tetra-Tree depth
 uniform float4x4 transf,// Polyhedron and Tetra-Tree transformation

 const samplerRECT index: texunit1, //Indices of vertices for tetrahedra
 //(i1,i2,i3,sign)
 const samplerRECT vertex: texunit2, //Vertex coordinates (x,y,z)

 out float4 oResult : COLOR) // (r,g,b,0) r=collision, gb=tetra-cone code
{
 int tetracone = particle.w;
 oResult = float4(0, (tetracone / 256) / 256.0, (tetracone % 256) / 256.0, 0);
 if (info.x==0) {
 int4 index_v; //v1,v2,v3 indices
 float3 v[4];
 float3 v0_particle, v1_particle, v2_particle, v3_particle;
 int sign_, pos_x, sum;
 int s0, s1, s2, s3;
 float numTetra = texRECT(index, float2(0, tetracone)).r; // (y,x).r
 v[0] = mul(transf,float4(v0.xyz,1)).xyz;
 sum = 0;
 for (int i=1;i<=numTetra;i++) {
 index_v = texRECT(index, float2(i, tetracone));
 pos_x = index_v.x / 1024;
 index_v = index_v % 1024;
 sign_ = index_v.w;
 if (sign_ == 2) sign_ = -1;
 v0_particle = v[0] - particle.xyz;
 v[1] = texRECT(vertex, float2(index_v.x, pos_x)).rgb;
 v[1] = mul(transf,float4(v[1],1)).xyz;
 v[2] = texRECT(vertex, float2(index_v.y, pos_x)).rgb;
 v[2] = mul(transf,float4(v[2],1)).xyz;
 v[3] = texRECT(vertex, float2(index_v.z, pos_x)).rgb;
 v[3] = mul(transf,float4(v[3],1)).xyz;
 v1_particle = v[1] - particle.xyz;
 v2_particle = v[2] - particle.xyz;
 v3_particle = v[3] - particle.xyz;
 float b0 = determinant(float3x3(v1_particle, v2_particle,
 v3_particle));
 s0 = sign_ * sign(b0);
 if (s0 >= 0) {
 float b1 = determinant(float3x3(v0_particle, v3_particle,
 v2_particle));
 s1 = sign_ * sign(b1);
 if (s1 >= 0) {
 float b2 = determinant(float3x3(v3_particle,
 v0_particle, v1_particle));
 s2 = sign_ * sign(b2);
 if (s2 >= 0) {
 float b3 = determinant(float3x3(v0_particle,
 v2_particle, v1_particle));
 s3 = sign_ * sign(b3);
 if (s3 >= 0) {
 int vert = -1;
 // inside v0v1v2v3, face v1v2v3
 if (s1 > 0 && s2 > 0 && s3 > 0)
 sum += 2 * sign_;
 // vert. v2, v3, edge v2v3
 else if (s0==0 && s1==0) {
 oResult.r = 1;
 break;
 }
 // vert. v1, edge v0v1
 else if (s1>0 && s2==0 && s3==0)
 vert = 1;
 // edge v0v2
 else if (s0>0 && s1==0 && s2>0 && s3==0)
 vert = 2;
 // edge v0v3
 else if (s0>0 && s1==0 && s2==0 && s3>0)
 vert = 3;
 // vert. v0
 else if (s0>0 && s1==0 && s2==0 && s3==0) {
 oResult.r = v0.w;
 break;
 }
 // Face v3v2v0,v3v0v1,v0v1v2, edge v1v2,v2v1
 else sum += sign_;
 // Special cases, calculated in CPU
 if (vert != -1) {
 oResult.r = 0.5;
 sum = 0;
 break;
 }
 }
 }
 }
 }
 }
 if (sum==2) oResult.r = 1;
 }
}

Figure 12: Appendix B: Fragment Program

c© The Eurographics Association 2006.

