
Vision, Modeling, and Visualization (2012)
M. Goesele, T. Grosch, B. Preim, H. Theisel, and K. Toennies (Eds.)

Visualizing Dynamic Call Graphs

M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis and D. Weiskopf

Visualization Research Center, University of Stuttgart, Germany

Abstract
Visualizing time-varying call graphs is challenging due to vast amounts of data at many dimensions to be dis-
played: Hierarchically organized vertices with attributes, directed or undirected edges with weights, and time.
In this paper, we introduce a novel overview representation that shows dynamic graphs as a timeline- and pixel-
based aggregated view targeting the preservation of a viewer’s mental map by encoding the time-varying data into
a static diagram. This view allows comparisons of dynamic call graphs on different levels of hierarchical granu-
larity. Our data extraction and visualization system uses this overview as a starting point for further investigations
by applying existing dynamic graph visualization techniques that show the graph structures and properties more
clearly. These more task-specific visualizations show the dynamic graph data from different perspectives such
as curved node-link diagrams or glyph-based representations combined by linking and brushing. Intermediate
analysis steps can be stored and rebuilt at any time by using corresponding thumbnail representations.

Categories and Subject Descriptors (according to ACM CCS): E.1 [Data]: Data Structures—Graphs and Networks

1. Introduction

The need for visualizing and analyzing time-varying graphs
in general is supported by various application domains.
In social networking, software development, and bioinfor-
matics, e.g., researchers are typically confronted with vast
amounts of graph data that is changing over time and where
the vertices can be hierarchically organized.

An intuitive concept to represent dynamic graphs is by a
natural time-to-time mapping, i.e. by an animated sequence
that shows each graph as a node-link diagram and smoothly
transforms it into the next one in the sequence [FT08,DG02].
The problem that we are facing by using this visual metaphor
is the algorithmic complexity that is needed to produce aes-
thetically pleasing graph layouts with respect to good dy-
namic stability. This again supports viewers to preserve their
mental map in the animation and hence, reduces cognitive
efforts. Animated node-link diagrams are problematic for the
application of interactive features and an attachment of an
additional hierarchical organization of the vertices. Further-
more, from a perceptual point of view, it is hard to compare
graph patterns over longer time intervals and on different
levels of hierarchical granularity.

Another drawback from which node-link diagrams suf-
fer, in particular, is the problem of visual clutter [RLMJ05]
caused by many link crossings. Layout algorithms are

needed to produce readable and understandable graph lay-
outs. If the graph becomes dense, node-link diagrams
are not considered the medium of choice for displaying
graphs [GFC04] and matrix representations might be used.

For this reason, we introduce a timeline- and pixel-based
overview technique in our dynamic call graph extraction and
visualization system that has several benefits:

• The pixel-based representation can be used in an aggre-
gated form that allows good scalability in both vertex and
time dimension.

• The algorithmic complexity is reduced compared to an an-
imated node-link diagram.

• It allows graph comparisons over longer time intervals in
a static diagram.

• Interaction techniques can be applied easily.
• A hierarchical organization of the vertices can be attached

in an aligned way.
• The static pixel-based diagram serves as an overview and

gives the viewer a starting point to inspect the displayed
data in more detail.

In our system, we rely on the Visual Information Seek-
ing Mantra [Shn96]: Overview first, zoom and filter, then
details on demand. An analyst is supported by various ex-
isting visualization techniques for dynamic graphs, whereas
the single views can be combined by linking and brushing.

c© The Eurographics Association 2012.

DOI: 10.2312/PE/VMV/VMV12/207-214

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/VMV/VMV12/207-214


M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis and D. Weiskopf / Visualizing Dynamic Call Graphs

Furthermore, we allow undo and redo functions. Snapshots
of intermediate analysis steps can be stored and are easily
indicated by thumbnail representations.

Our system is divided into two separate components: data
extraction and data visualization. Once data is extracted, it
can be visually analyzed and explored while another data
source is extracted simultaneously. The usefulness of our dy-
namic graph visualization system is illustrated by means of
dynamic call graphs extracted from software archives. Un-
derstanding call relations combined with the hierarchical or-
ganization of complex software systems can give a software
developer many insights and can help uncover problematic
inter-component dependencies. The additional time-series
information can tell when such a specific code coupling oc-
curred or for how long it existed.

2. Related Work

Although the field of graph drawing and graph visualiza-
tion was researched in the past and many graph visualization
tools, techniques, and algorithms for static graph data have
been developed, less progress can be seen in the domain of
dynamic graph visualization. A recent approach has been de-
veloped by Burch et al. [BVB∗11] known as parallel edge
splatting and a more scalable variant using the concept of
Rapid Serial Visual Presentation [BBV∗12]. Each graph of
a sequence is visually encoded in a small vertical stripe. The
vertex set is copied and each copy is placed on the vertical
boundings of the stripe. All vertices follow the same order
which allows one to put the corresponding edges as straight
links in a left-to-right reading direction. The edge coverage
information is used to compute a density field that makes
the link structure visible again. In the work of Brandes and
Corman [BC03], a layered approach is used for showing the
dynamics of a network in a stacked 3D node-link diagram
that suffers from occlusion problems.

The aforementioned concepts are based on the node-
link visual metaphor that typically suffers from visual clut-
ter [RLMJ05] when the graphs become denser. To mitigate
this situation, matrix-like representations have been devel-
oped for static graphs that avoid visual clutter but are not
well suited for solving path-related tasks [GFC04]. These
matrix representations have also been extended to visually
encode dynamic graphs [BBD08]. NodeTrix [HFM07] illus-
trates a hybrid representation combining the benefits of both
worlds, i.e. matrix and node-link diagrams, but it is only im-
plemented for visualizing static graphs.

Apart from techniques using small multiples or stack-
ing, graph animation is also used as an intuitive concept
and as a natural time-to-time mapping instead of a time-
to-space mapping to show the evolution of a graph over
time. Online approaches [FT08], which do not know the
whole graph sequence before the layout phase and offline
approaches [DG02], which can take the entire graph se-
quence into account for a good layout, have been designed.

The general problem for such layout strategies is to keep
the layout as stable as possible over the evolution of the
graph, which is referred to as dynamic stability. This again
supports viewers to preserve their mental map of the dy-
namic graph [MELS95] and to reduce their cognitive efforts.
Animated node-link diagrams still suffer from many prob-
lems [TMB02] even if the graph is laid out with respect to
the formerly mentioned criteria. In the work of Robertson et
al. [RFF∗08] the negative effects of animation in trend visu-
alization are investigated that are also of interest for dynamic
graph visualization.

In this paper, we display the dynamic graph data in a static
matrix-like diagram. To start a data exploration process a
pixel-based overview representation is first provided with
the further goal to scale in both vertex and time dimensions
by using aggregation and overplotting. Edge metrics are vi-
sually encoded by color-coded timeline-based pixel repre-
sentations. We base our data exploration on the Visual Infor-
mation Seeking Mantra [Shn96] and hence, have to provide
a rough overview of the data first.

The usefulness of the novel approach is illustrated by
means of dynamic call graphs extracted from software
archives. A lot of data sleeps unused in software archives
and consequently, various analysis and visualization tools
were developed over the years focusing on the processing
of different types of data: the structure, behavior, and evo-
lution of software [Die07]. SeeSoft [ESS92] is a software
visualization tool from the very first beginning focusing on
line-oriented and metric-based visualization of source code,
but the visualization of dynamic call graphs was not investi-
gated by this pixel-based representation. The same holds for
CVSScan [VTvW05], which uses line-oriented techniques
combined with several metrics to show the evolving source
code and the involved developers.

Ogawa and Ma used an animated version to represent the
dynamic file-developer relationships in their codeswarm vi-
sualization [OM09]. In recent research, they have proposed
evolution storylines [OM10], a static diagram with crossing
color-coded timelines that show the developer activity. Espe-
cially for the visualization of call graph data, the Gevol sys-
tem [CKJ∗03] was developed showing the changing graph
structure and the developer activity by color coding and
fade-out effects. However, it lacks overview for exploring
the dynamic graph data on a comparison-based strategy be-
cause it is based on animation, although the vertex positions
remain fixed over time.

Although some dynamic graph visualization tools exist,
there is no scalable overview representation to this end that
is able to show large dynamic weighted compound digraphs
in a static diagram. This work is a step toward closing this
gap in dynamic graph visualization.

c© The Eurographics Association 2012.

208



M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis and D. Weiskopf / Visualizing Dynamic Call Graphs

3. Preprocessor

The visualization system is composed of two components.
First, an analysis session can be started in which dynamic
graphs and statistical as well as meta data about a user-
defined project are extracted. Second, an already analyzed
project can be selected and the extracted and preprocessed
data can be visually represented to support explorative tasks.

3.1. Data Extraction

The first phase of data extraction is integrated into our vi-
sualization system by means of a plugin that allows for
adding support for new programming languages and types
of graphs or metrics. Currently, our tool has data extraction
modules based on the Phoenix framework from Microsoft
Research [Mic]. Phoenix is an extensible system for reading
and writing native Windows binaries and .NET assemblies
presented in the form of a manipulable intermediate repre-
sentation that can be accessed programmatically. We use the
Phoenix SDK to implement analysis plugins for C#.

When starting a new analysis with the system, the user
must first select a repository plugin, which allows the system
to retrieve a single revision from a source code repository. To
this end we support the analysis of remote and local Subver-
sion archives for which the user must specify the connection
information, i. e. path and user credentials. By providing plu-
gins for additional version archives other than Subversion,
the system is easily extensible. Furthermore, the extraction
can be limited to a specific range of revisions. Otherwise, the
extraction process starts at the very first revision and ends at
the head revision.

The analysis is performed by incrementally retrieving and
compiling each of the revisions and storing the results to
the user-defined location of the analysis project. While the
analysis is running, the currently performed activity and the
overall progress with respect to the selected range of revi-
sions are displayed. At any time during the preprocessing
step, the operation can be canceled and resumed later.

As our call graph generator uses the Phoenix SDK to ex-
tract call graphs for all methods and an inheritance graph for
all classes in each revision, we need a .NET assembly in its
binary form, which is the reason for a compilation step in the
pipeline. As for the repositories, it is possible to provide dif-
ferent kinds of compilation methods for different program-
ming languages by means of the plugin system. For our anal-
yses described below, we use an MSBuild-based compiler
plugin that can process projects used by the Visual Studio
IDE. When the user specifies the project file in the reposi-
tory to be analyzed, any plugin may also prompt for addi-
tional settings like the target configuration to be compiled in
case of the MSBuild plugin.

The actual call graphs and the inheritance hierarchies
are constructed by separate distiller plugins. For construct-
ing the former, we iterate over all function symbols in use

and retrieve the call graphs for them using Phoenix. During
the construction of a call graph, plugins can also compute
metrics that can be used to annotate and weight the edges.
For example, our call graph extraction plugin determines
whether a call spans one or more levels of the namespace
hierarchy, how many parameters the method has, and how
often the call is made, i. e. whether the edge is a multi-edge.

3.2. Data Format

All data extracted by plugins is stored in a custom, file-
and directory-based graph format. The graphs of most revi-
sions are only stored as differences to their previous revision,
which drastically reduces the amount of storage required for
a large time series on the one hand, but also enables the visu-
alization to easily retrieve and display additive and subtrac-
tive graphs that only show the vertices and edges that have
been added or removed from one revision to the next, on the
other hand.

Plugins can use a data access API provided by the tool to
write these graph files, which also serve as means for trans-
ferring data between the pre-processing step and the visual-
ization tool. They can also rely on the system for aggregating
metrics and assigning unique identifiers over all revisions,
which allows for construction of a dynamic graph over time.
While the destillation plugins are responsible for retrieving
a graph per revision, the visualization then displays a series
of those as static visualization of a dynamic graph. The fi-
nalization step that the visualization tool performs after the
plugins have retrieved a graph per revision also includes the
generation of a hierarchy based on the namespaces of the
classes, which is used in the visualization to support naviga-
tion in the graphs.

4. Dynamic Call Graph Visualization

Our visualization techniques are based on static diagrams for
displaying dynamic graphs. The most important feature of a
static representation for time-varying data is the fact that dy-
namic patterns can be explored better and more easily when
inspecting a subsequence of the evolving data on screen.
This stands in contrast to animated representations where
only one image at a time is visually represented to the viewer
and comparisons to other data points of a longer sequence
have to be made in visual working memory [TMB02]. In
this section, we first illustrate the timeline and pixel-based
overview representation that is used by our visualization sys-
tem as a starting point for further data analysis.

4.1. Timeline Representation

Each row of the matrix expresses the time series data of a
specific vertex of the project hierarchy. All vertices are hi-
erarchically organized and the order of the matrix rows is
deduced thereof by using a flat lexicographic order in each

c© The Eurographics Association 2012.

209



M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis and D. Weiskopf / Visualizing Dynamic Call Graphs

subhierarchy in a recursive manner. Each column represents
a specific point in time whereas the time axis starts at the left
hand side and points to the right hand side, resulting in a left-
to-right reading direction of the diagrams. The color-coded
matrix cells either encode the number of incoming or out-
going edges from the corresponding node and point in time.
To achieve a scalable version of such a timeline-based pix-
elmap representation we use aggregation and overplotting
modes in both the vertex and time dimensions and pixel- or
subpixel-based representations. Figure 1 shows an example
of an overview. The hatched columns indicate that the corre-
sponding revisions could not be tranformed into a call graph.

For reasons of good scalability and overview, the diagram
can only depict the time-varying number of incoming or out-
going edges by special color codings, but the actual graph
structure has to be explored by different visual metaphors as
demonstrated in the next sections.

Figure 1: The pixel- and timeline-based matrix view for the
evolving graphs serving as an overview representation.

4.2. Curved Node-Link Diagram

If all graphs in the sequence belong to the class of sparse
graphs, i. e. only a few links are present, node-link diagrams
may be used to show the directed relationships among the
objects. We use one-dimensional vertical lines to position
the graph nodes and a side-by-side representation for a sub-
set of graphs in the sequence. To display the directed graph
edges we use curved links on both sides of each vertical
axis, i. e. upward and downward edges as also applied in the
TimeArcTrees visualization technique [GBD09]. Figure 2
demonstrates the TimeArcTrees approach applied to a small
time-varying directed graph.

The additional hierarchical organization of the graph
nodes can be depicted in two major ways: as a node-link
diagram and as an Indented Pixel Tree Plot [BRW10]. The
node-link tree diagram can be represented as traditional and
orthogonal style.

Figure 2: Dynamic graphs shown as TimeArcTrees

4.3. Radial Space-Filling Diagram

If we have to deal with dense graphs, node-link diagrams are
not useful anymore because of a vast amount of visual clut-
ter [RLMJ05] that is typically caused by many link cross-
ings. Even sophisticated layout algorithms cannot produce
aesthetically pleasing node-link diagrams and moreover, suf-
fer from high runtime complexities causing problems for
smooth interactions. If the graph is not static but evolves over
time, further layout and visualization challenges occur. To
understand the dynamic behavior of time-varying weighted
and directed multi graphs we use the space-filling matrix-
like and radial TimeRadarTrees technique [BD08], see Fig-
ure 3 for an illustrative example. Instead of explicit links, the
relations are visually encoded by color-coded circle sectors
with different shapes, sizes, orientations, i.e. distinguishing
features to explore graph relations. For more details on the
technique we refer to [BD08].

4.4. Source Code Visualization

The visualization tool also supports various details-on-
demand features. The most prominent for software develop-
ment processes is to allow the inspection and comparison of
source code fragments. If a node is selected that corresponds
to a part of the source code, e.g., a class or a method, the
textual information is given in a separate frame.

5. Case Study

The usefulness of our visualization tool is illustrated by
means of an application scenario where the ultimate goal is

c© The Eurographics Association 2012.

210



M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis and D. Weiskopf / Visualizing Dynamic Call Graphs

Figure 3: The TimeRadarTrees technique uses radial dia-
grams to visually encode dynamic graphs.

to derive and demonstrate insights from a large and time-
varying dataset that contains many different types of data.
The analysis process is divided into four stages:

• The data is first extracted from a software archive.
• It is preprocessed and dynamic call graphs are generated.
• The abstract datasets are visually depicted and combined

by interactive features.
• Finally, already analyzed portions of the data can be

stored to further explore it later on.

To demonstrate the usefulness of our tool we analyze the
GraphBox project, which is a library actually used by our
tool for representing graphs. The analyzed project was de-
veloped from November 2010 until October 2011 and con-
tains 5,976 lines of code. The analyzed and displayed part
of the project consists of 358 revisions (starting at revision
400 and ending at 757 inclusively) and 459 hierarchically
organized software artifacts.

Figure 4 shows the graphical user interface (GUI) of our
system with a timeline-based representation for the call rela-
tions of software artifacts of this software project. The GUI
is actually divided into three different views:

• The hierarchical organization is shown at the left hand
side by means of an Indented Pixel Tree Plot that can be
scaled down to pixel- and even subpixel-based size and
clearly reflects the hierarchical structure.

• The timeline view is represented in the center and shows
a color-coded representation of the number of time-
varying call relations, i.e., either incoming or outgoing
calls aligned with the hierarchical structure.

• The graph bar is displayed on the right hand side and can
be used to archive several views that need further investi-
gation as a thumbnail representation for an analysis start-
ing later on.

5.1. Overview First

The visualization tool is built on the Visual Information
Seeking Mantra [Shn96] and hence, we first provide a coarse
overview of the time-varying data. Even in this early analy-
sis stage, we are able to detect some trends by inspecting the
continuous and parallel colored lines. Furthermore, outliers
can be uncovered by exploring the evolving data for short in-
terrupted lines in the horizontal direction meaning that call
relations also occur from time to time and do not exist over
the whole period of the evolution process.

By this static timeline diagram combined with the hier-
archical structure, we are able to easily explore the evolv-
ing graph data in different time intervals. All represented
time series can be compared side by side for similar charac-
teristics, trends, countertrends, periodicities, temporal shifts,
and/or anomalies. Inspecting the timeline representation ver-
tically, one can find some hatched columns expressing that
the corresponding revision could not be used to transform it
into a call graph, maybe because it was not compilable.

5.2. Zoom and Filter

As a next step, by zoom and filtering functions the user
can select a rectangular region from the timeline-based pix-
elmap representation. The selected area is again displayed as
a timeline-based pixelmap. This operation can be executed
several times until the portion of the data is small enough
to allow further and clearer investigation. Furthermore, each
view can be put to the thumbnail list and all of them can be
opened later on to start the exploration of the selected part
from this point. Figure 5 shows the evolving call relations for
the selected class TimeRadarTree of the analyzed project.

Figure 5: A selected region by applying zoom and filtering.

In Figure 5, there is an interruption in one of the timelines
and a details-on-demand request reveals that the method cre-
ateShapes is involved in this phenomenon. By inspecting the
color coding we can find out that the metric value of the met-
ric HierarchyDistance increases for the calls of addHierar-
chyLeaves from revision 481 to revision 482. Furthermore,
a call relation occurs in revision 566 which only remains for
the period of two revisions. Right below this call relation,
another relation starts and remains much longer.

c© The Eurographics Association 2012.

211



M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis and D. Weiskopf / Visualizing Dynamic Call Graphs

Figure 4: The GUI showing an overview for the analyzed and visualized part of the project as a timeline-based pixelmap.

Since this seems to be an interesting insight, we store this
view and append it to the thumbnail view for future explo-
rations. By using details on demand provided by a tooltip we
suggest that this phenomenon is caused by single renamings,
i.e., the starting letter of the method name is capitalized.

After this step, we return to the overview to obtain fur-
ther insights. Now we open the class PixelMap as a zoomed
and filtered timeline representation. A crosshair function
can be used to better follow the focused row and column
in the view. By this function and a details-on-demand re-
quest provided as a mouse tooltip we uncover breaks in the
calls for the methods imageScroller_MouseMove and at the
same time the first occurence of calls of the method effectIm-
age_MouseMove. We suggest that some functionality was
moved to another directory.

The zooming function is used to obtain more details about
this phenomenon. To have a different point of view to the
data we apply the TimeRadarTrees visualization technique
here. The pixelmap representation benefits from good scal-
ability, but only incoming or outgoing call relations can be
explored one after the other and not at the same time. To
fully understand an evolving graph structure we need both
origin and target vertices involved in each relation.

For this reason, we provide various different visualization
techniques that allow easy explorations of the dynamic graph
data on different levels of hierarchical granularity. A Time-
RadarTree can be used if we have to deal with dynamic di-
rected compound graphs with the additional property that the
graphs belong to the class of dense graphs, i. e., many rela-

tions exist that would cause a high degree of visual clutter in
node-link diagrams.

Another feature would be to return to the former view by
selecting the stored thumbnail from the list at the right hand
side of the GUI and have a look at the TimeArcTree repre-
sentation that uses curved node-link diagrams, see Figure 6.

In this figure, we can see that the representative node of
the method effectImage_MouseUp is present in only two
revisions and that it is not existing any longer. But di-
rectly after its existence the node for the method Effect-
Image_MouseUp occurs. By using interactive features and
details-on-demand requests again, the outgoing edges of
both vertices can be highlighted and we can detect that both
have the same set of outgoing edges. Consequently, we can
conclude that the developer of this method first named it the
wrong way, but after some revisions he recognized the bug
and corrected it in the next revision.

To further investigate distinctive features we look at the
provided informations about the analyzed project. For the
call graph, it is shown that the metric MultipleCallsCount
is at a maximum of 54, but the average value for all call
counts is roughly at 1.6, which is somewhat abnormal. We
return again to the overview representation and change the
displayed metric to MultipleCallsCount. After updating the
view we see that the blue maximum value is hard to distin-
guish from the gray colored average values. Instead, we use
a gray-to-red color coding and the outlier becomes obvious,
see Figure 4.

c© The Eurographics Association 2012.

212



M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis and D. Weiskopf / Visualizing Dynamic Call Graphs

Figure 6: A TimeArcTree for inspecting sparse time-varying graph structures by using curved node-link diagrams.

5.3. Details on Demand

To further analyze this phenomenon we first zoom in the cor-
responding region of the overview and then change the time
interval by selecting revisions 692 until 702. A TimeArcTree
is used to inspect the time-varying call relations. We imme-
diately detect the anomalous edge with the abnormally high
metric value by its color and its orientation. In revisions 693
and 701, the edge has disappeared. For this reason, we ag-
gregate this subregion that is not of special interest anymore
and hence, obtain more space for the interesting part.

Furthermore, we switch the representation to a subtractive
graph and we uncover that the edge with this high value is
deleted in revision 693. By switching to the additive graph
we can find out that it is added again in revision 702. By
comparing subtractive and additive graphs we can conjecture
that the project was reverted in revision 702 to the state of the
former revision 692. We base this conjecture on the fact that
in both revisions the same visual edge patterns occur.

By clicking on the node with the outgoing edge in revision
692 and by another clicking on the node of the correspond-
ing edge in revision 702 we can inspect the source code for
this node. By comparing both source code fragments we can
see that both revisions are identical. A software maintainer
may now inspect the code between the subsequent revisions
to uncover why the transformation to a method with fewer
calls has not worked before reimplementation.

This case study covers just a small set of features pro-
vided by our call graph extraction and visualization system.
Explaining all details, views, data types, and interactive fea-
tures of the system would go beyond the scope of this paper.

6. Discussion

There are several issues that are still not solved by our visual-
ization system. The hierarchical organization of the vertices
is represented as a 1D indented plot. The order of the ver-
tices on the line is hierarchical, but we are aware of the fact
that each subhierarchy may be rotated without destroying the
hierarchical organization. To obtain a more scalable variant
of the pixel-based timeline representation for the time di-
mension the GUI might use a scroll bar but also the con-
cept of Rapid Serial Visual Presentation might be integrated.
To better understand the strengths of our system it may be
applied to datasets stemming from different application do-
mains than software development.

In the visualization variant presented in this paper, we
keep the same positions of all vertices in each of the views
in the dynamic graphs because we base our visualization on
the concept of mental map preservation that is best achieved
when the node positions are fixed. This contradicts the con-
cept of graph animation where vertices or vertex groups are
smoothly moving around keeping a high degree of dynamic
stability. We also support added or removed nodes and edges
in our system at a specific point in time. These are repre-
sented as a timeline starting or ending at exactly this point in
time in the view which is also difficult to achieve in animated
graph sequences preserving the mental map. A special color
coding might be used to indicate that the timeline for a node
is starting or ending exactly there.

7. Conclusion and Future Work

We described a system for extracting, generating, visual-
izing, and analyzing time-varying data for dynamic call

c© The Eurographics Association 2012.

213



M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis and D. Weiskopf / Visualizing Dynamic Call Graphs

graphs. The focus of this paper is on illustrating how the sys-
tem can be applied to obtain interesting insights in the evolu-
tion of such call graphs by first providing an overview repre-
sentation. We use a static pixel-based timeline representation
with the goal to have a high degree of dynamic stability and
to preserve a viewer’s mental map. The additional hierarchi-
cal organization of a software system can be attached very
easily to the representation and the viewer can apply inter-
active features to the overview and open additional views to
inspect the data from different perspectives.

We demonstrated a case study where the novel pixel-
based timeline representation can be used as an overview
and starting point of an analysis process. By this overview
representation the user is able to uncover anomalies that
are otherwise hard to find, i.e, without a visualization tool.
We illustrated a small set of supported additional visualiza-
tion techniques such as TimeRadarTrees and TimeArcTrees.
Apart from exploring dynamic call graphs, the tool can also
be used to analyze various other types of data stored in a
software archive. The tool should be extendable for repre-
senting dynamic graphs from different application domains
apart from call graphs extracted from software archives. In
future, we plan to extend the dynamic graph visualization by
a more scalable variant for the time dimension with the goal
to explore and compare longer graph sequences.

Acknowledgment

We would like to thank the team of software engineer-
ing students that developed the Progspector system as
a student project: Leonard Bruder, Christian Buchgraber,
Daniel Exner, Stefan Gerzmann, Robin Goldberg, Miriam
Greis, Jessica Hackländer, Severin Leonhardt, Nils Ro-
drigues, Hansjörg Schmauder, Christoph Schmid, and Ben-
jamin Schmidt. For more on large-scale student projects we
refer to [MRBW12].

References
[BBD08] BURCH M., BECK F., DIEHL S.: Timeline Trees: visu-

alizing sequences of transactions in information hierarchies. In
Proceedings of Advanced Visual Interfaces (2008), pp. 75–82.

[BBV∗12] BECK F., BURCH M., VEHLOW C., DIEHL S.,
WEISKOPF D.: Rapid Serial Visual Presentation in dynamic
graph visualization. In Proceedings of IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (2012).

[BC03] BRANDES U., CORMAN S. R.: Visual unrolling of net-
work evolution and the analysis of dynamic discourse? Informa-
tion Visualization 2, 1 (2003), 40–50.

[BD08] BURCH M., DIEHL S.: TimeRadarTrees: Visualizing dy-
namic compound digraphs. Computer Graphics Forum 27, 3
(2008), 823–830.

[BRW10] BURCH M., RASCHKE M., WEISKOPF D.: Indented
Pixel Tree Plots. In Proceedings of International Symposium on
Visual Computing (2010), pp. 338–349.

[BVB∗11] BURCH M., VEHLOW C., BECK F., DIEHL S.,
WEISKOPF D.: Parallel edge splatting for scalable dynamic

graph visualization. IEEE Transactions on Visualization and
Computer Graphics 17, 12 (2011), 2344–2353.

[CKJ∗03] COLLBERG C., KOBOUROV S., J.NAGRA, PITTS J.,
WAMPLER K.: A system for graph-based visualization of the
evolution of software. In Proceedings of International Sympo-
sium on Software Visualization (2003), pp. 77–86.

[DG02] DIEHL S., GÖRG C.: Graphs, they are changing. In Pro-
ceedings of International Symposium on Graph Drawing (2002),
pp. 23–30.

[Die07] DIEHL S.: Software Visualization - Visualizing the Struc-
ture, Behaviour, and Evolution of Software. Springer, 2007.

[ESS92] EICK S., STEFFEN J., SUMMER E.: Seesoft - a tool for
visualizing line-oriented software statistics. IEEE Transactions
on Software Engineering 18, 11 (1992), 957–968.

[FT08] FRISHMAN Y., TAL A.: Online dynamic graph drawing.
IEEE Transactions on Visualization and Computer Graphics 14,
4 (2008), 727–740.

[GBD09] GREILICH M., BURCH M., DIEHL S.: Visualizing the
evolution of compound digraphs with TimeArcTrees. Computer
Graphics Forum 28, 3 (2009), 975–982.

[GFC04] GHONIEM M., FEKETE J., CASTAGLIOLA P.: A com-
parison of the readability of graphs using node-link and matrix-
based representations. In Proceedings of IEEE Symposium on
Information Visualization (2004), pp. 17–24.

[HFM07] HENRY N., FEKETE J.-D., MCGUFFIN M. J.: Node-
trix: a hybrid visualization of social networks. IEEE Transactions
on Visualization and Computer Graphics 13, 6 (2007), 1302–
1309.

[MELS95] MISUE K., EADES P., LAI W., SUGIYAMA K.: Lay-
out adjustment and the mental map. Journal of Visual Languages
and Computing 6, 2 (1995), 183–210.

[Mic] Microsoft Research, Phoenix Compiler and
Shared Source Common Language Infrastructure,
http://research.microsoft.com.

[MRBW12] MÜLLER C., REINA G., BURCH M., WEISKOPF
D.: Large-scale visualization projects for teaching software en-
gineering. Computer Graphics and Applications 32, 4 (2012),
14–19.

[OM09] OGAWA M., MA K.-L.: code_swarm: A design study in
organic software visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics 15, 6 (2009), 1097–1104.

[OM10] OGAWA M., MA K.-L.: Software evolution storylines.
In Proceedings of International Symposium on Software Visual-
ization (2010), pp. 35–42.

[RFF∗08] ROBERTSON G. G., FERNANDEZ R., FISHER D., LEE
B., STASKO J. T.: Effectiveness of animation in trend visualiza-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 14, 6 (2008), 1325–1332.

[RLMJ05] ROSENHOLTZ R., LI Y., MANSFIELD J., JIN Z.: Fea-
ture congestion: A measure of display clutter. In Proceedings of
SIGCHI Conference on Human Factors in Computing Systems
(2005), pp. 761–770.

[Shn96] SHNEIDERMAN B.: The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings of the
IEEE Symposium on Visual Languages (1996), pp. 336–343.

[TMB02] TVERSKY B., MORRISON J. B., BÉTRANCOURT M.:
Animation: Can it facilitate? International Journal on Human-
Computer Studies 57, 4 (2002), 247–262.

[VTvW05] VOINEA L., TELEA A., VAN WIJK J.: CVSscan: Vi-
sualization of code evolution. In Proceedings of International
Symposium on Software Visualization (2005), pp. 47–56.

c© The Eurographics Association 2012.

214


