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Abstract
We propose an algorithm for axis-aligned content-aware image retargeting that is specifically optimized for mobile
devices, and we show that interactive image retargeting is possible even with a low-power, mobile CPU. Our
retargeting operator is based on non-uniform scaling and cropping and produces results that are on par with
state-of-the-art on a large collection of images. Taking the limited screen space of mobile devices into account, we
design a novel user interface that allows painting the saliency map directly onto the retargeted image while the
system is continuously recomputing the retargeted result at interactive rates. Finally, we apply our algorithm in a
picture gallery application to greatly improve the screen space utilization in mobile device settings.

1 Introduction

Digital images are captured using sensors with different as-
pect ratios and visualized on consumer devices equipped
with sceens that also have a wide variety of aspect ratios.
To compensate the mismatch, the image is usually letter-
boxed, i.e., proportionally scaled to fit the screen by intro-
ducing horizontal or vertical black bars at the borders.

To make full use of the available screen space, many
methods for non-uniform scaling of the image to the desired
target resolution have been developed [SSHSH12]. They
strive to preserve important areas of the image while con-
centrating the distortion in the homogeneous parts where it
is less noticeable.

In this paper, we propose a retargeting algorithm that is
tailored to mobile devices, enabling content-aware resizing
of an image immediately after it has been captured. The mo-
bile setting poses a challenge for real-time and user-friendly
retargeting due to the limitations on computational power,
battery life and screen space, requiring specially-designed
algorithms and user interfaces. Our approach to solving the
problem makes the following contributions:

1. We extend the axis-aligned warping algorithm [PWS12]
to incorporate cropping into the optimization. Our
method introduces a minimal overhead on the running
time of the original algorithm, and we also adapt it to
devices with limited computational resources.

2. We present a novel touch-based user interface for paint-
ing the region of importance directly onto the retar-
geted image, e.g. to enhance an automatically computed
saliency map. This allows for interactive refinement of
the result using a full-screen preview. Our method has

Figure 1: With our touch-based user interface for image re-
targeting, users can paint the saliency map and observe the
retargeted image in real time.

a real-time performance of 60 fps, providing immediate
visual feedback to the user and enabling to define high-
quality importance maps in seconds.

3. We apply our algorithm to the generation of thumb-
nail photo galleries, which is of interest for every de-
vice with a mobile camera. We test our method on a
large image collection from the RETARGETME bench-
mark [RGSS10] and achieve results with a quality com-
parable or higher than other approaches.

The prototype developed in this work will be released as
an open source project to foster future research and evalua-
tion of mobile image retargeting.
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2 Related Work

We focus our attention on warp-based methods, and we refer
to [RSA08,SCSI08,BSFG09,PKVP09] for a detailed discus-
sion of discrete retargeting approaches.

Warp-based retargeting algorithms define an energy
functional and minimize it while constraining the bound-
ary to match the target image size. The energy measures
local deviation of the warp from a shape-preserving de-
formation such as translation [GSCO06], rigid transforma-
tion [KFG09] or similarity [WTSL08, KFG09, ZCHM09,
KLHG09]. Recently, many of these methods have been
unified in a single finite-element framework [KWSH∗13].
Quadratic energies, which can be minimized quickly by
solving a sparse linear system, often introduce foldovers
that lead to artifacts in the retargeted image (see Fig. 3 in
[PWS12]). Self-intersections can be prevented using non-
linear optimization, for example by iteratively penalizing
grid edge flips [WTSL08], by constraining the size of grid
cells [KLHG09] or explicitly posing positive scaling con-
straints on grid cells’ transformations [CFK∗10]. However,
currently, nonlinear constrained optimization can be per-
formed in real time only using customized GPU solvers
[KLHG09], and at present it cannot be used in mobile de-
vices due to the prohibitive computational cost.

Observing that many successful warping methods
strongly penalize rotations [WTSL08, KLHG09, CFK∗10],
Panozzo et al. [PWS12] proposed to restrict the optimiza-
tion to axis-aligned deformations. This reduces the space of
admissible warps and makes the optimization extremely ef-
ficient and suitable for mobile devices, while generally re-
taining high-quality results. However, cropping is not al-
lowed by their formulation, leading to unwanted results for
large deformations (Figure 2). Automatic cropping has been
demonstrated to be a useful retargeting operator [LG06,
DDN08,RGSS10], especially when combined with other op-
erators [RSA09,WLSL10,YSWL11]. Wang et al. [WLSL10,
YSWL11] successfully optimized content-aware cropping
and warping for video volumes, yet at a significant compu-
tational cost. In this work we modify axis-aligned deforma-
tions [PWS12] to incorporate optimized cropping in an effi-
cient manner, enabling implementation on mobile devices.

Saliency map computation. All image retargeting meth-
ods rely on an image importance map or saliency. Low-
level features such as the L1-norm of the intensity gradi-
ent have been successfully used in [AS07], but they fail to
capture high-level features like faces or semantically im-
portant objects in a scene. Automatic saliency detection
algorithms, e.g. [IKN98], have been used in more recent
methods. Salient regions can be found by detecting glob-
ally unique regions of high contrast using a histogram-based
contrast method [CZM∗11]. Perazzi et al. [PKPH12] pro-
pose to cluster image pixels based on their color and then use
high-dimensional Gaussian filtering to measure the unique-
ness and spatial distribution of each element. Eye-tracking
[CJG11] and face detection [VJ04] can also be used to help
identifying the most important parts of an image. In this

(b)(a) (c)

(b)(a) (c)

Figure 2: (a) Original image. (b) Axis-Aligned Retarget-
ing [PWS12] introduces an unpleasant distortion for large
deformations. (c) By allowing to crop, our algorithm gener-
ates a map with a considerably lower distortion.

work, we combine an automatically generated saliency map
with a simple touch-based interface that allows the user to
manually refine it.

3 Algorithm

We base our retargeting operator on [PWS12] and we ex-
tend it to use both scaling and cropping in order to reduce
the distortion in presence of large deformations (Figure 2).
We enrich the original formulation by adding constraints that
allow the borders of the image to collapse. Our algorithm
requires solving a small quadratic program twice: the first
run decides which parts should be cropped, and the second
generates the final, retargeted image. This simple iterative
scheme is about twice slower than [PWS12], but it greatly
reduces the distortion in most cases, as shown in Section 6
and in the additional material.

3.1 Axis-aligned retargeting

We wish to warp the source image I of width W and height
H into a target image I′ of width W ′ and height H′. The de-
formation between I and I′ is discretized on a uniform grid
G with M rows and N columns. Each column of G has width
W/N and each row has height H/M. The deformed grid G′
has the same connectivity as G, but it is non-uniformly de-
formed so that its boundary matches the size of the target im-
age (W ′×H′). We denote by rs =W/H and rt =W ′/H′ the
aspect ratios of the source and target images, respectively.

Following [PWS12], we inhibit local rotations by restrict-
ing the set of admissible deformations to non-uniform scal-
ings of the grid’s rows and columns. The deformations con-
tained in this subspace can be encoded by storing the size of
each row and column of G′:

srows = (srows
1 ,srows

2 , . . . ,srows
M ) (1)

scols = (scols
1 ,scols

2 , . . . ,scols
N ) (2)

Hence axis-aligned deformations are parameterized using
s = (srows,scols)T ∈RM+N . In this subspace, the as similar
as possible energy [PWS12] can be written as:

EASAP =
M

∑
i=1

N

∑
j=1

(
Ωi, j

(
M
H

srows
i − N

W
scols

j

))2

, (3)
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Figure 3: (a) The original photo I. (b) Manually painted
saliency map S on I. (c) The energy formulation only con-
siders the rasterized saliency matrix Ω.

where Ωi, j is the average saliency in the cell (i, j) of G (see
Figure 3). This energy penalizes all deformations except uni-
form scaling. This is particularly desirable if cropping is al-
lowed, since it allows filling the target image with the more
salient content by scaling the source uniformly and cropping
the non-salient regions.

The energy can be written in matrix form as

EASAP = (Ks)T (Ks) = sT KT Ks, (4)

where

Kk,l =


Ωr(k),c(k)

M
H if l = r(k),

−Ωr(k),c(k)
N
W if l = M+ c(k),

0 otherwise,
(5)

for the row r(k) = dk/Ne and column c(k) = ((k − 1)
mod N)+1.

In this setting, it is possible to guarantee that the defor-
mation map is bijective simply by constraining all variables
to be positive. We thus cast our optimization as a quadratic
convex optimization problem (QP):

minimize sT KT Ks (6)

subject to H̄min
i ≤ srows

i ≤ H̄max
i , i = 1, . . . ,M, (7)

W̄ min
j ≤ scols

j ≤ W̄ max
j , j = 1, . . . ,N, (8)

srows
1 + srows

2 + · · ·+ srows
M = H′, (9)

scols
1 + scols

2 + · · ·+ scols
N =W ′. (10)

The equality constraints (9) and (10) fix the target size to
W ′×H′. We use the bounds H̄min

i , H̄max
i , W̄ min

j and W̄ max
j

to constrain the size of each row and column. Differently
from [PWS12], we bound the maximal and minimal size of
each row and column individually, instead of using a global
bound. It is a key difference that enables us to introduce
cropping into the optimization without changing the struc-
ture of the quadratic program, thus allowing us to use a fast
solver customized for this specific task.

Bound constraints. We denote a bound without a sub-
script as a shorthand for global bounds across all rows and
columns, e.g. H̄min = H̄min

i for all i = 1, . . . ,M.

[PWS12] used a universal minimal cell size, defined as
H̄min = L ·H′/M and W̄ min = L ·W ′/N, where L ∈ (0,1)
controls the maximal allowed stretch. A fixed L can intro-
duce unnecessarily distortion in salient parts of the image,

G

(a) (b) (c)

G0 G0

Figure 4: Minimum cell size constraints. (a) The image in
its original aspect ratio. (b) The uniform minimal cell size
as used in [PWS12]. (c) The aspect-ratio-aware minimal
cell size we propose. The two smaller boxes represent the
L-downscaled minimal cell sizes for L = 0.5.

(b)(a) (c)

Figure 5: Comparison between the two types of cell size con-
straints using L = 0.9. (a) The image in its original aspect
ratio. (b) The uniform minimal cell size as used in [PWS12].
(c) The aspect-ratio-aware minimal cell size we propose.
Both images use the same saliency (Figure 3).

as illustrated in Figure 4(b). We thus propose a different,
aspect-ratio-aware minimal cell size:

W̄ min = L · sr
H′

N
, H̄min = L · H

′

M
if rt > rs , (11)

W̄ min = L ·W
′

N
, H̄min = L · 1

sr

W ′

M
if rt ≤ rs . (12)

We first uniformly scale the grid to fit into the target dimen-
sions, and only then fix the minimum cell size as a fraction
L of the cell sizes of the uniformly scaled grid G′. This way
the minimal cell size keeps its original aspect ratio, as illus-
trated in Figure 4(c). Figure 5 compares the two approaches
for a fixed L = 0.9.

Generally, we set all the upper bounds H̄max
i and W̄ max

j to
infinity. Only for rows and columns to be cropped, we set the
corresponding upper bounds to zero to make them collapse.

QP solver. We use CVXGEN [MB12] to solve our QP prob-
lems. CVXGEN requires a static description of the problem
and it generates a customized C solver that efficiently mini-
mizes it. Its major limitations are that it cannot scale to prob-
lems with a large number of variables, and it is not possible
to alter the structure of the problem, e.g. the number of vari-
ables, at runtime. While the first limitation does not affect
our algorithm since a grid of size 25×25 is sufficient for
images up to HD resolution (see Figure 7 of [PWS12]), the
second limitation makes incorporation of cropping into the
optimization difficult.
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Figure 6: Our threshold-based cropping approach. Start-
ing with the original image (a) we find the optimal warp
(b) using the minimal cell size α · W̄ min×α · H̄min. We de-
cide what to crop (c) and then optimize the remaining image
parts again to fill the target rectangle (d).

3.2 Cropping

In situations where the image has large, uninteresting parts
on its borders, cropping is preferable to plain warping, since
it greatly reduces the distortion in the warp. While it would
be trivial to include cropping directly into the variational en-
ergy formulation by adapting the constraints to the specific
saliency map, this would not allow us to “prebake” a very
efficient solver using CVXGEN and it would consequently
prevent interactive feedback. In this section we show that it
is possible to introduce cropping in the retargeting operator
by solving the QP problem presented in Section 3.1 twice,
using the output of the first minimization to define the con-
straints for the second run.

Two-step optimization. Our retargeting operator is di-
vided into three steps (Figure 6):

1. Initial QP solve;
2. Detection of high-distortion areas with low saliency;
3. Final QP solve.

Initial QP solve. Given a user-defined, cropping thresh-
old α ∈ [0,1), we solve Equations (6)–(10) using the lower
bounds αW̄ min and α H̄min. Note that for smaller values of
α, non-salient regions are allowed to squeeze more and they
are even allowed to collapse if α = 0.

Detection of high-distortion strips with low saliency.
We now mark each row that is smaller than H̄min and each
column smaller than W̄ min, starting from the boundaries
of the image and going inwards. All the marked rows and
columns will be collapsed in the next optimization step.

Final QP solve. To collapse the marked rows and
columns, we set the corresponding bounds on the maximal
and minimal size to zero: we set H̄min

i and H̄max
i both to zero

in order to crop row i. We use the original minimal bounds
of H̄min and W̄ min for the non-marked rows and columns and
solve the QP again. This procedure effectively removes the
corresponding variables from the system, forcing them to be
zero. Note that this is performed without changing the struc-
ture of the optimization problem.

Incremental cropping. The procedure described above
works well for fixed target sizes, but it has an unintuitive be-
havior when the size of the image is changed interactively.
Changing the target size of the image by a single pixel could
drastically change the cropping window: Since the rows and

(b)

(a) (c) (d) (e)

Figure 7: We paint the saliency map that can be seen in
the original image (a) and want to retarget the image from
landscape to portrait. We compare our crop-threshold range
(pictures (b) and (c)) with the fixed crop-threshold (pictures
(d) and (e)). Note that pictures (b) and (d) have the exact
same aspect ratio. Pictures (c) and (e) are only slightly taller.
But in the case of the fixed crop-threshold we see a big crop-
difference between (d) and (e). Near the border the columns
in (d) are visibly narrower than in (a), but just not narrow
enough to get cropped. In (e) however, these columns were
cropped and the image looks fine. Our improved approach
using the threshold-range generates two almost identical,
good-looking warps (b) and (c).

columns are cropped using a hard threshold, an entire group
of rows or columns might get cropped at the same time, re-
sulting in popping and a non-smooth user experience. We
thus relax the hard cropping threshold by introducing a range
that is higher on the border than in the middle of the image.
To formalize this, we introduce the following limits:

W̄ low = 1+α

2 ·W̄
min and W̄ high =

1+1/L
2 ·W̄ min, (13)

which ensures that for all admissible values of L and α the
following holds:

W̄ low ≤ W̄ min ≤ W̄ high ≤W ′/N. (14)

When deciding whether to crop the j-th column (starting
from the left), we no longer just compare scols

j with W̄ min but
use an interpolated threshold value from our threshold range
[W̄ low,W̄ high], so we crop column j of width scols

j iff

scols
j <

(
j−1

N
W̄ low +

(
1− j−1

N

)
W̄ high

)
. (15)

The same procedure is also adapted for the right border and
for cropping rows. We use a fixed cell size factor L = 0.7
and a cropping threshold α = 0.5 in all our experiments. By
increasing L, one can make the grid cells more rigid, which
forces more border cells to be cropped. Since α appears only
in the first QP solve, it only plays a decisive role if large
regions of the image are cropped. Compared to the fixed
threshold W̄ min, this approach makes the cropping experi-
ence more fluid and dynamic, while also significantly im-
proving the retargeting quality. A direct comparison is given
in Figure 7.

Feasibility of the QP. Our energy is strictly convex, since
KT K is positive semidefinite. The feasible region is always
non-empty: first, note that our cropping algorithm never
crops all columns or all rows. As all the thresholds and
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(b)(a) (c) (d)

Figure 8: Gradient-based automatic saliency detection. (a)
Original image. (b) Gradient magnitude after the convolu-
tion with the Sobel kernel along both axes. (c) Gradient mag-
nitude after dilation operation. (d) Auto-saliency on top of
the original image.

lower bounds we used are always smaller than the average
row height H′/M and the average column width W ′/N, at
least one row and one column will not get cropped. This
also holds for the incremental cropping thresholds. There-
fore the feasible region always contains the warp that takes
all non-cropped cells and spans them uniformly over the en-
tire image.

3.3 Automatic saliency estimation

We automatically estimate an initial saliency map that can be
subsequently edited with our UI (Section 4) by combining
low-level image features with a face detector.

Gradient-based saliency detection. We scale the image
to 250 pixels along the longer direction to reduce the com-
putational effort and to eliminate high-frequency noise. We
then convert the image to gray-scale and convolve it with
the Sobel gradient kernel along the x- and the y-axes. The
saliency is extracted as the L2-norm of the gradient, and it is
dilated to simulate a brush stroke. This also fills up small
holes in the gradient map and looks similar to manually
painting along each contrast-rich edge. The dilation opera-
tion is performed using a fixed radius d = 4 as follows:

D(I)(x,y) = max
dx,dy s.t.

√
dx2+dy2≤d

I(x+dx,y+dy).

Figure 8 shows an example of the extracted saliency.

Face detection. Humans are very good at detecting distor-
tion on faces, even if it is small. We thus try to reduce the
distortion by identifying image regions occupied by faces
and assigning a high saliency value to them. Standard face
detectors, like [VJ04] or the one implemented in iOS, return
a set of axis-aligned rectangular subwindows, each assumed
to contain a face. This rectangle, which roughly contains the
mouth and both eyes, extends from below the chin up to the
hair line. To better approximate the form of a head we use a
cubic ellipsoidal shape. For a rectangle with center (cx,cy),
width 2rx and height 2ry, we mark as salient all the pixels in
the following set:

{(x,y) ∈R2 |
∣∣∣∣x− cx

rx

∣∣∣∣3 + ∣∣∣∣y− cy

ry

∣∣∣∣3︸ ︷︷ ︸
=: r

≤ 1}.

To simulate a brush stroke, we let the intensity slightly decay
towards the border: we set the saliency of each pixel in the
face region to (1− r3) times the maximal saliency value.

pinch to zoom
tap and move
to paint

close and store
settings
export
take picture
choose picture

reset saliency
automatic saliency
saliency brush/eraser
aspect ratio picker
side-by-side view
saliency view

swipe to change
the aspect ratio

Figure 9: The editor interface on the iPad.

4 Touch-based user interface for saliency editing

We designed a customized user interface that allows to re-
fine an automatically generated saliency map with a few user
strokes. A normal UI cannot be used in this scenario since
the available screen space is not sufficient. The user must be
allowed to edit the saliency map, which is defined on every
pixel of the original image, and at the same time visualize
the result, which has a different aspect ratio. On mobile de-
vices, the screen is too small to visualize both, and we thus
combine them into a single view. We show a screenshot of
our UI in Figure 9. The user can paint saliency by pointing
and dragging the finger across the image. To change the tar-
get ratio, the user can either select from a list of predefined
common aspect ratios or continuously resize the image us-
ing a two-finger up/down swipe gesture. With a two-finger
pinch gesture, the user can enlarge the image and then paint
smaller salient regions in greater detail.

Fixed-point grid stabilization. Combining the saliency
map and the retargeted preview into a single image becomes
problematic when the user starts painting by moving a fin-
ger across the canvas. As the saliency changes, the image
is rescaled and the region where the user is painting conse-
quently moves.

Such unexpected movement underneath the finger can
make it difficult for the user to draw simple shapes like lines
or circles onto the saliency map. To make the process more
intuitive, we fix the point where the user is currently apply-
ing the brush and we translate the image after the deforma-
tion so that the region where the user is painting stays below
the finger. Figure 10 outlines this fixed-point stabilization.
To implement it, we first look up the position of the finger
in screen coordinates and express it using barycentric coor-
dinates inside the corresponding grid cell. We then compute
the deformation, find the new deformed position by apply-
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I 01 I 02
p2p1

Figure 10: We compensate the motion of the painted point
from p1 to p2 by translating the whole image in the opposite
direction. The point underneath the finger stays exactly the
same, no matter how much the underlying grid is deformed.

(b)(a) (c)

Figure 11: Crop preview. (a) The user is painting saliency,
but nothing has been cropped yet. (b) A few rows are
cropped. The whole image is moved to keep the point be-
neath the finger fixed. (c) The image is recentered after the
user stops painting. The preview of the cropped rows is
shown above and below the salient part. The white frame
outlines the retargeted image.

ing the barycentric coordinates to the deformed grid and we
translate it to be below the finger.

Crop preview. Another problem that arises while visual-
izing the saliency together with the retargeted result is that
the cropped parts disappear, not allowing to paint saliency on
them. We thus visualize the cropped parts around the image
with an opacity of 50% (Figure 11), and we allow the user to
paint on them. The size of the cropped rows and columns is
set to the value computed after the first energy minimization.
Our fixed-point grid stabilization algorithm provides a fluid
transition of a cropped part back into the retargeted image
when the user paints on it.

5 Implementation details

To compile the QP solver in an iOS binary, we translated
the solver generated by CVXGEN from C to Objective-C.
The solver runs in 10 milliseconds on an iPad 2 (Apple A5
chipset) and 6 milliseconds on an iPhone 5 or iPad 4 (Apple
A6, A6X chipset). The pixels of the final image are warped
using bilinear interpolation inside each grid cell. Similarly
to [PWS12], we upsample the grid to 50× 50 using a cubic
B-spline to remove the artifacts of the bilinear interpolation.

iOS technologies used. To encode, decode and rescale im-
ages, we used the UIImage class and some CoreGraph-
ics routines. The CIDetector face detector class is part
of the CoreImage framework. The smooth transitions be-
tween different layouts and saliency modes are realized us-
ing the CoreAnimation framework. For rendering, we

use OpenGL ES 1.1, which allows 2D texture mapping with
bilinear interpolation, using an orthogonal projection. On re-
cent iOS devices, a maximum texture size of 2048× 2048
can be used and we thus rescale the images to this reso-
lution. For the export at the original image resolution, we
render multiple images and stitch them together. The class
GLKView takes care of the render buffer management and
the EAGLContext manages the OpenGL state when we
draw into several seperate views. Finally, we use mipmaps
to minimize aliasing artifacts for high resolution images.

6 Results

We implemented our prototype in Objective-C and tested it
on an iPhone 5 and an iPad 4. When painting the saliency,
resizing an image or tweaking the parameters, we achieved a
steady frame rate of 60 fps. This allows for a fluid and inter-
active user experience. About 60% of the CPU time is spent
in the CVXGEN solver, while the rest is spent assembling the
energy matrix, performing the bilinear interpolation using
OpenGL and in UI-related computations. The generation of
the automatic saliency map (Section 3.3) takes about a sec-
ond, where 0.6 seconds are spent on the iOS face detection
and 0.3 on the dilation operation on the image gradient.

We recorded the time required to process the entire RE-
TARGETME [RGSS10] dataset, measuring an average of 90
seconds per image. This includes the computation of the au-
tomatic saliency map, its interactive refinement and the gen-
eration of the full-resolution, retargeted image.

We also found our prototype to be engaging and fun for
people who were previously unaware of image retargeting.
A short one-minute introduction was sufficient to get them
started and let them explore the functionalities of the proto-
type on their own.

RETARGETME benchmark. We retargeted all the 86 im-
ages in the RETARGETME benchmark [RGSS10] using our
method. Figure 13 compares a few of the results with other
operators. The full comparison table is provided in the addi-
tional material. In all images, we used the default param-
eter values and manually adjusted the automatically gen-
erated saliency map. We used the default brush size and
did not zoom into the image, so we just painted what we

(b)(a)

Figure 12: Automatic retargeting. (a) Automatically de-
tected saliency map. Note that also the face of the pumpkin
is recognized and marked as salient. (b) Retargeted to 75%
width, as in the RETARGETME benchmark.
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SVCR MULTIOP AAIR our operatororiginal

Figure 13: RETARGETME benchmark comparison. We compare manual cropping (CR), streaming video (SV) [KLHG09],
multi-operator media retargeting (MULTIOP) [RSA09] and axis-aligned image retargeting (AAIR) [PWS12] with our approach.

could see on the display of the iPad. In the RetargetMe
study [RGSS10], the saliency map has been manually op-
timized for each operator and for each picture to produce
optimal results and a fair comparison. In general, the au-
tomatic saliency detection works well for images with a
small depth of field, i.e. with a blurred background, for
which manual refinement was not necessary (Figure 12).
High-frequency backgrounds (like leafs, grass or geomet-
ric patterns on buildings) are challenging for our automatic
saliency and we found it easier to paint the saliency from
scratch in these cases.

Thumbnail gallery. A common problem in the generation
of a grid-view for a collection of images is that not all images
have the same aspect ratio. Either the pictures are homoge-
neously scaled down to fit into a regular grid or a squared
central part of the image is cut out and scaled. Both methods
are used in the iOS picture gallery (Figure 14 (a)), in the iOS
image picker and in many web galleries (e.g. Picasa, flickr).

While the first way does not use the screen space efficiently,
the second way often crops important content. We propose a
new gallery format where we use squared thumbnails to fill
all available screen space. Inside this square area, we render
a retargeted image using our approach. With our algorithm,
the amount of cropping and scaling is automatically selected,
as shown in Figure 14 (b).

7 Concluding remarks
We presented a novel content-aware image retargeting op-
erator that combines axis-aligned scaling with cropping to
generate results on par with the state of the art at interactive
rates. We implemented our algorithm for iOS and proposed
a novel user interface optimized for touch input and small-
screen devices. Our prototype provides a smooth experience
and runs at 60 fps on the current generation of iOS devices.

To keep the computation cost low, we used a greedy ap-
proach to decide which part of the image should be cropped.
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Figure 14: iOS picture gallery (a) and our gallery (b).

Especially in images where the salient content is concen-
trated in an area smaller than the target image, our operator
might crop more than necessary. While these cases can be
corrected manually with a few strokes, it would be interest-
ing to find a non-greedy way of introducing crop into the
retargeting operator. Similarly to [PWS12], our operator re-
duces to uniform scaling if the saliency map wants to pre-
serve straight line features that are not axis-aligned. As our
approach only crops whole rows and columns of the grid,
the coarse grid resolution of 25× 25 cells, which is needed
to obtain real-time performance, restricts the precision of the
cropping. In future work, we plan to investigate the possibil-
ity to continuously crop parts of a single row or column.

It would be interesting to integrate our retargeting opera-
tor into a mobile web browser to dynamically optimize the
images and their layout on any webpage for a given screen
size. Another possible direction for future work would be to
expand our operator to video retargeting. The speed of our
method might allow real-time video retargeting even on mo-
bile devices.
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