
Vision, Modeling, and Visualization (2013)
Michael Bronstein, Jean Favre, and Kai Hormann (Eds.)

Level of Detail for Real-Time Volumetric Terrain Rendering

Manuel Scholz1, Jan Bender1 and Carsten Dachsbacher2

1Graduate School CE, TU Darmstadt
2Karlsruhe Institute of Technology

Figure 1: Screenshots from our real-time terrain rendering system. The above scenes show complex features like caves, arches,
and steep cliffs, and were rendered with a resolution of 1920x1080 at approximately 1500 Hz.

Abstract
Terrain rendering is an important component of many GIS applications and simulators. Most methods rely on
heightmap-based terrain which is simple to acquire and handle, but has limited capabilities for modeling features
like caves, steep cliffs, or overhangs. In contrast, volumetric terrain models, e.g. based on isosurfaces can repre-
sent arbitrary topology. In this paper, we present a fast, practical and GPU-friendly level of detail algorithm for
large scale volumetric terrain that is specifically designed for real-time rendering applications. Our algorithm is
based on a longest edge bisection (LEB) scheme. The resulting tetrahedral cells are subdivided into four hexahe-
dra, which form the domain for a subsequent isosurface extraction step. The algorithm can be used with arbitrary
volumetric models such as signed distance fields, which can be generated from triangle meshes or discrete volume
data sets. In contrast to previous methods our algorithm does not require any stitching between detail levels. It
generates crack free surfaces with a good triangle quality. Furthermore, we efficiently extract the geometry at
runtime and require no preprocessing, which allows us to render infinite procedural content with low memory
consumption.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Since the beginning of computer graphics an important goal
is to model, simulate and render large natural scenes. A key
element of outdoor scenes is the terrain itself. Efficient ter-
rain rendering has therefore been in focus of research for
many years, and has a wide range of applications in vir-
tual reality, simulators, geographic information system and
games. To render large scale terrain models interactively, a
level of detail (LOD) system is required to invest memory
and computational resources only where necessary.

Most research has focused on heightmap-based approaches
which are well established and provide a good tool to render
terrain at large scales. However, they are unable to faithfully
represent features like caves, overhangs, rugged mountains
and steep cliffs. As the expectations of users increase, this
limitation becomes more apparent. Often these missing fea-
tures are added by placing separate objects on top of the ter-
rain, which can only be considered as a work-around rather
than a satisfactory solution to the problem.

c© The Eurographics Association 2013.

DOI: 10.2312/PE.VMV.VMV13.211-218

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE.VMV.VMV13.211-218

Scholz, Bender and Dachsbacher / Level of Detail for Real-Time Volumetric Terrain Rendering

Recently, volumetric approaches have gained more atten-
tion. They can represent arbitrary shapes and thus provide
more flexibility than heightmaps. The terrain surface is de-
fined by a density function from which an isosurface is ex-
tracted and rendered. The downside is the high memory
consumption of volumetric data sets and that more elabo-
rate level of detail algorithms than for heightmap-based ter-
rain are required. Previous work in this field either focused
on (rather complicated) stitching algorithms for detail level
transitions, or on modeling tools and data representations.
We focus on efficient rendering and present a novel level
of detail algorithm for volumetric terrain that requires no
stitching and can extract the terrain surface from arbitrary
volumetric models at runtime on the CPU. Unlike massive
model visualization techniques our approach does not re-
quire any preprocessing and allows us to render infinite pro-
cedural content with low memory usage. Our approach uses
hexahedral cells to extract the surface. This results in more
a desirable topology, a better triangle quality and less prim-
itives than most other multiresolution meshing techniques
which rely on tetrahedral representations. Finally, we also
discuss aliasing problems in the context of level of detail
rendering and provide a sampling strategy that is applica-
ble to many volumetric models. Three examples of complex
procedural terrain, rendered with our method, are shown in
Figure 1.

2. Related Work

Methods for rendering large scale terrain data can be roughly
categorized into heightmap-based methods, (generic) mas-
sive model visualization techniques, and volumetric terrain
rendering. We briefly discuss the pros and cons of existing
approaches with respect to the goals of this work.

Heightmap-Based Terrain Rendering has almost been
studied since the beginning of computer graphics. Previ-
ous work spans the entire range from fine grained level
of detail methods that operate on the individual triangles,
e.g. [LKR∗96, DWS∗97], to coarse grained methods which
became the first choice with the advent of powerful graphics
hardware. The latter adjust the detail level on the granular-
ity of large chunks of geometry and adapt their borders to
match the resolution of neighbor chunks, e.g. [LH04, Str09,
BGP09, LKES09]. For further detail we refer to surveys on
(multiresolution) terrain models [Dac06,PG07]. Heightmaps
are well suited to model the shape of natural terrain at large
scales, but apparently lack the ability to represent caves or
overhangs, and provide low sampling at steep slopes.

Massive Model Visualization Techniques are designed to
render arbitrary highly detailed models and thus can be used
for rendering terrains as well. In contrast to heightmaps,
these techniques do not impose any restrictions on the topol-
ogy and shape of the terrain. Several techniques exist to ren-
der meshes of up to several hundred million polygons at

interactive rates. In [CGG∗04, SM05, BGB∗05] the geom-
etry is stored in a tree data structure where each node con-
tains a part of the geometry at a certain level of detail. The
tree is constructed by recursively simplifying and merging
the geometry of nodes. For rendering, a front tracking ap-
proach is used to select the appropriate nodes for the current
view. Gobbetti and Marton [GM05] extend this approach
by switching to a precomputed voxel representation of the
geometry if the screen space footprint of a node becomes
smaller than few pixels. In [CGG∗03, LPT03] methods for
rendering terrain with triangulated irregular networks (TINs)
are presented. Although only demonstrated for heightmap
datasets only, TINs can also represent overhangs and other
complex terrain features. Hu et al. [HSH09] extend the idea
of progressive meshes [Hop96] with a view dependent re-
finement scheme. However, it requires a significant amount
of GPU resources for the hierarchy management. Lastly
there are also ray-tracing algorithms, e.g. [YLM06,GMG08,
Áfr12] that run at interactive frame rates but they are still too
slow for highly interactive real-time applications.

Despite their ability to render large and complex terrains,
massive model visualization techniques require an explicit
representation of the mesh which consumes a large amount
of memory. More importantly, all of the previously men-
tioned methods rely on an expensive preprocessing step to
build the required data structures. This makes these methods
inapplicable for online generated procedural content.

Volumetric Terrain has not been studied as extensively as
the previous classes, and only gained more attention in the
last few years. Peytavie et al. [PGGM09] present a modeling
framework which uses a compact stack-based representation
somewhat similar to a run length compression. They demon-
strate several modeling tools for their terrain representation,
but do not present a level of detail algorithm. Loeffler et
al. [LMS11] introduce a real-time rendering technique for
stack-based terrains. They transform this representation into
an octree data structure for rendering. Their method requires
a stitching process for regions where cells of different resolu-
tion meet. Stitching has to be performed whenever the neigh-
borhood of a cell changes. The need for frequent recompu-
tation of cell geometries prevents efficient caching of the
extracted isosurface and stresses computational resources.
In our algorithm, cells are completely independent and no
stitching is required, which avoids all these problems. Note
that stack-based terrain representations can also be used with
our LOD algorithm.

There are also solutions that focus on level of detail ren-
dering of arbitrary isosurfaces, e.g. [GDL∗02, Pas04]. They
utilize an adaptive longest edge bisection hierarchy to build
a conforming tetrahedral mesh on which the isosurface is
extracted. Compared to the method described in this work,
extracting a surface directly from these adaptive tetrahedral
meshes results in significantly more triangles and a lower
mesh quality.

c© The Eurographics Association 2013.

212

Scholz, Bender and Dachsbacher / Level of Detail for Real-Time Volumetric Terrain Rendering

(a) (b)

Figure 2: (a) The concept of our LOD algorithm in 2D: Thick
black lines show the LEB hierarchy. The lattices used for
surface extraction are depicted in gray. Note that the lattices
match at cell borders so that no stitching is required. Inside
the green cell a part of the surface is shown in blue. (b) A
longest edge bisection tetrahedra hierarchy in 3D.

3. Level Of Detail Algorithm

Our approach is based on density functions to represent
(large scale) volumetric terrain. The terrain surface is defined
as an isosurface which is approximated by a triangular mesh
and which can be efficiently rendered on graphics hardware.

An essential component of real-time terrain rendering sys-
tems is the level of detail algorithm which is usually based
on a hierarchical decomposition of the domain space. To our
knowledge, all previous volumetric terrain rendering meth-
ods use an octree to subdivide space into cubical cells of
different sizes. In each cube a regular lattice of fixed resolu-
tion is placed which is then used to extract a triangular ap-
proximation of the isosurface. A problem with this approach
is that cracks in the extracted surface can occur where cells
of different resolution meet. These cracks must be fixed by
a subsequent stitching process, which increases the system
complexity and degrades performance. Our method avoids
this problem by using a conforming hexahedral mesh instead
of an octree decomposition. By definition, faces of neigh-
boring cells in a conforming mesh always coincide. There-
fore, the lattices used during surface extraction match at cell
boundaries and the extracted surface exhibits no cracks in its
triangulation (see Figure 2).

To allow interactive traversal of the terrain, the hexahe-
dral mesh has to adapt quickly to new viewer positions. We
fulfill this requirement in two steps: First, a diamond hi-
erarchy [WDF08] is used to efficiently build an adaptive
conforming tetrahedral partitioning of space. Second, each
tetrahedron is split into four hexahedra (see Figure 3) before
the triangle surface is extracted with a modified Marching
Cubes (MC) algorithm. The subdivision of tetrahedral cells
into hexahedra and the surface extraction with the MC al-
gorithm is motivated as follows: MC creates better isosur-
face approximations with less artifacts compared to simplex

1 2 3 4

Figure 3: A tetrahedron (1) in the LEB hierarchy is split into
four hexahedra (2). Each of the hexahedra (3) is regularly
subdivided into a lattice (4) of hexahedral elements (blue).
These are used to extract the surface using the Marching
Cubes algorithm.

based methods [CMS06] and the resulting meshes have a
lower number of triangles and a better mesh topology with
a more evenly distributed vertex valence. Note that these ad-
vantages remain even though we use deformed hexahedral
domains instead of cubic domains.

For the surface extraction step we propose a novel sam-
pling strategy which maintains the independence of cells and
avoids aliasing. It is based on a frequency space decompo-
sition of the density function and employs a special interpo-
lation scheme which controls an adaptive low-pass filter to
suppress aliasing artifacts.

In the following, we detail the three major parts of our
method. In Section 3.1 we describe the level of detail hier-
archy. Section 3.2 deals with the extraction of the isosurface
inside a single cell of the hierarchy. Finally, Section 3.3 ex-
plains the construction of the density function and its sam-
pling. Figure 4 shows an overview of the individual stages
of the algorithm. In our implementation, all three compo-
nents are executed on the CPU. Our results indicate that our
method fully utilizes the GPU and thus makes a balanced use
of computational resources.

3.1. Level of Detail Hierarchy

The level of detail hierarchy is a data structure responsible
for adapting the resolution of the terrain mesh to the current
viewing conditions. Our LOD algorithm uses three dimen-
sional diamond hierarchies [WF11] which are based on the
longest edge bisection of tetrahedra. We start with a cubic
domain that is initially split into six tetrahedra which are
then subdivided according to the LEB scheme as needed.
An interesting property is that tetrahedra created by the LEB
scheme can be divided into three congruence classes. Recur-
sively splitting a tetrahedron three times yields smaller tetra-
hedra that have exactly the same shape and quality as the ini-
tial one. Therefore, element quality does not degrade during
subdivision and it is guaranteed that only well shaped tetra-
hedra emerge. This is crucial for obtaining terrain meshes of
good quality.

The hierarchy is stored as a binary tree where each node
represents a single tetrahedron. Tetrahedra that share a com-
mon longest edge form a diamond and must be split simulta-

c© The Eurographics Association 2013.

213

Scholz, Bender and Dachsbacher / Level of Detail for Real-Time Volumetric Terrain Rendering

LEB Hierarchy Tetrahedron Cell

Density Function Normal Vectors

Precomputed
Volume Mesh

Sample
Positions

Triangle
Mesh

Triangle
Mesh

Triangle
Mesh

Sample
Positions

Sampled
Density Values

CornersNew Cells
Transform to WC

Transform to WC

Marching Cubes

Mesh Optimization

Figure 4: Algorithm overview: Blue frames denote steps that operate in Cartesian world coordinates (WC), while steps with
purple frames operate in barycentric coordinates. When the hierarchy is refined, new cells are passed to the surface extraction
step. Its corner positions are used to transform sample and vertex positions from barycentric coordinates into world space.

neously to maintain a conforming tetrahedralization. We use
the encoding scheme by Weiss and De Floriani [WDF08]
to access diamonds and check for dependencies efficiently.
For a fast hierarchy traversal, diamonds are indexed in a
hashmap by their central vertex position. The leaf nodes of
the binary tree form the active front and define the current
conforming tetrahedral mesh. The active front is refined and
coarsened in real-time to adapt the mesh resolution to the
viewer position. Whenever a node of the active front is split,
the surface extraction procedure is invoked for both of its
children. This process is subject of the next subsection.

Our prototype implementation uses a simple distance-
based refinement criterion. For each node the distance d of
its bounding sphere to the viewer is computed. The target
refinement level lt is then defined as follows:

lt = loga(d). (1)

A node is split whenever its target level lt is larger than its
level lh inside the longest edge bisection hierarchy. The pa-
rameter a controls the relationship between detail level and
distance and should be chosen according to the field of view
of the viewer. We also add a small hysteresis of at least one
hierarchy level to control the collapsing of nodes.

3.2. Surface Extraction

When a cell in the level of detail hierarchy is created, the
surface inside this new cell has to be extracted from the den-
sity function. Since each cell is part of a conforming tetra-
hedral mesh, no stitching and adaption to its neighbors is re-
quired. Furthermore, cells are independent from each other
and the triangulation of the surface inside does not have to
be changed once it has been created. This property is one
of the main advantages over previous methods and has the
following benefits:

• The triangle mesh of a cell does not have to be adapted to

its neighboring cells. No computation time is required for
stitching, which makes the system very efficient.

• A cell’s triangle mesh can be cached for later reuse.
• Since the geometry of a cell remains static, updates of

GPU rendering buffers are required less frequently than
in previous methods.

The surface extraction is a performance critical operation
usually done at runtime. Our goal is to extract an isosur-
face inside a single tetrahedral cell in form of an indexed
face set, which can directly be used for rendering. For this
task we extend the original MC algorithm to operate on ar-
bitrary hexahedral volume meshes instead of regularly sub-
divided cubic domains. In our work, a volume mesh has the
shape of a tetrahedra (which we generate during our level
of detail algorithm) containing hexahedral lattices (see Fig-
ure 5a). Since all cells of the LOD hierarchy are subdivided
in the same way, we can reuse a single volume mesh which
can be precomputed at startup. To precompute this volume
mesh we first split a tetrahedra into four hexahedra Hi. Each
of them can be further subdivided into a regular lattice of
smaller (43 in our case) hexahedral elements. The elements
of all four hexahedra Hi are then unified into a single vol-
ume mesh representation (see Figure 5a), which is stored as
lists of vertices, edges and hexahedral elements E j (see Fig-
ure 3). To increase the locality of subsequent elements E j,
we reorder the elements of each hexahedron Hi based on a
three dimensional Hilbert curve (see Figure 5b).

Later, the Marching Cubes algorithm uses the same ele-
ment order to extract the isosurface. This results in a spa-
tially coherent triangle mesh layout which improves vertex
cache utilization during rendering. Note that we store the the
volume mesh in four dimensional barycentric coordinates,
which allows to reuse it for all tetrahedral cells independent
from the actual shape, position and rotation.

c© The Eurographics Association 2013.

214

Scholz, Bender and Dachsbacher / Level of Detail for Real-Time Volumetric Terrain Rendering

(a) (b)

Figure 5: (a) The volume mesh contains all four lattices with
4× 4× 4 hexahedral elements each. (b) We use a three di-
mensional Hilbert curve to reorder hexahedral elements for
improved locality inside the hexahedra of the volume mesh.

The modified MC algorithm can be described in three
steps: First, the density function is evaluated at each vertex
position of the volume mesh. Second, each edge of the vol-
ume mesh is inspected. If a sign change across an edge is
detected, a new triangle vertex is added to the indexed face
set data structure. The index of this new vertex is stored in
the respective edge of the volume mesh. Its position is com-
puted by linear root finding as in the original MC algorithm.
Third, every cell of the volume mesh is traversed and the tri-
angulation of the isosurface is fetched from the MC lookup
table. The final vertex indices of each triangle are resolved
using the index values which were previously stored in the
volume mesh edges. The indices of each new triangle are
then added to the indexed face set. In the last step, the tri-
angle mesh is transformed from barycentric coordinates into
worldspace using the corner positions of its associated tetra-
hedral cell.

As the MC algorithm tends to produce skinny triangles,
we apply Laplacian smoothing as a post processing step. Ad-
ditionally, we perform multiple choice quadric error mesh
simplification [WK02] to reduce the total number of trian-
gles while preserving a good approximation of the original
geometry. Both algorithms are implemented to work directly
on indexed face sets.

Vertex normal vectors of the final mesh are computed
from the gradient of the density function by a central dif-
ferences approximation along the world coordinate system
axis. This process requires six additional samples per surface
vertex but yields consistent normal vectors at cell boundaries
without breaking the independence of cells.

3.3. Density Function

We use the density function to define the shape of the ter-
rain. Our LOD algorithm does not impose any restrictions
on this function. Nevertheless, the discrete sampling of the
density function during the surface extraction phase can lead
to aliasing which degrades visual quality and make LOD

transitions noticeable. To mitigate this problem we apply a
spatially-varying low-pass filter to the density function dur-
ing sampling. A naive implementation as a discrete filter is
very general, but would require prohibitively many evalua-
tions of the density function.

To accelerate filtering, we express our density function θ

as a sum of terms di : R3→ R that depend on the position p
and have a small extend in frequency space. Such a represen-
tation can be found for many procedural volumetric models
and obtained for discrete volume data. For example, discrete
volume data can be converted into a Laplace pyramid, where
each pyramid level provides one term di. High frequencies
are removed by weighting each di according to its dominant
frequency fi and the filter radius r:

θ(p,r) =
n

∑
i=0

di(p)w(fi,r). (2)

The weighting function w is defined as the frequency trans-
formation of a Gauss filter kernel:

w(fi,r) = e− f 2
i r2

. (3)

To guarantee the consistency of density values across cell
borders the filter radius r must be derived only from informa-
tion that is available to all cells adjacent to a certain sample
location. Therefore, we base its computation on the length
of the cells’ edges. For a sample located on an edge, r is
computed by dividing the edge length by the grid size of the
volume mesh. For samples that are not located on an edge
we interpolate the sample radii s∈R6 of the six edges of the
cell as follows:

r(x) = s ·w(x) (4)

with x being the barycentric coordinates of the sample loca-
tion and

w(x) = 1

∑
6
i=1 wi(x)

w, w(x) =

x1x2
x1x3
x1x4
x2x3
x2x4
x3x4

 . (5)

Note that the weights w can be precomputed for each ver-
tex of the volume mesh. For samples located at cell corners,
the filter radius is undefined as adjacent cells share only the
information about the respective corner position. This is re-
flected by the singularities of the interpolant at cell corners.
For these samples we set the filter radius to the same value as
for samples of the most detailed LOD level. This yields cor-
rect results close to the observer and produces small errors
for lower LOD levels that are not noticeable in practice.

c© The Eurographics Association 2013.

215

Scholz, Bender and Dachsbacher / Level of Detail for Real-Time Volumetric Terrain Rendering

a

b

d

h i j k

e

r s

l m

f

c

g

n o

qp

Figure 6: Visualization of the active front (green) and the
GPU-buffer front (blue). The gray line depicts the active
front after node f is split.

4. Rendering

In this section we explain how to efficiently render the ge-
ometry generated in the surface extraction phase. When the
viewer explores the terrain, the active front nodes are con-
stantly created and destroyed (cf. Section 3.1). The number
of triangles and vertices generated for new nodes may vary
strongly depending on the surface area of the isosurface in-
side the cells. This is a problem for rendering as GPU re-
source allocation during runtime is typically slow and draw-
ing many small triangle meshes is inefficient on modern
graphics hardware.

To overcome these problems we introduce an additional
front into the LEB hierarchy denoted as the GPU buffer front
(see Figure 6). A node of the GPU-buffer front contains
the geometry of several active front nodes to create larger
chunks of fixed sized data. If the size of this geometry ex-
ceeds the capacity of a GPU-buffer front node, it is split into
two child nodes of equal size and the front moves down-
wards. When the geometry of two sibling nodes fits into a
single GPU-buffer front node, the two nodes are merged to-
gether and the GPU-buffer front moves upwards. This ap-
proach has two advantages: First, rendering is more efficient
because the triangle batch size is increased while the API
draw call count is decreased. Second, the vertex and index
buffers are all of the same size and can therefore be reused
easily; this avoids costly GPU resource allocation at runtime.

During rendering, all nodes of the GPU-buffer front are
traversed and their associated geometry is drawn. The sur-
face extraction process and the merging of the triangle
meshes of active front nodes is performed in a separate back-
ground thread which allows the main rendering loop to op-
erate at high frame rates.

In our example, the terrain is textured using triplanar map-
ping along the coordinate system axis similar to [LMS11,
PGGM09]. We also use a two dimensional colormap that is
addressed by height and slope which introduces more vari-
ations and breaks repetitive texturing patterns. To make the
LOD transitions less visible, many heightmap-based terrain
systems use geomorphing. This is not possible with volume-
based terrain representations, as topological changes of the

Figure 7: Performance graph for a typical fly-through of the
terrain shown in Figure 8b. The graph shows the triangle
count (blue) and the total frame time (green) over the frame
number. The screen resolution was set to 1920x1080.

surface may arise between different LOD levels. Image
space blending as discussed in [GW07] provides a viable
alternative that is commonly used in industry and has shown
to work well in practice.

5. Results

We implemented our algorithm in C++ and used the DirectX
11 API for rendering. All tests where carried out on a quad
core AMD Phenom II 3.2 GHz processor and an NVIDIA
GeForce GTX 580 graphics card. Remember that surface
extraction and hierarchy updates are performed in a back-
ground thread on the CPU to offload the GPU and facilitate
consistent and high frame rates.

Figure 7 shows the relationship between triangle count
and frame time for a typical fly-through with different
speeds. The lattice size of a single hexahedral block of the
volume mesh was set to 16x16x16 which provides a good
balance between adaptivity and performance. We achieve
an average refresh rate above 1500 Hz without any culling.
Simple view frustum culling could reduce the number of tri-
angles by a factor of about 3 to 6 depending on the scene
and viewing conditions. Additional occlusion culling could
further improve performance especially in caves and deep
valleys. The high rendering speed leaves enough room to
increase the geometric detail and for other GPU intensive
tasks. This makes our system well suited for demanding real-
time applications where terrain rendering is only allowed to
consume a small part of the overall frame time. We attribute
the high frame rates mainly to the spatial coherent layout of
the volume mesh which leads to vertex cache friendly trian-
gulations and to good triangle batch sizes. The mesh gener-
ated by our algorithm also exhibits good triangle quality as
can be seen in Figure 8c.

Figure 9 demonstrates the scalability of our LOD method.
For the test we increased the size of the domain cube while
preserving a constant mesh resolution at the location of the
observer. Since the resource consumption can vary widely
across different terrain shapes we have also shown measure-
ments without LOD (dashed lines) for comparison. Note that

c© The Eurographics Association 2013.

216

Scholz, Bender and Dachsbacher / Level of Detail for Real-Time Volumetric Terrain Rendering

(a) (b) (c)

Figure 8: (a) A scene showing complex terrain with features that can not be represented with heightmap-based approaches. (b)
Distant view onto a terrain with many caves which was used for our performance tests. (c) Wireframe rendering of a terrain
model generated by our system.

0

50

100

150

200

250

300

350

2

102

202

302

402

502

602

702

1 8 64 512

M
e

m
o

ry
 in

 M
b

K
ilo

 T
ri

an
gl

e
s

Terrain Size Scaling Factor

Triangles

Triangles -
No LOD
RAM

RAM - No
LOD
GPU Mem

GPU Mem -
No LOD

2048

Figure 9: The plot shows how the memory consumption of
the LOD system and the triangle count of the terrain mesh
grow with increasing size of the terrain (solid lines). Dashed
lines depict the resource consumption of the same dataset
without LOD.

Algorithm Stage Abs. Time Rel. Time
density function sampling 1.510 ms 50.2%
marching cubes 0.102 ms 3.3%
mesh simplification 0.868 ms 28.9%
mesh smoothing 0.015 ms 0.4%
normal computation 0.507 ms 16.8%
total 3.002 ms -

Table 1: Average timings for different parts of the surface
extraction step for a single node (four 16×16×16 blocks).

the x-axis has a logarithmic scale while the y-axis has a linear
scale. As can be seen our LOD algorithm achieves a memory
and rendering complexity of O(logn) with n being the edge
length of the domain cube. The computational cost for the
surface extraction depends heavily on the movement speed
of the viewer but scales equally well with increasing ter-
rain sizes. As indicated by the dashed lines, bottom-up tech-
niques that require the generation of a full resolution mesh
during preprocessing would consume massive amounts of
memory and computation time, making them impractical for
vast terrain models.

The average timings for different parts of the surface ex-
traction step are given in Table 1. As can be seen the sam-
pling of the density function is the most expensive step. This
can vary widely among different volumetric models. The
time required for all other steps depend mostly on the sur-
face area inside the cell.

Discussion Our level of detail algorithm can be used to ef-
ficiently render complex terrain with geometric features that
are impossible to represent with heightmap-based methods
(see Figure 8(a)). Nevertheless, our approach has some lim-
itations. The presented algorithm does not create a parame-
terization of the terrain surface that is consistent across detail
levels. Therefore, a unique mapping of high resolution tex-
tures to the terrain surface, as it is common for heightmap-
based terrain, is not possible. We also can not encode ge-
ometric information of higher detail levels in normal maps
because we have no information about the correspondence
of surfaces from different detail levels. Note that we share
these limitations with previous approaches and efficient tex-
turing of volumetric terrain is still an open problem.

Another disadvantage are popping artifacts which make
LOD transitions more visible. Similar to previous works we
did not find a way to efficiently implement geomorphing due
to possible topological changes between detail levels. Using
alpha blending for the transition between detail levels pro-
vides a possible solution but comes at the cost of lower ren-
dering performance.

Since we generate the geometry on the fly, the density
function has to be sampled during runtime. This may lead
to delayed LOD updates if the density function is very com-
plex and its evaluation is time consuming. Nevertheless, the
rendered mesh is always consistent but the LOD hierar-
chy might not update rapidly enough to accommodate fast
viewer movements. Evaluating the density function in paral-
lel can mitigate this problem.

c© The Eurographics Association 2013.

217

Scholz, Bender and Dachsbacher / Level of Detail for Real-Time Volumetric Terrain Rendering

6. Conclusion and Future Work

We presented a fast and GPU friendly level of detail algo-
rithm for real-time rendering of volumetric terrain which
can be used with arbitrary volumetric models. In contrast
to previous methods our algorithm does not require any pre-
processing and can handle infinite procedural terrain of arbi-
trary detail. Additionally, a sampling scheme was introduced
that avoids aliasing artifacts and produces consistent results
across cell borders.

We applied a simple texturing method to the terrain which
is commonly used for isosurfaces. However, we believe that
a more sophisticated approach will benefit visual quality. To
create more natural looking terrain models, we would also
like to do an in-depth investigation of different types of den-
sity functions and procedural modeling techniques.

Acknowledgments The work of Manuel Scholz and Jan
Bender was supported by the ’Excellence Initiative’ of the
German Federal and State Governments and the Graduate
School CE at TU Darmstadt.

References

[Áfr12] ÁFRA A. T.: Interactive ray tracing of large models using
voxel hierarchies. Computer Graphics Forum 31, 1 (2012), 75–
88. 2

[BGB∗05] BORGEAT L., GODIN G., BLAIS F., MASSICOTTE
P., LAHANIER C.: GoLD: interactive display of huge colored
and textured models. ACM Transactions on Graphics 24, 3
(2005), 869–877. 2

[BGP09] BOESCH J., GOSWAMI P., PAJAROLA R.: RASTeR:
Simple and efficient terrain rendering on the GPU. In Proc.
EUROGRAPHICS Areas Papers, Scientific Visulization (2009),
pp. 35–42. 2

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: BDAM: Batched dy-
namic adaptive meshes for high performance terrain visualiza-
tion. Computer Graphics Forum 22, 3 (sept 2003), 505–514. 2

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles: ef-
ficient out-of-core construction and visualization of gigantic mul-
tiresolution polygonal models. ACM Transactions on Graphics
(Proc. SIGGRAPH) 23, 3 (2004), 796–803. 2

[CMS06] CARR H., MOLLER T., SNOEYINK J.: Artifacts caused
by simplicial subdivision. IEEE Transaction on Visualization and
Computer Graphics 12, 2 (2006), 231–242. 3

[Dac06] DACHSBACHER C.: Interactive Terrain Rendering – To-
wards Realism with Procedural Models and Graphics Hardware.
PhD thesis, University of Erlangen-Nuremberg, 2006. 2

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI D. E.,
MILLER M. C., ALDRICH C., MINEEV-WEINSTEIN M. B.:
ROAMing terrain: real-time optimally adapting meshes. In Pro-
ceedings of IEEE Visualization (1997), pp. 81–88. 2

[GDL∗02] GREGORSKI B., DUCHAINEAU M., LINDSTROM P.,
PASCUCCI V., JOY K. I.: Interactive view-dependent render-
ing of large isosurfaces. In Proceedings of IEEE Visualization
(2002), pp. 475–484. 2

[GM05] GOBBETTI E., MARTON F.: Far voxels: a multireso-
lution framework for interactive rendering of huge complex 3d
models on commodity graphics platforms. ACM Transactions on
Graphics (Proc. SIGGRAPH) 24, 3 (2005), 878–885. 2

[GMG08] GOBBETTI E., MARTON F., GUITIÁN J. A. I.: A
single-pass gpu ray casting framework for interactive out-of-core
rendering of massive volumetric datasets. Visual Computer 24, 7
(2008), 797–806. 2

[GW07] GIEGL M., WIMMER M.: Unpopping: Solving the
image-space blend problem for smooth discrete lod transitions.
Computer Graphics Forum 26, 1 (2007), 46–49. 6

[Hop96] HOPPE H.: Progressive Meshes. Proc. SIGGRAPH
(1996), 99–108. 2

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In Proc. Interactive
3D Graphics and Games (2009), pp. 169–176. 2

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps: terrain ren-
dering using nested regular grids. ACM Transactions on Graph-
ics (Proc. SIGGRAPH) 23, 3 (2004), 769–776. 2

[LKES09] LIVNY Y., KOGAN Z., EL-SANA J.: Seamless
patches for GPU-based terrain rendering. Visual Computer 25,
3 (2009), 197–208. 2

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G. A.: Real-time, continu-
ous level of detail rendering of height fields. In Proc. SIGGRAPH
(1996), pp. 109–118. 2

[LMS11] LOEFFLER F., MUELLER A., SCHUMANN H.: Real-
time rendering of stack-based terrains. In Proc. Vision, Modelling
and Visualization (2011), pp. 161–168. 2, 6

[LPT03] LARIO R., PAJAROLA R., TIRADO F.: Hyperblock-
quadtin: Hyper-block quadtree based triangulated irregular net-
works. In Proc. IASTED Visualization, Imaging and Image Pro-
cessing (2003), pp. 733–738. 2

[Pas04] PASCUCCI V.: Isosurface computation made simple:
hardware acceleration, adaptive refinement and tetrahedral strip-
ping. In Proc. Joint Eurographics-IEEE TVCG Symposium on
Visualization (VisSym) (2004), pp. 293–300. 2

[PG07] PAJAROLA R., GOBBETTI E.: Survey of semi-regular
multiresolution models for interactive terrain rendering. Visual
Computer 23, 8 (2007), 583–605. 2

[PGGM09] PEYTAVIE A., GALIN E., GROSJEAN J., MÉRILLOU
S.: Arches: a framework for modeling complex terrains. Com-
puter Graphics Forum 28, 2 (2009), 457–467. 2, 6

[SM05] SANDER P. V., MITCHELL J. L.: Progressive buffers:
View-dependent geometry and texture for LOD rendering. In Eu-
rographics Symposium on Geometry Processing (2005), pp. 129–
138. 2

[Str09] STRUGAR F.: Continuous distance-dependent level of de-
tail for rendering heightmaps. Journal of Graphics, GPU, and
Game Tools 14, 4 (2009), 57–74. 2

[WDF08] WEISS K., DE FLORIANI L.: Multiresolution interval
volume meshes. In IEEE/EG Symposium on Volume and Point-
Based Graphics (2008), pp. 65–72. 3, 4

[WF11] WEISS K., FLORIANI L. D.: Simplex and diamond hi-
erarchies: Models and applications. Computer Graphics Forum
30, 8 (2011), 2127–2155. 3

[WK02] WU J., KOBBELT L.: Fast mesh decimation by multiple-
choice techniques. In Proc. Vision, Modelling and Visualization
(2002), pp. 241–248. 5

[YLM06] YOON S.-E., LAUTERBACH C., MANOCHA D.: R-
LODs: fast LOD-based ray tracing of massive models. Visual
Computer 22, 9 (2006), 772–784. 2

c© The Eurographics Association 2013.

218

