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Abstract
A major issue in multispectral data analysis stems from the concept of spectral mixture analysis, i.e. the fact that
a pixel does not cover only one material but corresponds to a mixture of materials. Even though many automatic
methods for spectral unmixing exist, in many practical applications, domain experts have to verify the result and
sometimes have to manually adjust the set of determined materials to achieve proper spectral reconstructions.
In this paper, we propose an approach to enhance the very tedious and time-consuming task of manual verifica-
tion of the unmixing and optional refinement of the materials. Our visual analysis approach comprises different
techniques for an expressive spectral error visualization, efficiently guiding the user towards spectra in the dataset
which are potentially missing materials. Here, combined views allow comprehensive, local and global error in-
spections in parallel. We present results of our proposed approach for two domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous— I.4.m
[Image Processing and Computer Vision]: Miscellaneous—

1. Introduction

Multi- and hyperspectral imaging have been applied in
the context of various applications on both macroscopic,
e.g. remote sensing, and microscopic scales like Raman
spectroscopy. Recent technological advances in spectral
imaging, like the development of low-cost and compact
multispectral imaging cameras [HKW12] or 3D scanning
systems that incorporate hyperspectral imaging [KHK∗12],
show the popularity of this imaging technique. In the fol-
lowing, for the sake of simplicity, multi- and hyperspectral
image data are referred to as multispectral data.

In general, multispectral imaging yields three-
dimensional datasets, with two spatial dimensions rep-
resenting the surface position and one spectral dimension
that represents the spectral distribution, allowing for a very
deep investigation of scene characteristics. Thus, each pixel
(x,y) in the multispectral image does not provide only
grayscale or color information but in fact has associated
a spectrum, i.e. n-dimensional vector ~s(x,y) of values
with each value ~s(x,y,λ ) being the measurement of the
reflectance for a specific spectral band λ . Based on this,
one can differentiate materials not only on color but also on
spectral properties beyond the visible range.

Due to the diversity and growing number of application

domains, there is a high demand for efficient generic
data analysis and visualization methods for spectral data.
Such approaches should enable a user to get access to the
relevant information, e.g. constituent spectra, i.e. materials,
within the clutter of high-dimensionality. One prominent
analysis concept is the technique of linear spectral unmixing
(LSU) [BDPD∗12, Kes03, PZPM10] that is applied in vari-
ous applications, e.g. remote sensing [PZPM10]. LSU has
been a very active research field in recent years [JMP12].
The general approach is to express all individual spec-
tra in the dataset by convex combination of constituent
spectra of the dataset, so-called endmembers. Per pixel
coefficients of the endmembers are calculated using inverse
operations [Kes03]. Alternatively, the process can be seen
as compressing the spectral data, with minimal loss of
application specific information.

However, the quality of the final result, i.e. the residual
error between the raw and the reconstructed data, strongly
depends on the selected endmembers and automatic
endmember extraction algorithms can fail to determine
a complete set of endmembers [LBK12]. Moreover, one
of the most profound source of error in LSU lies in the
lack of the ability to account for sufficient temporal and
spatial spectral variability, e.g. see Fig. 5 [SATC11]. Thus,
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Figure 1: A typical distance image that expresses the quality
of a LSU-result and which can be used as basis for a refine-
ment of an endmember set is shown (left) and is compared to
the proposed contributions of our approach (right). Distinct
residual errors are easier distinguishable with our color sig-
natures (a), which can be combined with common distance
images and then are called colored distance metrics (b). Ad-
ditionally, our spectral error classification (c) discriminates
pixel in terms of missing endmembers (red), variability er-
rors (blue) and neglectable deviations (green).

manual intervention can be mandatory in many applications
to improve the unmixing, leading to the requirement of
efficient user guidance and visual exploration methods.
For example to identify missing endmember candidates,
i.e. missing materials, that have high potential to improve
the quality of the unmixing. Evaluating the reconstruction
quality always incorporates n-dimensional distance metrics
(cf. Tab. 1) [JMP12, PZPM10], leading to a single scalar
error value per pixel. This mapping results in severe
information loss, since different spectral errors may lead to
the same, i.e. ambiguous, scalar error. Even worse, different
metrics can lead to different quality impressions. Manual
inspection of individual spectral residual errors, on the other
hand, is extremely time-consuming and does not provide
global information about the distribution of spectral errors.

In this paper, we propose a novel visual analysis approach
to enhance LSU-results by expressive spectral error visual-
ization to efficiently guide a user to specific spectra for local
exploration. In detail, our contributions are as follows:

• We present a qualitative coloring scheme, called color sig-
natures, to easier differentiate distinct errors by visually
grouping in a global sense. Colored distance metrics, the
combination of color signatures and typical distance im-
ages, are used to reduce the ambiguity of scalar error val-
ues, see Fig. 1 (a, b).
The colored distance metrics also can be interactively
modified by the design of transfer functions to freely high-
light or determine error regions of interest.

• A spectral error classification is proposed to mainly pro-
vide the distinction between errors caused by endmember
variability or by missing endmember, see Fig. 1 (c).

The remainder of this paper is organized as follows. Sec. 2
presents a brief overview of the related work and introduces
relevant aspects of linear spectral unmixing. Before the de-
tails of our contributions are discussed in Sec. 4, the Sec. 3
gives a conceptional overview of the proposed approach.
The principle of the interactive exploration is elucidated in

Sec. 5. Sec 6 presents results by usage examples for two dif-
ferent domains. Finally we conclude this paper in Sec. 7.

2. Related Work

Multispectral data exploration must deal with the com-
plexity of multispectral data, i.e. high spatial resolution
and spectral density. Visual exploration of high-dimensional
data in general involves mapping to lower dimensional vi-
sual representations, e.g. by scatterplots or parallel coordi-
nates. Here, the major challenge of an analyst is the iden-
tification of insightful mappings, which best possible show
phenomena contained in the data, like clusters or correla-
tions [TAE∗11]. Beside the challenge of high dimensional-
ity, the variety of application domains introduce the need
for generic processing tools to gain insights to any multi-
spectral data. Software is mainly available for processing
multispectral datasets in the field of remote sensing, like
the popular tool MultiSpec [BL02]. Recently Jordan and
Angelopoulou [JA10] presented their more universal open-
source software Gerbil. Gerbil is highly interactive with
combined viewports, e.g. parallel coordinates, and focuses
on the analysis of scene reflections and exploration of the
relationship between spectral as well as topological infor-
mation. Also, the work of [CRHW09] and [KZD∗10] uti-
lizes user-interaction as a key feature to analyze application
related multispectral data. The approach proposed here also
is a user driven exploration approach. But, in contrast to all
mentioned approaches, we focus on linear spectral unmixing
to analyze and express the compositions of all pixels.
Linear spectral unmixing (LSU) is a popular approach
in multispectral data analysis to explore subpixel details
[Kes03], which usually consists of two steps (please also see
Fig. 2):

1. Endmember Extraction: This step identifies the set V =
{~v1, . . . ,~vq} of constituent spectra (endmembers), where
q is the number of endmembers.

2. Computation of Abundances: Each spectrum~s(x,y) of the
dataset is expressed as a linear combination with respect
to V , assuming a linear superposition of the endmembers
in each pixel, i.e.

~s(x,y) =
q

∑
j=1

α j(x,y) ·~v j +~n(x,y) (1)

with
q

∑
j=1

α j(x,y) = 1, 0≤ α j(x,y)≤ 1,

where α j are the abundances and~n(x,y) is a noise vector
of the current pixel (x,y).

In Eq. (1), typically the abundance non-negativity constraint
(ANC) and the abundance sum-to-one constraint (ASC) are
enforced to ensure physical plausibility. In this case the
LSU is called fully constrained LSU (FCLSU). When only
ANC is enforced, then we call it non-negative constrained
LSU (NCLSU). Based on Eq. (1), inverse operations, e.g.
[SMPC10], are applied to compute the coefficients α j.
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Plaza et al. [PZPM10] state that good reconstruction in
FCLSU relies on the correct identification of the endmem-
ber set. But the determination of a proper set of endmem-
bers is the hardest and most crucial part of the unmixing
problem [Kes03]. Here, the proposed method of Chang and
Du [CD04] maybe is a helpful preprocess to initially esti-
mate the number of endmembers that are present in the data,
but the results strongly depend on the signal to noise ra-
tio of the data. Endmember extraction algorithms usually
search for the extreme spectra in a dataset. This process
can also be seen as identifying spectra which generate the
convex hull of all spectra in the whole dataset. Common
extraction algorithms are for instance the Pixel Purity In-
dex (PPI) [BKG95], Automated Morphological Endmember
Extraction (AMEE) [PMPP02] or the Orthogonal Subspace
Projection (OSP) [HC94]. Many more algorithms can be
found in the literature, please refer to [BDPD∗12, PZPM10]
for an overview.

Since these algorithms typically only extract a single stan-
dard endmember spectrum for each endmember class, they
usually do not incorporate the spectral variability within an
endmember class (see Fig. 5), which has been identified as
one of the most profound sources of error in the estimation
of abundances [SZPA12]. The recent literature presents solu-
tions to improve the abundance estimation, e.g. the multiple
endmember spectral mixture analysis (MESMA) [RGC∗98]
algorithm, please see the review of Somers et al. [SATC11]
for further approaches and details. However, the premise of
these solutions is the availability of a spectral library that
allows the modeling of the endmembers variability, thus in-
troducing limitations when measurements are not available
or incomplete [SZPA12]. Furthermore, experimental results
comparing different endmember variability reduction tech-
niques are very scarce and this makes it hard to identify the
most robust and most effective technique to build an under-
standing of how to match application and endmember reduc-
tion strategies [SATC11].
Spectral error evaluation can be done by comparing the re-
sults to accurate ground truth references, when available. But
typically the accuracy of LSU is mainly quantified based on
the fit between the reconstructed data SLSU , obtained by us-
ing Eq. (1), and the raw data SRAW [SATC11]. Here, several
metrics (cf. Table 1) can be applied to evaluate the quality
by pairwise computation of the distances between~sRAW (x,y)

Metric Formula

Spectral Angle Distance (SAD) SAD(~x,~y) = arccos
(

〈~x,~y〉
‖~x‖2‖~y‖2

)
Spectral Gradient Angle (SGA) SGA(~x,~y) = SAD

(
SGx ,SGy

)
with SGx = (x2− x1,x3− x2 , . . . ,xn− xn−1),
SGy analog

Normalized Euclidean Distance (NED) NED(~x,~y) =
∥∥∥ ~x
‖~x‖2

− ~y
‖~y‖2

∥∥∥
2

Root Mean Square Deviation (RMSD) RMSD(~x,~y) = 1
n

n
∑

i=1

[
(~xi−~yi)

2
] 1

2

Table 1: Distance metrics applied to two n-dimensional
spectra (vectors)~x and~y.

and ~sLSU (x,y) for each pixel, resulting in a distance image,
which may suffer from the ambiguity of distance values.
Only a few approaches exist in the literature that are aim-
ing the evaluation of spectral unmixing quality in a compre-
hensive way. Recently, Jimenez et al. [JMP12] developed a
comprehensive tool, called HyperMix, that allows perform-
ing all steps of the spectral unmixing chain and doing quanti-
tative comparison of algorithms, e.g. AMEE or OSP. Result
analysis is done by using several distance metrics. Labitzke
et al. [LBK12] have shown that visual analysis concepts can
be applied meaningfully to approve a determined endmem-
ber set and to interactively refine/correct the set, if necessary.
However, for the error evaluation they also focus on the com-
mon scalar-valued distance metrics.

Both approaches map the spectral residual errors to sin-
gle scalar error values, incorporating a significant loss of in-
formation, and do not allow detailed local (spectral) explo-
rations. In contrast, we propose an enhanced spectral error
visualization using color information, colored distance met-
rics, to express spectral errors and an spectral error clas-
sification scheme. Thus, giving a global (complete data)
impression of the spectral residual error, which allows the
guided identification of pixels with similar error behavior.

3. Overview

Compared to typical spectral visualization and analysis ap-
proaches, the aim of our approach is to verify the quality
of the LSU-result, i.e. the completeness of the endmem-
ber set, and to optimize the set of endmembers in an in-
teractive way, if necessary. Here, it is vital to examine and
understand the influence of each endmember for both, the
complete dataset (global) and also single pixels (local), e.g.
to compare ~sRAW (x,y) and ~sLSU (x,y). Beside the quality-
verification, our approach also allows the exploration of the
LSU-result to facilitate the knowledge gathering process of
previously unknown data, e.g. by exploring the distribution
or the influence of endmembers in mixed spectra.

A conceptual overview of our approach is depicted in
Fig. 2. Starting from a LSU-result, that has been determined
by the typical LSU, the exploration process is driven by lo-
cal and global visualizations. While the applied local visu-
alizations allow the detailed examination of the reconstruc-
tion quality and the composition of a spectrum, the global
views provide visual guidance by expressive spectral error
visualizations to sophisticatedly guide an analyst to pixels
of interest. All visualizations are linked to allow effective
knowledge extraction. If necessary, the set of endmembers
can be refined in a refinement step.

As a simple example, consider a typical LSU-result: Usu-
ally the unmixing quality is proved by applying similarity
measures, which can lead to different quality impressions
and the results can be ambiguous since different spectral er-
rors can lead to same error values (see Sec. 2). Moreover, er-
rors based on endmember variability can lead to conspicuous
distance values. In a typical distance image these distance
values cannot be distinguished from distance values that are
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Figure 2: Conceptual overview of the proposed visual analysis approach. The analysis starts with the typical process of LSU.
In the guided exploration process the global expressive spectral error visualizations sophisticatedly guide an analyst to pixels of
interest for local verification and exploration of the reconstruction quality of a spectrum. All visualizations are linked to allow
effective knowledge extraction. If necessary, the set of endmembers can be instantly refined.

originate from missing endmembers. Therefore, endmem-
ber variability can compromise the detection of endmembers
which are missing completely. In an interactive approach this
at the end would mean, in a worst-case, that an analyst has
to explore all pixels to validate the unmixing result, which
is undesired. In order to encounter these challenges and to
reduce the interaction effort mainly two global expressive
spectral error visualizations are presented.
Colored Distance Metrics enhance the typical distance im-
ages to achieve a visual grouping of pixels with a similar
error behavior. Thus, reduces the ambiguity of distance val-
ues by coloring.
Spectral Error Classification is done to classify pixels in
three terms: neglectable deviations and spectral errors due to
endmember variability or missing endmembers.

Based on these global impressions, the analysts sophis-
ticatedly can identify pixels of interest for comprehensive
local validation.

4. Expressive Spectral Error Visualization

This section describes the details of both proposed global
expressive spectral error visualization methods.

4.1. Colored Distance Metrics
Focusing on typical distance images, the differentiation of
error values is improved by a proposed qualitative coloring
of residual spectral errors, so-called color signatures, to vi-
sually group comparable residues. Thus, reducing ambiguity
scalar values by color. In Fig. 3 (right) we can see a typi-
cal challenge of grayscaled distance images. Because of am-
biguous distance values, distinct residual errors are indistin-
guishable. In contrast, the proposed color signatures allow a
qualitative distinction of the residual errors by their colors.
In order to best possibly express the distinct residual errors
by a color, the variance of the residuals is used to achieve
optimal color distribution and saturation. An enhanced dis-
tance image, where residual errors with same error behavior
are visually grouped, is achieved by weighting a color sig-
nature with a common distance image.

In the following the calculation of the color signatures
is discussed. Based on both, ~sRAW (x,y) and ~sLSU (x,y), the
residual error ~r(x,y) = ~sRAW (x,y)−~sLSU (x,y) and the ab-
solute residuum~rabs(x,y) = |~r(x,y)| are calculated for each

pixel. Then the ~rabs(x,y) is considered as a spectrum and
transformed into a RGB-color. Here, one of our goals is an
intuitive interaction concept. Therefore, we propose a way
for the spectrum transformation, which is intuitive and al-
lows a user to assume a residual characteristic from its color.
Thus, we compute the RGB-values

B =
1

uB

lB

∑
λ=kB

~rabs(x,y,λ ), kB = 1, lB = uB (2)

G =
1

uG

lG

∑
λ=kG

~rabs(x,y,λ ), kG = lB +1, lG = kG +uG (3)

R =
1

uR

lR

∑
λ=kR

~rabs(x,y,λ ), kR = lG +1, lR = kR +uR (4)

by splitting the whole residual spectrum~rabs(x,y) in three
intervals to correspond with the RGB color model. The de-
viations of each interval are summed up and averaged to
achieve the RGB-values. In order to achieve the maximum
brightness, the color values R, G and B are normalized by di-
viding through the maximal component value max(R,G,B).
To achieve the best possible color distribution and saturation
the size of each interval (uR, uG and uB) is selected in the

Figure 3: Based on a synthetic dataset (left), consisting of
five endmembers, the benefit of the colored distance met-
rics is exemplary depicted for two metrics (right). In this ex-
ample, only the centered endmember (EM 5) was selected.
Thus, the four missing endmembers lead to distinct residual
errors. While the residuals are indistinguishable in the typ-
ical grayscale images, they are easily distinguishable in the
color signatures enhanced distance images (combined).
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Figure 4: The error trend view, where the white line is the
average residuum, the green and red line represents the pos-
itive and negative averages of the residues. The dashed white
line represents the local residuum of the current pixel. Here,
the TFs of the color signatures of Fig. 3 are modified.

way that the standard deviations σλ of the spectral bands

σλ =

√√√√ 1
X ·Y

X

∑
x=1

Y

∑
y=1

(~rabs(x,y,λ )−µλ )
2, (5)

where µλ =
1

X ·Y

X

∑
x=1

Y

∑
y=1

~rabs(x,y,λ ) (6)

are consistent in all three intervals

1
3

n

∑
λ=1

σλ ≈
uB

∑
λ=1

σλ ≈
uB+uG+1

∑
λ=uB+1

σλ ≈
uB+uG+uR+1=n

∑
λ=uB+uG+1

σλ . (7)

Here, ~rabs(x,y,λ ) is the residual value of band λ at pixel
(x,y) and X , Y are the spatial resolution.

Based on the color signatures, a user can intuitively esti-
mate from the colors in which of the three intervals the er-
ror occurs, e.g. red color means last third or magenta means
error in the first and third range. Errors in nearly the com-
plete range will lead to white, while a black color will mean,
that the reconstruction error is low in all ranges. The color
signatures are computed for all pixels, leading to an color
signature image that element-wise can be weighted by arbi-
trary distance images, resulting in a colored distance metric,
see Fig. 3 for an example. Since different metrics can lead to
different quality impressions of results, our approach allows
an analyst to simultaneously overview the distance images of
all implemented metrics as well as the color signature image
at the same time allowing an intuitive combination.

Modification of Color Signatures by Transfer Functions
So far the result of the color signatures depends on the
variance-based sizes of the three intervals R, G and B. Some-
times it is desirable to freely highlight or determine residual
error characteristics of interest. Moreover, since light emis-
sion often is not uniform and sensors provide smaller inten-
sity values in the infrared range, an adjusted weighting is
useful to manually compensate such issues.

Based on residual statistics, that illustrate the error trend, a
global view is proposed that allows the interactive design of
transfer functions (TF) to fine-tune the initial intervals of R,
G and B, see Fig. 4. Moreover, color signatures also can be

completely changed, since the number of TFs is not limited
to three. The error trend view shows the current residuum
~r(x,y) as well as several global average residual errors. In
detail, the average residual error~ravg and the average posi-
tive~r +

avg as well as average negative~r −avg residual error

~ravg =
1

X ·Y

X

∑
x=1

Y

∑
y=1

~r(x,y) and (8)

~r +
avg =

1
P +

X

∑
x=1

Y

∑
y=1

~r +(x,y), ~r −avg analog (9)

are included with respect to all pixels, where

~r +(x,y,λ ) = max{~r(x,y,λ ),0} , ~r −(x,y,λ ) analog. (10)

Here, P + and P − are the number of positive and negative
error values, respectively. Furthermore, for each band also
the min- and maximum error value is depicted to show the
maximum variance at the same time. The TFs can be defined
via trapezoids and are related to the bands. Here, the width
and the height of a trapezoid defines the wavelength interval
and the weighting factor, respectively.

4.2. Spectral Error Classification

The main aim of the spectral error classification is to distin-
guish errors introduced by endmember variability from er-
rors due to missing endmembers, to more purposefully guide
an analyst to missing endmembers. Beside missing endmem-
bers, as mentioned in Sec. 2, the endmember variability also
is one of the most profound sources of error in the estima-
tion of abundances [SZPA12]. The reason for this is, that
typically FCLSU is applied to achieve a physically reason-
able result. But, for instance when in a pixel low coefficient
values α j(x,y) < 1 are necessary because of the variabil-
ity and the sum of all coefficients is not the unity, then the
enforced ASC introduces errors in the abundance estima-
tion. An example of this issue is illustrated in Fig. 5 (right),
where an optimal ∑α j(x,y) is 0.72. But, because of the ASC
in FCLSU the individual α j(x,y) are scaled to sum up to
one, which leads to an error that is introduced by the vari-
ability. As can be seen, when only ANC is enforced the re-
constructed spectrum~sLSU (x,y) is comparable to~sRAW (x,y).
This circumstance serves as idea to identify errors based on
endmember variability. In detail the spectral error classifica-
tion is based on two results of LSU, i.e. NCLSU and FCLSU.

Figure 5: Example for the variability in an endmember class
(left). Illustration of the variability based abundance estima-
tion error in FCSLU, in comparison to NCLSU (right).
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Figure 6: Two examples of the proposed spectral error clas-
sification. First, based on the LSU-result already presented
in Fig. 3 (left). Because of low variability errors in the first
example, also a second scenario is depicted for more obvi-
ous illustration of the weighting in SECw (right).

Since the FCLSU-coefficients can be directly obtained from
the NCLSU-coefficients by scaling the coefficients to ful-
fill the ASC, the computational effort is comparable to the
typical FCLSU calculation. Based on both results, two cor-
responding RMSD-values are computed for each pixel

dNC(x,y) = RMSD(~sRAW (x,y),~sNCLSU (x,y)) (11)

dFC(x,y) = RMSD(~sRAW (x,y),~sFCLSU (x,y)). (12)

The two calculated deviation values are used to classify the
type of deviation, neglectable deviation (ND), variability de-
viation (VD) and missing endmember (ME):

sec(x,y) =


ND if 0≤ dNC(x,y), dFC(x,y)< v
VD else if 0≤ dNC(x,y)< v
ME else,

(13)

where v is a user defined quality threshold. When both de-
viation values are smaller than v a pixel is classified as ne-
glectable deviation, while in all other cases dNC(x,y) is used
to distinguish the remaining types of deviations. Applying
sec(x,y) to all pixels generates a classification image SEC,
see Fig. 6 for an example. Moreover, SEC can be weighted
resulting in SECw

secw(x,y) =

sec(x,y) dNC(x,y)
max(dNC(all pixels)) if ND

sec(x,y) f (x,y)
max( f (all pixels)) else

(14)

with f (x,y) = abs

(
1−

q

∑
j=1

α
NC
j (x,y)

)
(15)

to easier discover pixels that have major deviations. Here, q
is again the number of endmembers and for a pixel that is
classified as missing endmember the normalized dNC(x,y) is
used as weighting factor for sec(x,y). In all other cases, the
endmember variability is expressed in secw(x,y) by the dif-
ference between the sum of the coefficients of the endmem-
bers of the NCLSU αNC

j (x,y) and the FCLSU, which is one.
Consider Fig. 6 for an example of this weighting scheme.

5. Interactive Exploration

The graphical user interface of our visual analysis approach
is shown in Fig. 7 and consists of several linked views. Be-

side several 2D data visualizations, e.g. sRGB color repre-
sentation, the global visualizations mainly consists of the
two proposed expressive spectral error visualizations for
global guidance to identify pixels for further local investi-
gations. The local visualizations allow the analysts to ex-
plore the currently selected pixel to validate the reconstruc-
tion, e.g. by exploring the composition of a mixed spectrum.
In the reconstruction and composition views the white line
shows the raw spectrum ~sRAW (x,y) and the blue line/area
represents the reconstruction~sLSU (x,y). The visualization of
the residual error ~r(x,y) helps to overview in which wave-
length ranges errors occur and which quantity they have, if
present. Moreover, the visualization of the endmember set
provides the opportunity to examine the spectral distribution
of all endmembers V at the same time. By this, the ana-
lyst can see how different the distributions are, e.g. to see
if they partly converge or diverge. Here, also the currently
selected spectrum is visualized to see easily which endmem-
ber resembles the current spectrum best. Or the other way
around, to see how distinct the current spectrum is compared
to V . Thus, to see how good it can serve as a new endmem-
ber. The view of the coefficients maps helps to overview in
which region which endmember has influence and to what
extent. Each map is colored in the respective color of the
corresponding endmember, which can be modified.

All visualizations allow zooming into details and are
linked. Thus, zooming or clicking on a pixel in a global view
leads to an direct update in all views. In each global view
the current pixel position is highlighted. The user can visu-
ally explore the LSU-result step-by-step to gain insight. Our
approach also allows the interactive refinement of endmem-
ber sets, in the manner of Labitzke et al. [LBK12], which
has turned out to be a good improvement. Thus, a user can
directly use the perceived knowledge in case of wrong or
incomplete sets to refine the LSU-result, by removal or in-
sertion of an endmember.

6. Results

Before we discuss limitations of our approach, we first
show usage examples for two domains, confocal Raman mi-
croscopy and multispectral scene data.

Figure 7: The graphical user interface, that focuses on sev-
eral linked views: coefficients maps, global spectral error
views and per-pixel views for detailed local investigations.
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Figure 8: The OSP-result for the graphene dataset. Com-
pared to the usual distance images, error values are easier
to distinguish in the proposed colored distance metrics (SGA
images are zoomed in). The quality improvement of interac-
tive refinement is shown by the unmixed images.

6.1. Usage Example

Since, the focus is the validation of LSU-results and not
the endmember detection algorithms itself, we will not con-
centrate on details of the detection process. In the follow-
ing we mainly utilized two common methods, OSP and PPI.
The inverse operation is done by using the implementation
of the image space reconstruction algorithm of Sánchez et
al. [SMPC10].
Graphene: The graphene dataset was acquired by using a
confocal Raman microscope which provides a very high
spectral density, 510 bands, from 322 nm to 870 nm. This
dataset has a spatial resolution of 256× 256 pixels and
contains some imperfections, e.g. peaks because of cosmic
rays, that are quite challenging for automatic algorithms. As
shown in Fig. 8, all distance images present high error val-
ues, especially for the normalized euclidean distance (NED).
While two error regions are already distinguishable in the
distance image of the spectral gradient angle (SGA), the
NED-image reflects a worst-case, where no errors are dis-
tinguishable. The interpretation of both distance images are
improved by the combination with our proposed color sig-
natures. As a result of this, different error regions are get-
ting visible in all colored distance metrics. Also two other
small error parts, see marked areas of SGA, are now notice-
able. By means of our approach, the automatically estimated
set of endmembers (applying OSP) were refined from ten to
only three spectra. The quality improvement is shown in the
comparison of the unmixed images.
Peppers: The peppers dataset provides 31 spectral bands
(400-700 nm), has a spatial resolution of 512× 512 pix-
els and is available as free download from the CAVE mul-
tispectral image database (http://www.cs.columbia.edu/CAVE/
databases/multispectral). This dataset mainly consists of two
red, two green and two yellow peppers. For each color,
one artificial pepper was used. Fig. 9 shows the initial
reconstruction quality for both algorithms, PPI and OSP.
Please note, in both cases the algorithms have not found the
dark background. Thus, we manually added a background-
spectrum in each case to facilitate the upcoming explanation
of the verification process. In both depicted results the dis-
criminability of the error values is improved by the proposed
colored distance metrics. Moreover, the spectral error clas-
sification view supports the analyst in the determination of

missing constituent spectra. Comparing the marked areas of
the OSP-result, it is getting obvious that not all high error
values are missing endmembers. On the one hand, the ma-
genta colored area shows error values that are quite high, but
the reason for this is the endmember variability and not a
missing constituent. On the other hand, the errors in the yel-
low area are due to missing endmembers, which are distin-
guishable in the colored distance metrics. The quality of the
reconstructions, based on the OSP-, PPI- and the refinement,
are illustrated in Fig. 10 by showing the sRGB transformed
reconstructed multispectral datasets. In order to judge the
quality, also the sRGB-image of the raw data is included.

6.2. Limitations

As shown before, the common grayscaled distance images
can be improved with our proposed color signatures to
achieve colored distance metrics. Here, residues are roughly
subdivided into three intervals. It may happen that different
errors can produce comparable colors, when e.g. one error
has deviations in the first part of an interval and another error
has deviations in the second part of the same interval, while
the remaining parts of both errors are comparable. The ana-
lyst can still notice the wavelength range of interest, but can
not distinguish the different errors so easily. Here, the man-
ually modification of the colored distance metrics by TF de-
sign in the error trend view can be used to enhance the anal-
ysis and highlight the affected bands separately. However, a
complete change of TFs may result in a less intuitive color
representation, especially when mixed colors are applied as
representative TF-colors.

7. Conclusion

In this paper, we have presented a visual analysis approach
for interactive exploration, verification and optimization of

Figure 9: Results of OSP and PPI for the peppers data, both
with added background. The interpretation of the results is
facilitated by the two proposed global visualizations, colored
distance metrics and spectral error classification, in terms of
both, easier discriminability of different residual errors and
easier identification of missing endmembers.
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Figure 10: The reconstruction quality is shown by sRGB
transformed datasets of the respective results and the raw
data. As can be seen, mainly the green peppers are not well
represented in the initial results of OSP and PPI. In case of
OSP, also the red peppers are not satisfying reproduced.

spectral unmixing results. Here, two global expressive spec-
tral error visualizations are introduced to efficiently guide
a user to specific spectra for local exploration. Color sig-
natures are used to enhance common distance metrics, so-
called colored distance metrics, to reduce the ambiguity of
distance values by coloring. Furthermore, the color signa-
tures are freely adjustable by the design of transfer func-
tions, based on residual statistics. In addition, the global er-
ror impressions are facilitated by a spectral error classifica-
tion view. All these means help to make correlations visible,
thus guide a user to interesting pixels for detailed local inves-
tigation. Future work will be dedicated to use the proposed
approach to gather new insights about LSU, e.g. to develop
more advanced analytical data processing methods.
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