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Abstract

Statistical shape models provide an important means in many applications in computer vision and computer
graphics. However, the major problems are that the majority of these shape models require dense point-
correspondences along all training shapes and that a large number of training shapes is needed in order to
capture the full amount of intra-class shape variation. In this contribution, we focus on a statistical shape model
that can be constructed from a set of training shapes without defining any point-correspondences. Additionally,
we show how a local statistical shape model can make better use of the available shape information, greatly re-
ducing the number of required training shapes. Finally, we present a new framework to fit this local statistical
shape model without correspondences to range scans that represent incomplete parts of the trained shape class.
The fitted model is then used to reproduce a natural-looking approximation of the complete shape.

Categories and Subject Descriptors (according to ACM CCS): 1.5.1 [Pattern Recognition]: Models—Statistical 1.4.8
[Image Processing and Computer Vision]: Scene Analysis—Surface Fitting 1.4.10 [Image Processing and Com-

puter Vision]: Image Representation—Volumetric

1. Introduction

Statistical Shape Models (SSMs) can be used for many ap-
plications in computer vision and computer graphics, e.g.
realtime facial animation [LYYB13] and face recognition
[AKVO08]. In these tasks they have proven their superior per-
formance compared to other approaches (see e.g. [BCF06]).
However, there exist two major drawbacks with statistical
shape models that we try to address in this contribution:

1. Dense point-correspondences need to be defined along
the training shapes of the model.

2. A large number of training shapes is needed in order to
capture the full amount of intra-class shape variation.

Dense point-correspondences may be determined man-
ually or automatically. However, both approaches have
their drawbacks. While the manual definition of point-
correspondences is tedious and time-consuming, the au-
tomatic generation of point-correspondences is a difficult
problem that is not easy to solve [HMO09]. This contradicts
the fact that wrong point-correspondences can cause strong
artifacts in the shapes generated by the statistical shape
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model [PKA*09]. So, we think that it would be better to use
a statistical shape model which does not require any point-
correspondences at all.

The second major drawback is that for natural shape
classes, like e.g. faces, a large number of training shapes
is needed in order to capture the full amount of intra-class
shape variation. For example, Paysan et al. used 200 train-
ing shapes to build a statistical shape model of the human
face [PKA*09]. Even this large number of training samples
is not enough to capture the full amount of face variation,
as four predefined segments have been manually introduced
in the shape model in order to enlarge the space of possible
shape configurations. However, a large number of training
shapes means a lot of work, because all these shapes have
to be acquired (which always includes a certain amount of
manual editing) or they have to be segmented from volume
data (which is often also done manually, e.g. [PTW*09]).

This means, the larger the number of required training
shapes, the higher the threshold to start research in the area
of statistical shape models. Paysan et al. also recognized this
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problem and made their model publicly available in order to
emphasize the use of statistical shape models in various re-
search areas. We also use their data for our experiments in
this contribution and would like to thank them for making it
available. However, their model has been built only for the
class of face shapes. For other shape-classes, the problem of
obtaining the required training data still exists.

To address the two above mentioned problems, we pro-
pose a framework that allows the fully-automatic fitting of
a local statistical shape model without correspondences to
range scans that represent incomplete parts of the trained
shape class. The model that we use has no need for point-
correspondences and can capture a great amount of shape
variation with only a few training shapes at hand. The fit-
ting result of the local model can then be used to reproduce
a natural-looking approximation of the complete shape.

Our contribution is structured as follows: In section 2 we
will review the basic concepts of statistical shape models
based on correspondences, and we will introduce an alter-
native approach that addresses the above mentioned prob-
lems: a local statistical shape model without correspon-
dences. Then, in section 3 we will present our new frame-
work for fitting the local statistical shape model to range
scans. In section 4 we will compare a standard statistical
shape model with the two alternative approaches and show
that the two alternatives perform equal to or even better than
the standard model. Finally, in section 5 we will demonstrate
the use of our framework by fitting the local statistical shape
model to incomplete range scans of faces.

2. Related Work

In this section we review prior work in the field of statistical
shape models on which we build up in our contribution. At
first, section 2.1 deals with the basic concepts of statistical
shape models based on point-correspondences. Then, in sec-
tion 2.2 we introduce a volumetric statistical shape model
which has no need for point-correspondences, and in sec-
tion 2.3 we recapitulate our recently proposed local statisti-
cal shape model that is tailored to limited training data.

2.1. Shape Models Based On Point-Correspondences

In the majority of statistical shape models, the training
shapes are represented as ordered lists of vertices that are
in correspondence with each other. Given a set of m training
shapes {C,...,Cn}, each shape is represented by a vector

Ci:[xl-,)’17117x27y2,227~~7xn7Yn-,Zn] (])

of n vertices, where each triple (xt,yx,zx), with 1 <k <n,
represents one vertex of the training shape. Under the as-
sumption of a normal intra-class shape distribution, a mean
shape Comean is extracted from the training data by averaging
over all shapes. Afterwards, a shape matrix is obtained by
stacking all mean-subtracted training shapes on top of each

other. Then, a principal component analysis (PCA) is per-
formed on the shape matrix in order to estimate the principal
axes {B1,...,B,_1} and the corresponding standard devia-
tions {sq,...,Su—1} of the multivariate normal distribution
that best describes the set of training shapes. The statistical
shape model is finally given by

m—1
Cfv = Cmean + Z WiBi7 (2)
i=1
where W = [wy,...,wy,—1] is a vector of shape weights that

is used to control the shapes C}V which can be synthesized by
the model. In order to comply to the trained shape distribu-
tion, the set of possible shape weights is limited to the inte-
rior of the hyperellipse which is bounded by three standard-
deviations of the multivariate normal distribution:

3

2.2. A Shape Model Without Correspondences

As stated in section 1, we think that the use of correspon-
dences in statistical shape models has many drawbacks. An
alternative approach has been proposed by Leventon et al. in
the context of level set segmentation of medical image data
[LGFO0]. They chose an implicit representation of the train-
ing shapes C; as the zero level set of a higher-dimensional
signed distance function ®; : Q C R? - R:

Ci = {¥|@i(¥) = 0} @

Using this volumetric representation, they showed that it is
possible to construct a statistical shape model by using lin-
ear combinations of the implicit, volumetric training shapes
without defining any correspondences.

Similar to the explicit shape representation in eq. (1),
one can arrange the implicit shape representation row-wise
in a single vector b; by defining a raster scanning pat-
tern on the volume Q. Then, a mean shape Pmean iS €X-
tracted again by averaging over all training shapes, and a
PCA is performed on the shape matrix, yielding the principal
axes {El Ve 75,,,_1} and corresponding standard deviations
{51,...,85m—1} of the volumetric statistical shape model. Fi-
nally, the volumetric statistical shape model is given as:

-

—1
Dig(¥) = Prean () + Y wiB;(X), )
=1

for all x € Q. Explicit shapes éw can be obtained as the zero
level set of the implicit shapes ®;; which are synthesized by
the volumetric model.

2.3. A Shape Model for Limited Training Data

Another major drawback with statistical shape models is that
they require a great amount of training shapes to capture
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the full amount of variation which is inherent in a class of
shapes. Various approaches have been presented to deal with
this problem. The most promising ones consist of partition-
ing the model (e.g. [dBGVNO3] and [ZATO05]) or using hi-
erarchical models (e.g. [DTS03] and [NHBTO07]). Neverthe-
less, it is a nontrivial task to identify the correct segments.
So, we recently proposed another approach that also allows
for variable adaptations in different regions of the model but
has no need for any predefined segments [LWW*11].

The central idea is to replace the vector of shape weights
weR"! by a sufficient smooth field of weight vectors
w:Q— R" ! so that equation (5) changes to

m—1 o
P(W(¥)) = Prmean(¥) + ; wi(%)Bi(%), (©)

for all x € Q. This modification allows a different adapta-
tion of the statistical shape model in every location of the
underlying data domain Q. The smoothness constraint of the
weight field is important because it controls how much the
local statistical model of eq. (6) is restricted by the global
statistical model of eq. (5): If w(X) is a constant function,
then eq. (6) and eq. (5) are identical. If w(X) is allowed to
develop arbitrary steep edges, then nearly any shape can be
represented through eq. (6). For a sufficient smooth function
w(X), eq. (6) gives us the ability to continuously crossfade
between different instances of the global statistical model in
local regions of the data domain Q. This is basically the same
idea as partitioning the model in various segments, where
the degree of smoothness roughly corresponds to the size of
the segments. However, the great advantage is that the seg-
ments do not need to be predefined. Furthermore, the degree
of smoothness can be varied throughout the fitting process.

3. Methods

In the following we present our approach for the rigid align-
ment of shapes without correspondences, and we present our
new framework that allows the fully-automatic fitting of the
local volumetric statistical shape model to possibly incom-
plete range scans.

3.1. Rigid Shape Alignment

The statistical shape models of section 2 capture only non-
rigid shape deformations, so all shapes have to be rigidly
aligned with regard to pose and scale. When the shapes are
in correspondence with each other, as for the statistical shape
model of section 2.1, one can keep one shape fixed and
calculate pairwise similarity transformations [Dha03] of all
other shapes to the reference shape. Each similarity trans-
formation minimizes the mean-square distance between all
points on a training shape to the reference shape with regard
to rotation, translation, and isotropic scale. However, when
we do not assume that the shapes are in correspondence with
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each other, we cannot simply compute a similarity transfor-
mation in order to rigidly align the shapes. Therefore, we
propose to use a two-step approach for the alignment of two
shapes without correspondences: A coarse registration fol-
lowed by a fine registration.

For the coarse registration we propose to use the
RANSAM approach [WMWO06]. RANSAM (RANdom
SAmple Matching) is a fast and robust approach to coarsely
register a pair of 3D scans. It builds up on the well-known
probabilistic RANSAC method. However, the RANSAM ap-
proach only registers two shapes with regard to rotation and
translation. So, in order to obtain an estimate for the initial
scale factor, we use the following algorithm:

for f=minScale:0.05:maxScale do
scale shape by factor £
find optimal RANSAM match
evaluate matching quality

end

This means, we simply iterate over a finite set of scale fac-
tors and compute a RANSAM match for each scale factor.
Like in the RANSAC method, we calculate the matching
quality for each obtained match by counting the inliers in
an €-neighborhood around the matched shape after registra-
tion. The final matching result is simply the one with the
highest matching quality. This simple approached proved to
perform very well in estimating the initial rotation, transla-
tion, and scale for the following fine registration step.

For the fine registration we propose to use a modified ver-
sion of the well-known Iterative Closest Points (ICP) algo-
rithm [BM92]. The ICP algorithm iteratively selects a ran-
dom set of closest points on a pair of shapes and minimizes
the squared distance between these two point sets with re-
gard to rotation and translation. After a few iterations, this
usually leads to a fine registration of the two shapes. Our
modification consists of including the scale factor in the min-
imization process by minimizing the distance between the
two point sets with the help of the similarity transforma-
tion introduced above. Again, this simple modification per-
formed very well in registering the shapes with regard to ro-
tation, translation, and scale.

3.2. Fitting the Global Volumetric Model to 3D Scans

Before we describe the fitting process of the global volumet-
ric statistical shape model of section 2.2, we briefly review
the training process: We start with a set of m training shapes
{617...,6',,1} given in an explicit, mesh-based representa-
tion. After rigid alignment, the training shapes are converted
to a volumetric representation using the approach presented
in [CL96]. This approach approximates a point cloud by a
signed distance volume in a small hull around the surface.
We chose a diameter of 20 mm for the hull. This signed
distance hull is propagated to the rest of the volume using
the approach described in [FHO4]. From the thus obtained
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volumetric representations of our input shapes, we calculate
the volumetric statistical shape model as described in sec-
tion 2.2. Please note that the so obtained PCA subspace is
also used by the local volumetric SSM of section 2.3.

Now that we have trained the volumetric statistical shape
model, we can describe how to fit the model to a new range
scan C in order to approximate the scan by the model. At
first, we align the range scan to the explicit representation of
the mean shape of our volumetric SSM using the approach
described in section 3.1. Since the new scan may contain
holes, the interior and exterior regions of the shape are not
clearly defined. So, no complete signed distance informa-
tion can be obtained from the aligned range scan, and we
only approximate the signed distance hull with the approach
in [CL96], but no further propagation of the distance val-
ues to the rest of the volume is performed. Having the range
scan rigidly registered to our 3D model, we need to find the
weights that belong to the best shape approximation which
can be synthesized through our volumetric statistical shape
model. Let

By
a=| )

-

Bm— 1
be the subspace of possible shapes spanned by the volumet-
ric statistical shape model of equation (5). With the help of
equation (7), equation (5) can be rewritten as:

Dy = Prean + 10 A. )

From the PCA theory follows that, given a shape ®, the
weights wope obtained by

V_‘}opt = ((b - (bmean) 'AT (9)

are the best approximation of the shape @ in the subspace A
that minimizes the sum of squared errors between the origi-
nal and reconstructed shape [Jol02]. This means that

@ — @y (10)

is minimal for W = Wop, yielding a closed-form solution for
the best approximation (in least squares sense) which can
be synthesized from the volumetric statistical shape model
of equation (5). Please note that the same argumentation ap-
plies for the correspondence-based statistical shape model of
equation (2). The problem is that we do not have a complete
signed distance representation of our acquired 3D scan. So,
we cannot calculate the closed form solution of equation (9).
Instead we formulate the model fitting problem as an itera-
tive fixed point problem:

Let @y, be the signed distance representation of our
range scan C that contains only distance values in a small
hull around the scanned surface (further denoted by hull(é ))-
We start with initial weights wy = 0 and calculate a first
model approximation as

@5, = Ppnean + Wy - A. (11)

'k

In this approximation, the synthesized signed distance values
are replaced by the known signed distance values of the hull
around the scanned surface:

. Dy (x) , if ¥ € hull(C
® ()_{ (©)

5 12
e Dy, (X)  else (12)

Then, a new weight vector Wy is obtained by inserting
@}, (X) in equation (9):

Wit = (P, — Prncan) -A” (13)

By iterating equations (11), (12), and (13) until convergence
one obtains an accurate approximation of the range scan by
the volumetric statistical shape model. However, we addi-
tionally perform one step of our modified ICP after each
weight change in order to adjust the rigid transformation pa-
rameters of the updated model approximation.

3.3. Fitting the Local Volumetric Model to 3D Scans

Our approach for fitting the local volumetric statistical shape
model of equation (6) to range scans is closely related to the
approach presented by us in [LWW™11]. Like the fitting of
the global volumetric SSM, it is also an iterative process,
whereby the fitting result wop from section 3.2 is used as an
initial solution for the local fitting process. So, we initialize
the local weight field of equation (6) by setting W (X) = Wopt
for all ¥ € Q. Given the signed distance hull representation
Py, of our scanned shape C, we perform a weight update
for each voxel X that resides inside the hull in order to min-
imize the mean-square error between the local volumetric
model approximation and the range scan C. Thus, for each
X € hull(C) the weight update is calculated as follows:

Wir1 (X) = Wi (X) + V(i (%)), (14)
where the error function is defined as
F((F)) = (D(We(¥)) — Pran(¥))?, (15)

and the gradient of the error function is given as
Vr(i(%)) = 0 (%) - BB+ (Prnean (%)) — Prun (%)) - b, (16)
withb = [B1 (%), B (%)].

Using this weight update scheme, the mean-square error
between the local volumetric model representation and the
signed distance hull of our range scan is minimized without
posing any restrictions on the weight function w(%).

Now, in order to satisfy the smoothness constraint dis-
cussed in section 2.3, we convolve the resulting weight field
Wyt 1(X) after each weight update step with a cubic smooth-
ing kernel. By doing so, the updated weight values of the
signed distance hull are slowly propagated over the whole
volume. We start with a big smoothing kernel of about 65
mm X 65 mm x 65 mm in order to emphasize a fast spread-
ing. The size of the smoothing kernel is further reduced dur-
ing the fitting process in order to being able to adjust to fine
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Figure 1: Examples for the best possible approximation of a given target shape (left), reconstructed using the standard SSM
(2nd column), the volumetric SSM (3rd column), and the local volumetric SSM (right). The SSMs have been trained using 30
data sets. It can be seen that the result synthesized by the local volumetric SSM looks most similar to the target shape.

structures of the range scan. The dimensions of the final ker-
nel are dependent on the amount of noise in the range scan
and on the size of the holes in the scan. In order to stick to
the trained shape distribution, we additionally project each
weight vector wy(¥) that resides outside the hyperellipse of
eq. (3) back onto this hyperellipse. Please note that no update
of the rigid transformation parameters is performed during
the fitting process of the local model as we consider them
accurate enough after the global fitting process.

4. Evaluating the Best Possible Shape Approximation

In section 1 it has been argued that a large amount of training
data is needed in order to capture the full amount of variation
in a given shape class. In this section we want to substanti-
ate these arguments by evaluating the best possible shape ap-
proximation which can be synthesized by a statistical shape
model depending on the number of training shapes that have
been used to build the model. Also, we evaluate how the ap-
proximation quality differs between the traditional statisti-
cal shape model of section 2.1 and the volumetric statistical
shape models of sections 2.2 and 2.3.

The training data for our experiment has been provided by
Paysan et al. [PKA*"09]. As stated in section 1, they made
their model publicly available together with a method for
synthesizing random sample shapes. We synthesized up to
90 shapes with the help of their model that were in turn used
to train the statistical shape models of section 2. They also
provided ten exemplary range scans that are in correspon-
dence to their model but have not been used in the model
generation process. So, dense point-correspondences were
available that we could use to compute the optimal recon-
struction of the traditional statistical shape model, defined in
section 2.1.

For the global statistical shape models of sections 2.1 and
2.2, we have presented a closed-form solution for the opti-
mal weights in section 3.2. However, no easy closed form
solution exists for the local statistical shape model of sec-
tion 2.3. So, we used our local fitting framework (section
3.3) also for the determination of the best possible approxi-
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Figure 2: Boxplots of the root-mean-square deviations
from shapes synthesized by various statistical shape mod-
els (SSMs) to ten given target shapes, plotted against the
number of data sets which were used to train the SSMs. It
can be seen that the volumetric SSM (without point corre-
spondences) is as good as a standard SSM (with point corre-
spondences) and that the local volumetric SSM clearly out-
performs the other two approaches for limited training data.

mation. The dimensions of the final cubic smoothing kernel
were chosen to 2.5 mm x 2.5 mm x 2.5 mm.

As the statistical shape models capture only the nonrigid
variations, prior to the model reconstruction, each of the tar-
get shapes has been rigidly aligned to the mean shape of the
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statistical shape model of section 2.1 using a similarity trans-
formation as explained in section 3.1. The same rigid align-
ment was used for the volumetric statistical shape models
so that the evaluation of the reconstruction quality is not
influenced by the rigid alignment procedure. For the volu-
metric shape models, each of the target shapes was trans-
formed to an implicit signed-distance representation by the
approach presented in section 3.2. After the model fitting
process, the resulting volumetric, implicit shape approxima-
tions were transformed back to a mesh-based, explicit repre-
sentation using the marching cubes algorithm [LC87].

The reconstruction quality has been evaluated by calculat-
ing the root-mean-square deviation from the model approxi-
mation to the target shape:

2

3
=

i
i],Cll > a7
i=1 Z

o
I
!
™
=
~<

where d((x;,yi,zi)7,C) is the closest euclidean distance
from a point (x;, yi,z,-)T on the approximated shape to the
surface of the target shape C. Please note that this is not nec-
essarily the distance to the nearest vertex of the target shape,
it could as well be the closest distance to the nearest trian-
gle of the target shape. The resulting approximation errors
are depicted in figure 2. On the horizontal axis one can see
the number of training samples that have been used to train
the statistical shape models, and on the vertical axis one can
see the approximation error as defined in equation (17). The
approximation errors for the ten face scans are given as box-
plots, where the median error of all ten faces is depicted as a
black dot.

It is clearly visible how the approximation error decreases
with a growing number of training datasets for all three sta-
tistical shape models. The results also show that the vol-
umetric shape model of equation (5), which does not use
any point-correspondences, can synthesize a solution that is
equal to (or even slightly better than) the solution synthe-
sized by the statistical shape model with correspondences
defined in equation (2). Also, the results show that the lo-
cal volumetric statistical shape model of equation (6) can
synthesize a much better approximation with limited train-
ing data than the other two approaches. For example at 30
training sets, the median error of the correspondence-based
statistical shape model is 1.14 mm, the median error of the
volumetric statistical shape model is 0.96 mm, and the me-
dian error of the local volumetric statistical shape model is
already as low as 0.28 mm. Additionally, it can be seen that
the local volumetric statistical shape model shows a nearly
exponential decay of the approximation error. After a strong
decrease of the approximation error of about 0.36 mm, when
increasing the number of training sets from 10 to 30, the de-
cay is strongly reduced for a growing number of training
sets. From 30 to 50 datasets the reduction is 0.07 mm, from
50 to 70 datasets the reduction is 0.03 mm, and from 70 to

90 datasets the reduction is 0.01 mm. Hence, it can be ar-
gued that a small number of about e.g. 30 datasets (for the
class of face shapes) is enough to train the local volumetric
statistical shape model.

Some exemplary results of the model approximations are
depicted in figure 1. For these examples the statistical shape
models have been trained using 30 training data sets. It can
be seen that all three approaches are able to synthesize satis-
factory result. However, the result which looks most similar
to the target shape has been synthesized by the local volu-
metric statistical shape model.

5. Application: Reconstructing Incomplete Face Scans

In this final section we want to demonstrate the use of our
new shape-fitting framework, which we presented in section
3, by reconstructing the missing regions of 3D face scans
with the help of our local volumetric statistical shape model.
As for the experiment in section 4, we use training shapes for
the volumetric statistical shape model that have been synthe-
sized by the model of Paysan et al. [PKA*09]. We use 30
shapes in the training process. The test scans have been ac-
quired by ourselves with the help of a structured light scan-
ner (http://www.david-laserscanner.com/). We evalu-
ate our approach using 6 range scans of 3 different individ-
uvals. The scanned shapes are depicted in the leftmost col-
umn of figure 3. The shapes in rows 3 and 5 have been ac-
quired from the front and the shapes in rows 4 and 6 from the
side. The shapes in rows 1 and 2 have been stitched together
with the help of the RANSAM approach [WMWO06] using
3 overlapping scans. It can be seen that only the stitched
scans contain almost no holes. All the other scans contain
non-negligible holes that have to be filled with the help of
statistical shape information in order to reproduce a natural-
looking face. Most of them are due to occlusions, but also
other factors, like e.g. specular reflection, are plausible ex-
planations.

The fitting of the volumetric statistical shape model has
been carried out as described in section 3. We first perform a
global fitting of the volumetric model (section 3.2) followed
by a local weight adaptation (section 3.3). Please note that
our approach works fully automatic without any user inter-
action. For the almost complete shapes in rows 1 and 2 of
figure 3 we use a minimum smoothing kernel size of 2.5 mm
X 2.5 mm x 2.5 mm and for the other shapes we use a min-
imum kernel size of 16.5 mm x 16.5 mm x 16.5 mm. The
fitting results are depicted in the second column (global fit-
ting result) and in the third column (local fitting result) of
figure 3, respectively. The fourth and fifth column show the
modified 3D scans, where the holes have been filled using
the local fitting results. In column four, the local fitting re-
sult is additionally highlighted in orange.

It can be seen that the local model was able to capture
the almost complete scans very accurately. But, more impor-
tant, also for the other shapes the local model approximation
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Figure 3: Results of the 3D face scan completion experiment explained in section 5. In the leftmost column, the original 3D
scan is shown, in the 2nd column one can see the initial fit by the global volumetric SSM, and in the third column one can see
the final result obtained with the local volumetric SSM. The 4th and 5th column show a combination of the local fitting result
and the original scan, with the local result highlighted in the 4th column.

looks more similar to the original scan than the global fit-
ting result. The existing regions of the shapes were precisely
approximated and the missing regions have been nicely in-
terpolated. However, in those cases where only one side of
the face was present in the scan, the model fitting results

(© The Eurographics Association 2013.

do not look exactly symmetric. This is due to the fact that
there exists no similarity criterion in the incorporated statis-
tical shape model. So, the side with no data mostly resembles
the global fitting result, whereas the other side is given as a
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precise fit of the local model. Nevertheless, also the recon-
structed partial faces look all very natural.

6. Conclusion and Discussion

In this contribution we have shown that it is possible to
use a local volumetric statistical shape model, which has no
need for point-correspondences, for a natural-looking inter-
polation of the missing regions in a 3D range scan. There-
fore, we have presented a new framework that allows the
fully-automatic fitting of the model to range scans with-
out any user interaction. Also, we have shown experimen-
tal results that a volumetric shape model without point-
correspondences can synthesize a solution that is compara-
ble to the solution synthesized by a standard statistical shape
model with point-correspondences and that a local adapta-
tion of the model substantially improves the fitting perfor-
mance.

One may argue that the ICP algorithm, utilized for
the rigid alignment of two shapes, still uses dense point-
correspondences, as it repeatedly computes the nearest
neighbors of all shape vertices. However, these simple cor-
respondences are much easier to obtain and they are much
more robust than the correspondences used in other models,
since no nonlinear deformations are required. Additionally,
the RANSAM approach is very robust against outliers so
that the rigid alignment procedure converges to good results
even for strongly disturbed shapes. Nevertheless, we plan to
investigate other approaches for the rigid alignment in the
future (see e.g. [DPTA09]) and to compare them with our
approach. We also plan to extend our local volumetric sta-
tistical shape model to include symmetries, which we think
will further improve the reconstructed 3D face scans.
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