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Abstract
We propose a method for synthesizing a novel soundtrack from an existing musical piece while preserving its
structure and continuity from a music theoretical point of view. Existing approaches analyze a musical piece for
possible cut points that allow the resynthesis of a novel soundtrack by lining up the source segments according to
specified rules but fail to maintain musically correct song progression. Introducing the alignment of rhythmic and
harmonic structures during transition point detection, we employ beat tracking as the analysis core component
and take the human sound perception into account. Automatic segment rearrangement is improved by employing a
novel belief propagation approach that enables user-defined constraints for the output soundtrack, allowing video
editors or dance choreographers to tailor a soundtrack to their specific demands.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications— H.5.5 [In-
formation Interfaces and Presentation]: Sound and Music Computing—Signal analysis, synthesis and processing
J.5 [Arts and Humanities]: Performing Arts—

1. Introduction

Music as composed and recorded by an artist is of fixed du-
ration and chronological construction, and is in some way
carved in stone. At the same time, it plays an important role
in the presentation of visual content like movies, but is often
not directly usable as it has to be rearranged to fit its pur-
pose. Utilizing the approach of example-based audio syn-
thesis, inspired by retargeting of graphical textures, we pro-
pose a method for completely automatic or user-supported
rearrangement of regularly structured musical compositions
with respect to usability in motion picture scores, media sup-
port, electronic games and dance related institutions such as
academies, theatres or clubs.

Often a specific song’s runtime does not match its in-
tended usage duration so that it becomes necessary to stretch
or shorten a song by rearranging its parts. In the same con-
text, one might also wish to create a medley song from parts
of different songs, insert measure-aligned silence, or per-
form other restructuring operations, all without introducing
any artifacts that become noticeable to the listener.

Our approach segments a soundtrack into its elementary
logical parts, its measures, and uses self-similarity analysis
to generate a list of possible seamless transitions between

these parts. The parts are than automatically rearranged ac-
cording to user-specified constraints to generate the final
beat-aligned, structure preserving target soundtrack. In the
simplest case, the user only needs to supply a target song
length by defining an output measure count or a time length.
For a more fine-tuned song-assembly, per-measure annota-
tions allow for specific part selection during the synthesis
phase.

The human cognitive processes that lead to our under-
standing of the underlying pattern of a musical perfor-
mance cannot easily be reproduced by machinery, but cur-
rent technology provides the basic tools necessary for ma-
chine aided understanding and restructing of musical pieces.
In our work, we focus on music that can be analyzed and seg-
mented with current technologies like beat trackers [Ros92]
and structure analysis tools [Sch06]. The analysis and syn-
thesis of sound consisting of textured patterns without de-
fined pitch, rhythm, dynamics and timbral qualities (e.g.,
[LWZ04]) is beyond the scope of this paper.

2. Related Work

The contemporary concatenative audio resynthesis approach
of cutting and stitching started in the 1950s and has been the
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subject of active research until recently [LWZ04, PB04]. A
good overview is given in [Sch06]. These methods generate
a partition of an audio source and build a new audio piece of
arbitrary length. However, they do not capture the musical
structure of the source and therefore typically fail on more
complex musical pieces.

Audio and user directed sound synthesis calculates the
self-similarity of an audio source per frame and has been
successfully tested on stochastic or periodic sound patterns
but not on music [CBR03]. Audio textures [LLW∗02] seg-
ment input audio into short clips that are subsequently re-
arranged. Similar to concatenative audio resynthesis, these
methods are typically not applicable to music. [SERlG06]
summarize similar sound texture generation methods.

Concatenative audio synthesis [Sch06, S∗00] uses
databases of sound snippets to assemble a specific target
sound. While this approach has been used in electronic mu-
sic composition through arranging small sound snippets like
a mosaic [Stu04, ZP01], it mainly works for constructing
sound textures and sound scapes and does not perform well
on musical sources.

In order to make audio resynthesis techniques applicable
to music and other audio containing large-scale structure,
[WM11] introduced a multi-resolution scheme for fast self-
similarity analysis capturing the sonic source from multiple
measures down to single samples, allowing perfect align-
ment of the cuts without blending or scaling. A genetic al-
gorithm [WM12] was subsequently proposed to rearrange
the segments into soundtracks subject to user-specified con-
straints. This approach performs reasonably well even on
structured music, but often exhibits noticeable artifacts with
respect to rhythmical structure: the proposed transitions do
not always correspond to the underlying meter of the mu-
sical source, causing profound irritation to the listener or
dancer who expects temporal continuity. The same applies
to [WBSH∗13], who analyse the music for its physical beat
locations and super structures but do not always manage to
obtain rhythmically correct transitions. Another problem are
jumps within the track occuring at positions that fit harmon-
ically but not at its musical depth level, like solo vs. tutti in-
strumentation, or do not match well at all. In addition, vocal
parts are typically manually excluded from the resynthesis
to avoid artifacts.

Audio-based music structure analysis [GM94, Cha05,
PMK10] aims to segment the audio track into its logical
pieces defined by the underlying beat, human perception and
music theory. Using similar methods, we decompose a mu-
sical piece into its basic structural units, the measures, and
automatically rearrange them into a novel soundtrack ac-
cording to user constraints. In our approach, the user selects
an input track and supplies constraints in the form of a cost
function for each measure of the output. A beat tracker is
used to segment the input audio, and our algorithm finds
suitable transitions between the segments. Finally, it auto-

Figure 1: A sample drum loop with estimated onsets marked.
Long lines show the down beats [Flo11].

matically generates an optimal sequence of measures that
are finally reassembled to form the target soundtrack.

3. Beat Tracking

The beat is the elementary time unit in music, its rhythmic
pulse. Grouped beats form a measure and its number of notes
and rests corresponds to the meter, also called time signature
(like 4

4 , 3
4 , 6

8 ), usually contributed by percussion instruments
or noticeable through chord changes or note alignment.

The recognition of beat in music in usually divided into
certain phases. Beat tracking starts with the detection of
note onsets in the song’s signal, that is, computing a nov-
elty curve for recording changes in energy, spectral content
or pitch [BDA∗05, DP07, Ear07, KEA06]. From these pos-
sible onsets, the beats are extracted by some kind of selec-
tion mechanism [BDA∗05]. The tempo is assumed to be con-
stant within the local analysis window, marking the trade-off
between tempo robustness and detection of tempo changes
with respect to the window size. Appropriate sequential beat
positions for a correct description of the piece’s periodic
beat structure (Figure 1) are selected, regarding frequency
of tempo and phase of timing.

A beat is a perceptual phenomenon and does not neces-
sarily correspond to physical beat times. It is usually ac-
companied by a note onset defined by strong energy in the
time-domain of the signal or altered spectral content. These
hints of a beat structure might be hidden behind soft note
onsets, blurred note transitions or delayed beats, like off or
back beats, leading to mis-perception of the machine. Vari-
ations in the tempo increase these issues, and the number of
different instruments in popular music make the retrieval of
the precise note onsets difficult. [Dix01, MMDK07] give an
overview of empirical evaluations of several beat tracking
approaches.

Recognizing the beat in a given piece of music is crucial
for our analysis. It provides us with necessary information to
find cuts that will not void the usability as a dance track and
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to recognize logical entities in a song at measure level. To be
usable in an audio resynthesis application, a beat tracker has
to fulfill the following tasks:

Analyse and record beat structure: The ability to correctly
follow the beat of a song, as a human would do by tapping in
time with the rhythm up to eighth note level for a good reso-
lution. A transcript of all recognized beats and its respective
positions in the song has to be created.

Determine time signature: The metered time of a song has
to be estimated to group the beats into measures. For popular
music genres, it is typically sufficient to focus on simple time
signatures.

Find measure beginnings: Find the downbeat positions for
correct song segmentation. The down beat marks the begin-
ning of a measure.

Adapt to varying tempo: As some songs may vary in their
tempo, even if unnoticed by the untrained listener, tempo
variations have to be recognized and followed. Adaption to
the tempo is crucial as the recorded beat grid would lose syn-
chronization with the song over time, leading to noticeable
artifacts at the measure boundaries during resynthesis.

After evaluating the performance of various beat trackers,
like BeatRoot [Dix07], beatsync [Che02], BTrack [SDP09],
B-Keeper [RP07], and the tracking components avail-
able for the Sonic Visualizer [CLSB06] software, we se-
lected the [aufTAKT] tempo and beat tracking system by
zplane.development [Zpl13]. It was the only beat tracker able
to reliably track the beat signal in our experiments and has
been field tested by a number of well-known music stage
processing and editing software vendors. [aufTAKT] analy-
ses the input signal for its note onsets by detecting new en-
ergy and frequency components and weights them according
to their perceptual importance. A beat analysis module com-
putes the actual beat position from the onset information,
even if the onsets do not necessarily correspond to the phys-
ical beat locations, determines the time signature, finds the
first down beat of a measure and adapts to varying tempo of
a musical source.

[aufTAKT] has difficulties with material containing time
signature changes, lacking regular beat patterns or featur-
ing other experimental or uncommon musical properties. In
most cases, this is irrelevant to us as we focus on trackable
music for both motion pictures and dance that follows some
assumptions like static time signatures, defined song build-
ing blocks and an approximately steady tempo. Some sound-
tracks used for movie scores may violate these assumptions,
but in many cases, the same audio properties that make a
piece difficult to track for a computer are also less obvious
to a human listener, so that erroneous transition may still go
unnoticed.

0 N/2 N
0

1

Figure 2: Analysis window and its position on a measure
boundary.

4. Audio Analysis on the Measure Level

The beat tracker described in the previous section provides
sample-accurate beat positions and measure boundaries of
the input song. Based on this structural information, we per-
form a self-similarity analysis of measure transitions to find
measure boundaries where a jump to an alternative succes-
sor can be introduced without noticeable artifacts. The gen-
eral concept is to divide an audio source into into a use-
ful sequence of features (x1,x2, ...,xn), compare its elements
pairwise according to some distance function d, and store
the results in a self-similarity matrix Ci, j = d(xi,x j) : i, j ∈
1,2,3, ...,n. This concept was already employed by [EKR87]
for analysis of chaotic systems and was later introduced in
the domain of music analysis for visualization of an audio
recording’s time structure [Foo99]. We compute the self-
similarity via the Bray-Curtis dissimilarity [BC57],

d(u,v) = ∑i |ui− vi|
∑i |ui + vi|

, (1)

as distance function. It is one of the most well-known non-
metric ways of quantifying the difference between data sets
and delivers robust and reliable dissimilarity results through-
out many applications.

As the analysis window for computing measure-boundary
similarity, we employ a Hanning window [BT59] centered at
measure boundaries, Figure 2. The Hanning window, defined
as

w(n) =
1
2

(
1− cos

(
2πn

N−1

))
, (2)

smoothly transitions from one in the center to zero at the bor-
ders. This ensures that the actual jump region—the musical
bar—is weighted most.

For the further enhancement of the cut quality, we take
the human sound perception characteristics into account dur-
ing the similarity analysis phase. The ear has a non-linear
response regarding different sound intensity levels called
loudness that defines the attribution of auditory sensation in
terms of which sounds can be ordered on a scale extending
from quiet to loud. The A-Weighting curve is one of four
loudness perception adjustment curves accounting for dif-
ferent loudness of sound in ascending order, from A used
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Figure 3: Acoustic weighting curves [Lin]: A-weighting
(blue), B (yellow), C (red), D (black).

for normal environments up to D for loud aircraft noise, Fig-
ure 3. It is derived from the 40-phon equal loudness contour
proposed by [FM33] as an approximation of its inversion to
resemble gain.

A( f ) =
122002 · f 4

( f 2 +20.62)( f 2 +122002)

· 1√
( f 2 +107.72)( f 2 +737.92)

(3)

Loudness perception generally is a much more complex
task than just A-Weighting [Ols72], but it delivers a good ap-
proximation sufficient for our application. We therefore ap-
ply the A-Weighting to our analysis window with the same
setup as in the previous section. This accounts for good
results when jumping within vocal parts or parts that dif-
fer in instrumentation but are otherwise harmonically sim-
ilar. Then we compute the amplitude spectra of the length-
equalized measures using a Fast Fourier Transform [CT65].
The logarithmic sound pressure level measured in decibels
is given by

Lp[dB] = 20 · log10
p
p0

.

The A-Weighting curve is now applied to the sound pressure
level,

L[dB(A)] = Lp[dB]+A( f ) ,

and then transformed back into sound pressure,

p̃ = 10
L[dBA]

20 p0 = 10
A( f )
20 · p0 ·10

Lp [dB]
20 = 10

A( f )
20 p .

We now compute the Bray-Curtis distances between pairs of
perceptually weighted analysis windows as described above

input measure

in
pu

tm
ea

su
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Figure 4: Self-similarity matrix Cli−1,li of an isolated song
part. Blue marks regions of high similarity, while regions
of low similarity are indicated in red. Each of the ten best
cut positions, forming the symmetrical secondary diagonals,
only allow advancement or retrogression of exactly eight
measures. Every extension for this specific part requires the
addition of a multiple of eight measures to maintain smooth
transitions.

to obtain a self-similarity matrix of the measure boundaries
of the input song, Figure 4.

5. Resynthesis

The self-similarity matrix provides a measure for the quality
of transitions between any pair of measures in the input au-
dio. In addition, the user provides a constraint matrix that for
each output measure associates a cost for each measure from
the input audio. This matrix can be of very simple structure,
for example, when only time stretching of the audio is re-
quired (Figure 7); it can also be based on part annotations
(Figure 5) or chosen more freely (Figure 8). Together, these
measures describe the quality of any arbitrary sequence of
input measures of the desired length. The goal of the auto-
matic resynthesis step is to find a sequence of input measures
that optimizes this quality.

Previous approaches like the genetic path algorithm intro-
duced by [WM12] expose some flaws regarding runtime and
applicability to our problem definition, as their search space
was much larger due to their employed song segmentation
strategy. Our measure-wise segmentation allows us to em-
ploy a belief propagation algorithm instead. Belief propaga-
tion [YFW03,TF03], first proposed by [Pea82], is a message
passing algorithm performing inference on graphical mod-
els like Markov random fields (MRF) or Bayesian networks
which have been successfully employed in artificial intelli-
gence and information theory. To employ belief propagation
for our scenario, we write down the optimization problem as
the sum of pairwise and separate energy terms,

min
l

∑
i

Cli−1,li +∑
i

Di,li . (4)
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Di,li =



A A A A B B B B C C C C
A 0 1 1 1 1 1 1 1 1 1 1 1
A 0 0 0 0 1 1 1 1 1 1 1 1
B 1 1 1 1 0 0 0 0 1 1 1 1
B 1 1 1 1 0 0 0 0 1 1 1 1
C 1 1 1 1 1 1 1 1 0 0 0 0
C 1 1 1 1 1 1 1 1 1 1 1 0


Figure 5: Constraint matrix representing the user-annotated
structure of the input song (columns, from left to right) and
output song (rows, from top to bottom). To fix a measure at a
certain position, all other measures are penalized in that row
(binary example).

The first term accounts for costs of input measure li after in-
put measure li−1 and corresponds to the self-similarity ma-
trix C computed in Section 4. The second term describes the
cost for input measure li as output measure i and is expressed
by the user as an n×m matrix D, where n is the number of
input measures and m the number of output measures, Fig-
ure 5.

Non-zero elements of D penalize the usage of that specific
measure while zero elements allow it. Begin and end mea-
sures of a logical song part can be fixed to ensure a smooth
transition between them; typically, the first and last measure
of the output will be fixed to the first and last measure of
the input, respectively. Measures of non-adjacent but other-
wise logical equal parts from the input may be allowed for
an output measure.

The matrix D also represents the user-annotated input and
output song structure with the n-th column being the infor-
mation whether the n-th input measure is allowed for the m-
th output measure row, Figure 5. Using this matrix, the user
is able to specify the desired structure if the output song im-
plying its length. In case of simple time stretching or shrink-
ing, the user simply supplies a matrix that describes the de-
sired length constraint by fixing the first and last measure
of the input song and filling the rest with no penalizing en-
tries. Using this approach, a novel soundtrack is generated
according to the user’s constraints.

6. Results

We start out with an estimation of the quality of the tran-
sitions that have been judged optimal by the self-similarity
matrix computation. Due to the subjective nature of music,
the quality has to be judged by a human listener. We assume
that only the fourty best-rated possible transitions will be
chosen by the belief propagation algorithm. Audio snippets
of transitions across the fourty best-rated measure-boundary
pairs were extracted and saved for manual analysis. An expe-
rienced musician then categorized the transitions into three
different quality levels, Table 1. Transitions that show strong

Contemporary Dance Music

+ ◦ −

Slow Waltz 1 40 0 0
Slow Waltz 2 33 7 0
Viennese Waltz 1 35 5 0
Viennese Waltz 2 39 1 0
Quick Step 40 0 0
Samba 36 4 0
Cha cha 37 3 0
Disco Fox 1 40 0 0
Disco Fox 2 40 0 0
Foxtrot 38 2 0
Rumba 38 2 0
Jive 38 0 2

Table 1: Transition quality of 40 best transitions found in
several pieces of contemporary dance music. Cuts rated “+”
were rated unnoticeable, those rated “◦” could be noticed
by an experienced musician, while cuts rated “−” contained
severe artifacts.

internal rhythmic or harmonic mismatches that would be no-
ticeable even to an untrained listener are rated negatively.
Mismatches that account only for slight distraction and are
recognizable only to the experienced listener are rated neu-
tral. A positive rating is assigned to transitions containing no
noticable rhythmic, harmonic or melodic violations. Since
one important use case of our method is the rearrangement
of dance music for choreographies, our song selection fea-
tures a large number of dance styles included in the official
training programme by the ADTV (German Dance Federa-
tion).

Table 1 shows that for most songs, no strong artifacts were
detected. Less severe artifacts were present in more than half
of the songs. This category of artifacts would be acceptable,
for example, in a dance class rehearsal setting. Where su-
perior quality of the result is required, the corresponding
entries in the self-similarity matrix can easily be manually
penalized if noticeable transitions occur in the final result.

After the self-similarity matrix has been computed, the
user supplies a measure-wise annotation of the input song
structure and the desired target arrangement. The optimal
output soundtrack can then be computed in less than a sec-
ond. Our algorithm produces a novel song of the specified
number of measures by means of the automatically gen-
erated self-similarity matrix. Modifications that violate the
musical structure of the source can be created but decrease
the quality of the target, as low quality cuts have to be cho-
sen. In this case, a jump is forced with respect to the locally
best cut points within a certain song part. When the user re-
quests a defined part like a verse or chorus to be extended by
very few measures to fit their application, a transition may be
noticeable by the listener due to the lack of highest quality
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Figure 6: Self-similarity matrix of the song Partyfreunde by
Dave Sünti. The forty best cut positions are shown as the
symmetrical blue secondary diagonals and single blue spots.
Their distances to the main-diagonal account for the scaling
factors. Again, blue and red mark regions of high and low
similarity, respectively.

cuts to allow the insertion of such a short segment. In most
cases the local maxima within a song part lie a number of
measures apart, so the user may want to take into account the
minimum extension length a part requires to be seamlessly
enlarged (Figure 4). This trade-off between desired measure
number, that is song length, and highest transition accuracy
cannot be eliminated by our approach as it would require
further manual sound-technical processing and modification
of the input song.

The following example gives an overview of the resyn-
thesis process. Figure 6 shows the self-similarity matrix of
an input song. Since our previous evaluation has shown that
typically, the forty best transitions are equally acceptable,
they have been set to zero to avoid repeatedly choosing the
best transition over equally good ones, which would result
in unnecessary loops in the output. Its now the users’ turn
to supply an input annotations matrix, with columns repre-
senting the input song structure from left to right and rows
representing for the output structure from bottom to top. In
the simplest case, no input structure annotation has to be pro-
vided leading to an almost zero matrix that is framed by ones
to fix the first and last measure, Figure 7. In our example,
we provided a song annotation to fix the position of certain
parts to create music for a simple discofox choreography,
Figure 8.

Beginning at the start of the input song, we requested to



0 1 1 · · · 1 1 1
0 0 0 · · · 0 0 0

0 0
. . . 0 0

...
...

. . .
...

...

0 0
. . . 0 0

0 0 0 · · · 0 0 0
1 1 1 · · · 1 1 0


Figure 7: Constraint matrix representing only input and out-
put song length for simple time scaling. The first and last
output measures are fixed while the others are freely selected
by the algorithm.

line up the intro and interlude part to be followed by some
verse part, two times the length of one original verse, that
may be taken from any of the input verse parts. After the
verse part, we would like to have an instrumental bridge part
lined up. The bridge part is then to be followed again by a
verse in its original length but this time only material from
the first and second one is permitted. As the last part we
request a one-and-a-half sized variation of the chorus with
outro parts, including material from the other part of the
same variation that slightly differs in its sound atmosphere.
Together with the transition cost information provided by the
self-similarity matrix, the constraint matrix is then used by
the belief propagation algorithm to compute an output suc-
cession of measures to assemble the target song (Figure 8,
marked measures).

Audio files and additional resynthesis examples are pre-
sented in the supplementary material.

7. Conclusion, Discussion and Future Work

We proposed a novel audio resynthesis approach based on
the rhythmical structure of an audio source. It comprises the
detection of appropriate transitions between different posi-
tions in a song and a belief propagation resynthesis algo-
rithm that rearranges parts of the song according to the tran-
sition qualities and additional user constraints. Our method
employs beat tracking and perceptual weighting to respect
the musical meter and the human perception. We use an ad-
vanced beat tracker to decompose the input audio not only
into beats but into semantically meaningful measures. This
not only ensures the rhythmical continuity of the output
but also leads to a great reduction of search space, as now
only defined transitions—the measure boundaries—have to
be considered as jump positions in the musical source.

While our algorithm produces many very good results, the
quality of the cut points search is limited by the beat tracking
preprocessing step. With only a few jumps left that a trained
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Figure 8: Constraint matrix for the song Partyfreunde by
Dave Sünti, with input measures on the horizontal axis and
output measures increasing from bottom to top. Green in-
dicates the user-specified allowed regions (zero cost), red
marks regions with a constant higher cost. The colored bars
along the axes indicate the user-supplied semantic segmen-
tation of the song (light and dark blue: chorus and variation,
yellow: interlude, green: verse, red: bridge). The marked
measures constitute the final result. Note how all user con-
straints are fulfilled.

listener would notice, we achieve an overall system perfor-
mance that allows to be employed in the field. Advances in
beat tracking may broaden the usage of this approach to a
wider variety of musical genres like experimental or avant-
garde as well as stabilize results on existing genres known to
work rather well.

In our approach, constraints can be specified in the form
of song-part annotations so that song parts may be removed,
scaled or shifted around. In western popular music, the
lengths of song parts are often small multiples of a fixed
number of measures. In that case, acceptable transitions may
not be available for all user-specified sets of constraints. In
future work, we would like to provide interactive feedback
on such potential problems during input of constraints, in-
cluding appropriate suggestions about how the problems can
be circumvented, e.g., by making the part lengths in the out-
put a multiple of those in the input.

In the future, automatic recognition of musical structure
[PMK10] could be employed to simplify the annotation pro-
cess and to provide a more intuitive interface to our algo-
rithm. Music structure analysis is still an active area of re-
serch, but even today existing methods may give an initial
hint about a song’s part distribution. Combined with our
analysis and resynthesis algorithm, such methods could pro-
vide a valuable tool to aid video editors, dance choreogra-

phers and other content producers alike to produce music
scaled to their desires.
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