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Abstract
Ray tracing is a widely used algorithm to compute images with high visual quality. Mapping ray tracing compu-
tations to massively parallel hardware architectures in an efficient manner is a difficult task.
Based on an analysis of current ray tracing algorithms on GPUs, a new ray traversal scheme called batch tracing
is proposed. It decomposes the task into multiple kernels, each of which is designed for efficient execution. Our
algorithm achieves comparable performance to state-of-the-art approaches and represents a promising avenue
for future research.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing I.3.1 [Computer Graphics]: Hardware Architecture—Graphics Processors
G.1.0 [Mathematics of Computing]: General—Parallel algorithms

1. Introduction

Ray tracing is a popular algorithm to compute high-quality
renderings of complex scenes. Its huge computational re-
quirements make massively parallel hardware architectures
like modern graphics processing units (GPUs) attractive tar-
get platforms for implementations. We investigate high per-
formance ray tracing on NVidia GPUs and we focus on the
task of intersecting a ray with a scene containing geomet-
ric primitives only and omit shading and other operations.
In this paper, we use bounding volume hierarchies (BVHs)
as acceleration structure for ray traversal and evaluate the
presented algorithms on ray loads generated by a path tracer
with a fixed maximum path length of three bounces for dif-
ferent test scenes shown in Figure 1.

Figure 1: Ray tracing-based renderings of our test scenes.
From left to right: Sibenik (80K triangles), Conference
(282K triangles) and Museumhall (1470K triangles).

2. Analysis of Current Approaches

Aila et al. [AL09] presented efficient depth-first BVH traver-
sal methods, which use a single kernel containing traver-
sal and intersection, that is run for each input ray in par-
allel. More recently, they presented some improvements to
increase the SIMT efficiency for NVidia’s Kepler architec-
ture in [ALK12]. Given two different rays contained in the
same warp, potential inefficiencies in their approach now
stem from the fact that the rays either require different oper-
ations (e.g. one ray needs to execute a traversal step, while
the other ray needs to perform primitive intersection) or the
sequences of required operations have a different length (e.g.
one ray misses the root node of the BVH, while the other ray
does not). These two fundamental problems have a negative
impact on SIMT efficiency and lead to an uneven distribution
of work among the active threads, especially for incoherent
ray loads (see also [TS]).

Garanzha et al. presented a novel traversal algorithm for
BVHs in [GL10] implemented using multiple kernels. The
input rays are partitioned into coherent groups bounded by
frusta, which are then used in the breadth-first traversal of
the BVH. This stage yields lists of intersected leaves for each
frustum. After traversal, the rays are tested for intersection
with the primitives contained in each leaf to obtain the fi-
nal results. Large parts of their implementation are designed
to exhibit high SIMT efficiency, since each kernel is care-
fully designed to perform a single task (e.g. frustum intersec-
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Figure 2: High-level system designs for monolithic depth-
first (left), breadth-first (middle) and our batch tracing ap-
proach (right). Blocks denote logical parts of the algorithms,
black arrows denote the control flow.

tion) and complex operations are broken down into smaller
tasks. However, the approach performs a complete traversal
of the acceleration structure for each frustum regardless of
the number of the actually necessary operations. So a lot of
potentially redundant work per ray is carried out, which de-
creases overall performance, especially for incoherent rays.

3. Multi-Kernel Batch Traversal

Based on these observations, we propose a novel approach
called batch traversal that is designed to achieve the fol-
lowing objectives:

• Given the low SIMT efficiency for incoherent rays of
depth-first traversals, our algorithm notably increases
SIMT efficiency.

• Unlike breadth-first traversal, the algorithm does not ex-
hibit substantial inefficiencies in handling ray loads of
varying coherency.

The components of our algorithm and their interplay are
shown in Figure 2 (right) together with depth-first (left) and
breadth-first (middle) traversals. Like in breadth-first traver-
sal, our approach splits the ray tracing task into several algo-
rithmic stages implemented in multiple kernels to increase
SIMT efficiency of the single code parts. During leaf col-
lection stage, the ray traverses the BVH similar to depth-
first traversal and collects a number of intersected leaf nodes
called intersection candidates. In the subsequent phase, the
active rays and the collected intersection candidates are re-
organized to maintain efficient execution of the following
stages. In the intersection phase the primitives contained in
the intersection candidates are tested for intersection with
the ray and the results are used to update the rays. These
stages are executed in a loop until all input rays have termi-
nated. Contrary to breadth-first traversal, our approach per-
forms partial BVH traversals and intersection testing alter-
nately in order to avoid collecting a large number of redun-
dant intersection candidates.

Ray Type Mono BT (Base) BT (Opt.)
1. Bounce 66.8 / 47.7 66.5 / 58.3 69.3 / 58.3
2. Bounce 40.3 / 33.2 36.7 / 47.1 56.8 / 47.1
3. Bounce 36.3 / 30.3 32.6 / 45.4 54.6 / 45.4

Table 1: SIMT efficiency percentages for traversal and inter-
section of monolithic depth-first kernels (Mono) and batch
tracing kernels (BT), higher values are better.

4. Results and Discussion

For the practical evaluation, we provide a baseline imple-
mentation of our algorithm and an optimized variant, which
dynamically fetches new rays in the leaf collection stage,
if the SIMT efficiency drops below a certain threshold.
As shown in Table 1, our algorithms can substantially im-
prove the SIMT efficiency of the traversal and the intersec-
tion stage compared to state-of-the-art monolithic depth-first
traversals. However, these SIMT efficiency gains do not re-

GPU Ray Type BT (Base) BT (Opt.)

GT 540M
1. Bounce 0.86 0.91
2. Bounce 0.97 1.05
3. Bounce 0.91 1.00

GTX 590
1. Bounce 0.72 0.72
2. Bounce 0.77 0.82
3. Bounce 0.74 0.80

Table 2: Ray tracing performance for the batch tracing ker-
nels relative to monolithic kernels, higher values are better.

sult in consistent performance wins as reported in Table 2,
where a slight improvement can only be measured on a low-
end GT 540M chip. Although our current implementation
cannot quite compete with mature and heavily optimized
monolithic traversal in the other test scenarios, our multi-
kernel method possesses appealing characteristics, which
makes it an attractive direction for further research.
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