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Abstract

In this work we address part-based object detection under variability of part shapes and spatial relations. Our
approach bases on the hierarchical finite element modeling concept of Engel and Tonnies [ET09a, ETO9b]. They
model object parts by elastic materials, which adapt to image structures via image-derived forces. Spatial part
relations are realized through additional layers of elastic material forming an elastic hierarchy. We present a
closed-form solution to this concept, reformulating the hierarchical optimization problem into the optimization of
a non-hierarchical finite element model. This allows us to apply standard finite element techniques to hierarchical
problems and to provide an efficient framework for part-based object detection. We demonstrate our approach
at the example of lumbar column detection in magnetic resonance imaging on a data set of 49 subjects. Given
a rough model initialization, our approach solved the detection problem reliably in 45 out of 49 cases, showing
computation times of only a few seconds per subject.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Computer Graphics]: Scene Analysis—Object

recognition; 1.4.8 [Computer Graphics]: Scene Analysis—Shape

1. Introduction

Many natural and artificial objects can be decomposed into
semantically meaningful parts with known spatial relations
among them. Therefore, part-based object detection is an im-
portant research topic. The combination of shapes of object
parts and their relations typically carries a larger amount
of information compared to objects without part relations.
This makes part-based object detection interesting, espe-
cially when other sources of information - as for instance
intensity, edges, texture, position and orientation - are unre-
liable due to poor image data quality or even unavailable due
to the lack of prior knowledge.

The modeling of part-based objects is widely applica-
ble. Besides being extensively used for object detection
[BAZT04, FGMR10, FHOS5, KTZ04, KS11, KZT09], typical
fields are object segmentation [RCP*09, ZHU*11] and ob-
ject tracking [LHO4, RF03]. Part-based approaches were
used in natural scenes [FGMRI10, KTZ04], urban envi-
ronments [FHOS5, KZT09, LHO4, RF03] and medical im-
ages [RCP*09,ZHU*11], dealing with two-dimensional and
three-dimensional domains. They found application in face
recognition [ET09a, ET09b, FHOS, KS11], person detection
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[FGMR10,KZT09] and tracking [LHO04,RF03], as well as in
animal and car detection [BAZT04, FGMR10, KTZ04].

Although part-based approaches carry more information
through part relations, these relations also render the model-
ing task more challenging. The first issue is to combine the
morphological shape information of each object part with
the structural information of their relationship in a computa-
tional framework. The second even more challenging issue
is the incorporation of inter-object variability of both shape
and structure in such a framework.

Most of the recent work deals only with variability of part
relations, completely ignoring the variability of part shapes,
e.g., [FGMR10,FH05,KZT09,LH04,RCP*(09,RF03]. To be
clear, each of these has its justification. Still, incorporating
both aspects is essential for a general purpose framework.
Today, only a couple of such frameworks exist. Rendering
variability, some of them draw on pure statistical models,
learned on a training data set, e.g., [KS11, KTZ04]. Others,
such as [BAZT04,ZHU*11], rely on mixed models, having
a statistical and a parameterizable component. For mixed
models, the variability of either shape or relations is rep-
resented by a parameterizable prototype, while the other is
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still learned from training data. Yet others [ET09a, ET09b]
rely on pure prototypical descriptions, where both aspects of
variability are dealt with via parameterization.

A considerable deficiency of pure statistical and mixed
models is the substantial effort of creating training data
sets. This may be a reason why these models are almost
always trained on very small data sets, containing only a
few samples. Although being insufficiently trained to cap-
ture the true variability, these models still perform well in
practice. This interesting fact holds true for simple (not part-
decomposable) objects as well. This strong evidence pro-
vides that an exact statistical description of variability is not
crucial to most problems in object detection.

Consequently, we focus on a pure prototypical descrip-
tion. We base on the concept of Engel and Tonnies [ET09a,
ETO09b], which - to our knowledge - is the only work in the
field. They proposed a hierarchical layer-wise elastic model-
ing scheme. Therein, object parts make up the bottom-most
morphological layer (ML) and part relations are superim-
posed by one or more structural layers (SLs) on top of the
ML. Object parts in the ML as well as relations in the SLs
are modeled by elastic material using finite elements. These
finite element models (FEMs) are connected among layers
via shared nodes, elastically arranging the likewise elastic
object parts. Image information like intensity, edge and tex-
ture as well as prior knowledge like position and orientation
can be integrated into the framework via forces that act on
the interior or the boundary of ML and SL submodels.

This hierarchical finite element modeling (HFEM) con-
cept provides several beneficial properties:

separate modeling of part shape and relations
allows for variability of part shapes and relations
supports complex part relations via hierarchy
intuitively parameterizable by elasticity parameters
integrates arbitrary prior information via forces
immediately applies to n-dimensional domains

However, the concept has drawbacks: a heuristical op-
timization framework, which is prone to unpredictable
model movements and oscillation, and an objective function
(quality-of-fit measure) that does not fit the function that is
actually optimized by the framework.

We treat these issues by a closed-form solution to the
HFEM concept. We show that the solution of a HFEM can
be traced back to that of a simple FEM. Therefore, we are
able to apply FEM optimization techniques to HFEM prob-
lems, circumventing the aforementioned issues. Our closed-
form solution renders an efficient optimization framework to
the powerful HFEM concept, substantially simplifying pro-
totypical part-based modeling. Our contributions are:

a well-defined minimization problem
an efficient optimization framework
guaranteed convergence/oscillation prevention

[ ]
[ ]
[ ]
e smooth, predictable model motion.

We demonstrate our HFEM solution at the example of
lumbar column detection in 77 and 7, weighted magnetic
resonance imaging (MRI) on a data set of 49 subjects. We
use a two-layer hierarchy with ML submodels of the spinal
canal and lumbar vertebrae L;—Ls, which are bridged by a
bar-shaped SL submodel. Detection quality is assessed man-
ually by an expert, answering the following questions:

o Did the model assign L1—Ls correctly?
e Did the canal model align with the spinal canal?
e Did the vertebra models orient correctly?

Our work is structured as follows. In Section 2, we start
with a background on FEMs and their use in object de-
tection. Afterwards, we switch to HFEMs and derive their
closed-form solution in Section 3. Section 4 comprises our
experiments and discussion on lumbar column detection. In
Section 5, we close with a brief summary of our work, our
most important results and an outline of future work.

2. Background

In FEM-based detection the object is modeled by elastic ma-
terial which, over time, adapts to forces derived from exter-
nal information such as image data or other prior knowledge.
In this section, we give some necessary background to the
linearized adaptation process and the material parameteriza-
tion. Afterwards, we describe how this can be used to solve
the actually non-linear adaptation problem efficiently. We
further give some details on the class of conservative forces,
which render FEM-based detection to be an intuitively inter-
pretable minimization problem.

2.1. Finite Element Models

In FEM, the complex shape of an object is decomposed into
elements of simpler geometry. The simplest of these finite
elements are simplices, e.g., line segments in one dimension,
triangles in two dimensions, tetrahedra in three dimensions,
and so forth. In what follows we concentrate on this element
type for the sake of simplicity. The application of our work
to more complex elements is straightforward.

Given such a decomposition of the object’s shape in d-
dimensional space, the material at rest is given by a vec-
tor x € R/ ‘, which node-by-node holds the position of all
nodes of the finite element node set N. Representing object
movement and deformation, we can draw on displacement
vector u, which relates current node positions x with those
of the rest state X by

u=x—X. (1)

For small displacements u, the body motion under influence
of external forces f € R4V is governed by the linearized
motion equation

Mii + Du + Ku = f. )
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Matrices M, D and K summarize the material properties in-
ertia (mass) and damping and stiffness (elasticity), respec-
tively. They, as well as the force vector f, are formed by ag-
gregation of corresponding element quantities via

M =Y _ P.MP. 3)
K=Y  PKHP )
f=Y.ccbefe ®)

over the set of finite elements £. P, € ]RMHMX‘”N‘ is a

convenient projection matrix, which transforms from global
degrees of freedom (DOF) into element DOFs. For simplices
this means that P, transforms from |N| into (d + 1) many
nodes of dimensionality d. Although the above aggregation
holds true for damping matrix D as well, we rather post-
superimpose Rayleigh’s damping model

D = oM + BK (6)

for non-negative weights o and B. Element quantities M,
K. and f, in Eq. 3-5 stem from numerical integration of the
material density p € R™, the material law and the applied
loads (forces) 1 € R? via

M, = /Q HpH, dQ, ™)

K, = / B CB. dQ. ®)
Q.

£, — / 1140, ©)

13

over the element (sub)domain Q.. Here, matrix H, interpo-
lates material displacement over the element via barycentric
interpolators. Matrix B, relates displacement to strain via
(partial) spatial derivatives of these interpolators. Strain and
stress are related by matrix C, which reflects the material law
(see the work of Sclaroff and Pentland [SP93] for further de-
tails on these quantities).

The influence of density and load on the model is intuitive.
However, for the material law this is more complex. If we,
for instance, know that shape variation differs among dimen-
sions, we could use an orthotropic or even a fully anisotropic
material law, both of which allow for dimension-dependent
elasticity parameterization. For the sake of simplicity we fo-
cus on isotropic materials without strain cross-relations be-
tween dimensions. In this case, the material law in C is gov-
erned by a single elasticity parameter E € R™, which akin to
material density p may vary over the material.

2.2. Co-rotational Formulations

Motion equation 2 becomes invalid for displacements con-
taining large global or local material rotation. This is due to
the fact that K represents linearized stiffness, leading to a
substantial model growth when rotation occurs. Describing
the non-linear behavior, we have to update K as the motion
takes place. Solving this issue without reintegration is vital
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to the efficiency of FEMs. Several co-rotational formulations
were proposed to treat this issue, all of which transform the
problem into an unrotated reference frame, solve the prob-
lem therein and then rotate its solution forward again.

If the rotation is mostly global, i.e., the expected local ma-
terial deformation is small, the linearization in Eq. 2 is suffi-
cient as long as the global rotation is corrected. Based on the
idea of Terzopoulos and Witkin [TW88] we substitute

Ku = R'TK(Rx—%) (10)

= Kyx— KX (11)

with Ky = RTKR (12)
K; = R'K, (13)

where Matrix K represents linearized stiffness w.r.t. the ref-
erence frame X. Matrix R = diag(R’, ..., R’) contains |\
copies of model rotation matrix R’ € RY*d along its diag-
onal. This approach conceptually backrotates x via R and
rotates its solution with R forward again.

If the global co-rotation of Eq. 10-13 is insufficient, we
can draw on local formulations based on element co-rotation
as proposed by Etzmuf et al. [EKS03] and Miiller and Gross
[MGO04]. We may also draw on node co-rotation as proposed
by Miiller et al. [MDM™*02] and Choi and Ko [CKO05]. The
latter avoids re-aggregation of K, but introduces unwanted
ghost forces, cf. EtzmuB et al. [EKS03]. The former is more
exact, but requires re-aggregation of K. We focus on local
element co-rotation. Following Miiller and Gross [MG04],
we substitute

Ku =} ce P.K.P.u (14)

= ¥, o PTRIK, (RPex—PX)  (15)

= Kxx— KX (16)

with Kx = Zeee P R;KR.P (17)
Ky = Yoce P R K.P,. (18)

The transformation is the same as with the global co-
rotation, but on the element level. Matrix f(e represents the
linearized stiffness of element e w.rt. its reference frame
P.x. Matrix R, = diag(R}, ..., R}) compensates for ele-
ment rotation via d + 1 rotation matrices R} € RY*d along
its diagonal - one for each node of the simplex.

In either case, Rayleigh’s damping model (Eq. 6) needs to
be updated during model motion by

D = oM + BKy. (19)

2.3. Kabsch’s Algorithm

For estimating the rotation we draw on Kabsch’s algorithm
[Kab76,Kab78], which works in both co-rotation cases and
in arbitrary dimension. Other approaches exist, but are either
limited to a particular dimension, like quaternions in Cout-
sias et al. [CSDO04], or solely apply to element co-rotation,
like in EtzmuB et al. [EKSO03] or Miiller and Gross [MGO04].
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Treating the whole model and each element, respectively
as a set of nodes, we find the minimum mean squared de-
viation rotation via covariance of current positions and ref-
erence positions. Let X € R¥*4 be their covariance matrix.
Then, its singular value decomposition

Y = VSW' (20)

gives the nearest orthonormal transformation by VW7, Ad-
ditionally requiring its determinant to be +1, i.e., a proper
rotation, we conditionally flip the sign of the left or right sin-
gular vector that corresponds to the minimum singular value
of the decomposition. Assuming descending ordering of sin-
gular values in S the optimal rotation reads

Vdiag(1, ..., 1, sign(det(VWT))) WT. @21
——

d—1

2.4. Conservative Forces

In FEM-based object detection, the concept of forces is used
to link the elastic model with external information such as
the image data. Since the intention is always to pull the
model into the right spot, the definition of forces can be quite
diverse, i.e., forces that act on the boundary of the model,
forces that act on its interior or a weighted combinations of
the two. This way, information ranging from nearby edges,
expected intensity and texture to position and orientation of
the object can be integrated by supplying appropriate forces.

We restrict ourselves to conservative forces, which orig-
inate in potential fields p that describes the likelihood of
the object being at some place in the domain. This class of
forces renders an easily interpretable optimization problem,
because, in this case, the applied load (force)

1=—Vp 22)

pulls the model towards a minima of p. For this force defi-
nition, FEM-based object detection is a damped gradient de-
scend with inertia that minimizes a combination of internal
and external energies:

I = Iy + ey — min! (23)
with I, = Ju'Ku (24)
HMew = Y e /erdQe. (25)

The impact of internal energy IT;,, is parameterized via
stiffness K, more precisely by it’s elasticity parameter E. Ex-
ternal energy Il.y stems from integration of potential over
the model. Its influence is entirely controlled by the scaling
of the potential field. The parameterization of mass (inertia)
M does not influence I, it rather allows to overcome spu-
rios local minima of the objective function. The same holds
true for damping D, which guarantees convergence to a local
minimum of IT as long as p is bounded from below. If forces
cannot be traced back to gradients of some potential, exter-
nal energies become dependent on the path of model motion,
which does not allow such an intuitive interpretation.

3. Hierarchical Finite Element Models

In part-based object detection via HFEMs we deal with mul-
tiple submodels s and thus with multiple motion equations
of form 26, which are coupled among submodels by shared
nodes. Providing an efficient optimization framework is the
challenge of integrating the coupled submodel motion into a
simple closed-form solution.

M'i' + D'’ +K'u' =1 (26)

We show that the motion of a HFEM can be traced back to
that of a simple FEM. This enables us to apply the FEM
techniques we already discussed. This further allows us to
retain valuable properties of the FEM concept:

e a well-defined minimization problem

e an efficient optimization framework

e guaranteed convergence/oscillation prevention
e smooth, predictable model motion

We start with the derivation of our closed-form solution
for the case of linearized motion and then generalize it to
large rotations. A time discretization scheme for our HFEM
is presented afterwards.

3.1. Linearized Solution

The derivation of our closed-form solution can be outlined as
follows. We first split the motion equation into equations for
each submodel node. We then reformulate these equations in
terms of all nodes, introducing zeros where necessary. Af-
terwards, we aggegrate all submodel equations for a single
node following the balance of forces and rewrite the coupled
equations into a single equation of the desired form. In the
end, we condense the explanation into simple formulas.

If we split motion equation 26 into |A*| equations - one
for each node of submodel s - we get

ZILEN“ an,nﬁtsfz + Dfn,n“z + Kfn,nu; = fryn (27)

Matrices M3, ,, D30, K5, € R?? define mass, damping
and stiffness of the node pair (m,n). Vectors iy, ), uj, €
R? reflect acceleration, velocity and displacement of node
n, while £, is the external force that acts on node m.

We now reformulate Eq. 27 in terms of the node set ' =
U V¥ of the hierarchical model. Zeroing new mass, damp-
ing and stiffness relations by Vn ¢ N* : M3, ,, D}, K3, =
0 € R4 we can express Eq. 27 equivalently by

Y e Mot + Dy iy + K pun =16, (28)

Due to the summation over the complete node set A/, vectors
iy, Uy, u, € R? now reflect quantities of the HFEM.

The net force must be zero for each node of the HFEM.
Therefore, all forces, i.e., inertial, damping, elastic (stretch-
ing and bending) and external, must balance each other in
the sum. This immediately leads to

Zs ZHEN an.nﬁn + Dfnﬁnun + Kfn,nun = ZS flyn (29)
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f— |, —E—| . || -
Mii + Du + Ku =f

Figure 1: Sketch of our closed-form motion equation for a
hierarchy with three finite element submodels: red, green
and blue; mass M, damping D, stiffness K and force t are
aggregated where submodels share nodes

for each m € N. Note that Eq. 29 is nothing more than a
summation of Eq. 28 over the set of submodels.

We now introduce shorthands of form My, = Y, M, ,
for mass, damping, stiffness and force, which allows us to
rewrite Eq. 29 as

ZnEN Mmﬁnﬁn + Dm,nun + Km,nun =fn. (30)

Eq. 30 follows the same form which we started with in
Eq. 27, but for the complete HFEM. We can easily assemble
all |NV] equations of form 30 into a single motion equation
of the desired form

Mii + Du + Ku = f. 31)

In essence, the idea of closed-form HFEM is to aggre-
gate submodel matrices and forces as sketched in Figure 1.
Therefore, we have to set up suitable projection matrices
p* ¢ RV ldxd|N] , which transform from HFEM DOFs into
submodel DOFs. We then end up with HFEM system matri-
ces and forces formed via

M =Y P'MP (32)
D =Y P'DP (33)
K = Y P'KP (34)
f=Y P (35)

Regarding Rayleigh’s damping model, the aggregation in
Eq. 33 yields the same as the post-superimposition, since

D = Y P (oM’ +BK’) P’ 36)
= o) P'MP +BY PKP (37
= oM+ BK. (38)

3.2. Co-rotational Formulation

The generalization of our closed-form solution to large rota-
tion is straightforward, because both co-rotational formula-
tions that we already discussed apply to our HFEM imme-
diately. Still, there may be cases where neither global nor
element co-rotation best suits the problem. This is the case,
e.g., if the expected rotation is mostly global except for one
or more freely "hanging" submodels that can rotate inde-
pendently. Global co-rotation is then insufficient to solve the
problem and element co-rotation may be overkill.
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To represent these cases, we introduce a formulation for
submodel co-rotation. The idea is the same as with global
co-rotation, but applied to each submodel individually. We
propose to substitute

Ku = ¥ PK'P'u (39)

= Y P'RTK (RP'x—PX)  (40)

= Kex— KX (41
withKy = Y P RK'R'P' 42)
K; = Y PRUKP, 3)

where matrix K° represents the linearized stiffness of
submodel s w.r.t. its reference frame P°x. Matrix R’ =
diag(R*, ..., R*") contains |N*| copies of rotation matrix
R* € R?*4 along its diagonal, which compensates node-
wise for the entire submodel rotation. Akin to global and
element co-rotation, Kabsch’s algorithm is used to estimate
rotations R*" € RY*¢,

A combination of co-rotational techniques is possible as
well. For instance, if the expected shape variation requires
element co-rotation for some submodels while submodel
co-rotation is sufficient for others, we can easily derive an
adapted co-rotation formulation. We then replace RTK'R®
in Eq. 42 and R*"K® in Eq. 43 by element co-rotation ma-
trices of Eq. 17 and Eq. 18, respectively. Thus, our approach
allows for a trade-off of accuracy and performance accord-
ing to prior knowledge.

3.3. Time discretization

We solve the closed-form HFEM motion equation by New-
mark’s implicit second order scheme, which reads

(M +Y1AD +Y2A12K> ia = far

—Ku; — (D+AK) iy

—(=mam+ (L -n)a’K)i @4
Upr = 0+ (1—71) Arily +y1 Al 4 o (45)
Woa = A+ (% - yz> Ay + oAt iy g (46)

For the average constant acceleration parameterization with
Y = % and 7, = %, the scheme is unconditionally stable and
most accurate. Substituting either of the co-rotation formu-
lations into Eq. 44 gives

(M+1AD 4+ 1oAPKy ) i ar = Frs
—Kxx+ Kgg(' — (D + AZK;) uy
_ ((1 1) AD + (% 772) Azsz> i @47

We additionally substitute damping in Eq. 47 by Rayleigh’s
damping model D = aM + BKy, although other damping
models are possible as well.
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@) T b) I

Figure 2: Aligned abdominal magnetic resonance images of
a subject from our data set; (a) central sagittal and coro-
nal plane of the Ty weighted image; (b) central sagittal and
coronal plane of the T, weighted image

If we have little to no spurious energy minima, we may not
need the influence of inertia (mass) to overcome those min-
ima. In this case we only solve Di + Ku = f. Although an
implicit first order formulation of Newmark’s scheme can be
derived, we can still use the second order scheme of Eq. 44-
46, simply removing the mass M from its left-hand side.

4. Experiments and Discussion

We demonstrate our HFEM approach to object detection at
the example of lumbar column detection in MRI. We first go
into detail on the image data and introduce our HFEM lum-
bar column model. We further describe the particular poten-
tial fields that link the model to the image data as well as the
parameterization of both potential fields and column model.
Afterwards, we detail the test scenario and discuss its results.

4.1. Data and Model

The MRI data was acquired in the Study of Health in
Pomerania seeking to investigate population risk factors for
various disorders and diseases, cf. Volzke et al. [VAS™11].
Our data comprises aligned 77 and 7, weighted images of
49 healthy subjects, which were acquired on a Siemens 1.5
Tesla Magnetom Avanto imager. See Figure 2 for an exam-
ple. During the standardized acquisition procedure, an ab-
dominal volume of 500 x 500 x 66 mm was sliced sagittally
into 15 slices at a resolution of 448 x 448 pixels, resulting
into voxels of about 1.1 X 1.1 X 4.4mm in size (see the work
of Hegenscheid et al. [HKV*09] for further details on ac-
quisition). For convenience, we rescaled image intensities
equally into the [0, 1]-interval.

Our lumbar column model is shown in Figure 3. It consists
of a cylindric spinal canal submodel and five vertebra body
submodels. Physical extents of the submodels as well as of
gaps between submodels were defined according to the data
set expectation. We use a bar structure to capture the colum-
nar relations elastically. Layers of the model are coupled by
shared nodes, which are marked in red in Figure 3.

I
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(a) Morphological layer (b) Structural layer

Figure 3: Front and back view of our two-layer lumbar col-
umn model; (a) morphological layer with part models for
spinal canal and each vertebra body; (b) structural layer
with a bar-shaped model enforcing part relations via shared
nodes (red) with each of the part models

4.2. Potentials and Parameters

To link our lumbar column model to the image data we de-
rive two potential fields, which describe the likelihood of the
lumbar column being at some place in the domain. One field
Pe acts on the canal submodel and the other field p, acts on
the vertebra submodels. The fields are weighted, point-wise
combinations of the 77 and the 75 weighted image:

pe = $cGo, * (1 —we) Ty +we (—Th)) (48)
Py svGo, * (1 —wy) (=T1) +wT2). (49)

These potentials exploit the different intensity relations of
column parts with their adjacent structures in 7; and 73
weighted images. Absolute information such as expected in-
tensities may improve the discriminative power of the poten-
tial fields, which however is beyond the scope of our work.

In Eq. 48 and Eq. 49, weights w¢ € [0,1] and wy € [0, 1]
have to be defined so that the combination results in well-
defined minima along the canal and inside each vertebra
body, respectively. Figure 4 shows weighted combinations
for we = 5 and wy = 0, which we found to suit that goal
best. To extend the influence region of these minima we in-
troduced smoothing by Gaussian kernels Gg, and Gg,, re-
spectively. Here, we aim for large influence regions without
blurring the minima themselves or intermediate structures as
for example the intervertebral disks. We found standard de-
viations of 6, = 10mm and ¢, = 4mm to be appropriate.

Scaling factors s¢ and sy in Eq. 48 and Eq. 49 along with
the model elasticity balance the minimization problem. For
simplicity we assume isoparametric material, i.e., material
parameters are constant over each submodel and all submod-
els have the same parameterization. For this simplification,
elasticity £ = 1 combined with scaling factors s. = % and
Sy = % provide good results and an almost stationary behav-
ior for a wide parameter range around them. We fixed mate-
rial density at p = % and parameterized Rayleigh’s damping
by o, 3 = 1. We used global co-rotation in our experiments,
because the expected non-linear variation is rather small.

(© The Eurographics Association 2013.
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Figure 4: Weighted abdominal image combinations of a sub-
Ject from our data set; (a) minima along the spinal canal; (b)
local minimum inside each vertebra body

4.3. Scenario and Results

We performed our experiment in three steps: manual model
initialization, automatic model optimization, and manual re-
sult quality assessment.

During the first step, an expert manually specified a point
inside the L3 vertebra body within the central sagittal 7 slice
for each subject. We used this point in the second step to de-
fine the initial model position. More precisely, we aligned
the center of the L3 submodel with it. Model orientation was
kept constant due to standardized acquisition. As shown in
Figure 5, we always initially oriented the model in consent
with the image coordinate system. In the third step, an expert
screened the results and assessed detection quality, answer-
ing the following questions by "Yes" or "No".

1. Did the model assign L1—Ls correctly?
2. Did the canal model align with the spinal canal?
3. Did the vertebra models orient correctly?

We chose the combination of a large data set and a rather
simple evaluation because it enables us to judge detection
quality and robustness to object variability quickly.

Using a straightforward Matlab implementation on a stan-
dard 64-bit system with an Intel Core i5 4 x 3.30 GHz, the
optimization took 1.52s on subject average with a standard
deviation of 0.39s. Minimal and maximal computation times
were 1.08s and 2.55s, respectively.

Table 1: Aggregated results for our test scenario

Question
1 2 3
Yes 48 | 46 | 45
No 1 3 4

Answer

Aggregated results of our evaluation are given in Table 1.
Answers indicate good overall detection quality in 45 out of
49 subjects. The model completely failed only in one case,
misassigning the Lj—Ls vertebrae and misaligning with the
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(a) Initial Position (b) Final Position

Figure 5: Our test scenario for a subject from our data set;
(a) model position after initialization; (b) final model posi-
tion after optimization

spinal canal. Thus, answers to all Questions were "No". In
two cases the model did not match the spinal canal and the
vertebra orientation, hence answers to Question 2 and 3 were
"No". The vertebra orientation was incorrect in one other
case, resulting in a "No" for Question 3.

In the first three cases we found that the lumbar column
was not entirely covered by the imaged volume. More pre-
cisely, portions of one or more vertebra bodies were not cov-
ered by the sagittal slices that were acquired. This was not
the case for the rest of the data set. Possibly the energy-
neutral Neumann boundary condition that we used to deal
with the image border may be insufficient and hence these
bad results may be avoidable using other boundary condi-
tions. In the last case, i.e., where only the vertebra orienta-
tion was incorrect, the subject was substantially larger than
the data set expectation. The model was not able to compen-
sate for this deviation, leading to false orientation of the L;
and Ls vertebra. We may be able to compensate for that by
relaxation of the model’s resistance to variation in length.

5. Conclusion

In this work we focussed on prototypical part-based model-
ing for objection detection. Possible applications of our ap-
proach are face recognition, person detection and tracking as
well as several medical problems. Our approach may also be
of interest for fields like object tracking and segmentation.

We based on the work of Engel and Tonnies [ET(09a,
ETO09b] who proposed a hierarchical finite element approach
that allows for elastic modeling of variable parts with vari-
able part relations. We substantially simplified their heuristi-
cal optimization framework by means of an efficiently solv-
able closed-form solution to their hierarchical concept. We
showed how to trace the solution of a hierarchical finite ele-
ment model back to that of a non-hierarchical one. This al-
lowed us to apply standard finite element optimization tech-
niques to hierarchical problems. Thus, we augmented hier-
archical part-based object detection with an efficient local
optimization framework.
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We demonstrated our approach at the example of lumbar
column detection in magnetic resonance imaging on a data
set of 49 subjects. We used a hierarchy containing submod-
els for the spinal canal and each vertebra. We superimposed
a bar structure on top of these submodels to realize their vari-
able spatial relationship. Given a rough model initilization,
our approach solved the detection problem reliably in 45 out
of 49 cases, showing computation times of only a few sec-
onds per subject.

In the future, we plan to extend our approach by a stochas-
tical initialization component. The goal is to remove the need
for manual initialization. In a second step we aim to provide
the user with several local optima, letting her/him choose the
correct solution. The intention is to design a feedback pro-
cess that allows us to learn model parameters in the course
of detection. Starting with a very elastic model, we may use
the user’s choice to optimize model parameters such that the
model becomes less elastic in spots where the expected vari-
ation of part shapes or their relationship is low.

Regarding the lumbar column, we plan to use our detec-
tion results as shape prior for a suitable segmentation tech-
nique like level sets or graph cuts. Combined with our ap-
proach this may give a one click solution to exact lumbar
column segmentation. We also plan to investigate the detec-
tion and segmentation of other important parts of the spine,
such as the cervical column.
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