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Abstract

In this paper, we describe a method to optimize an orthogonal system of axes for 3D objects in order to per-
form normalization with respect to orientation and scale. An energy function evaluates the quality of a system by
considering symmetry, rectilinearity and the origin of the system within the current axis aligned bounding box.
Starting with the PCA-axes as initial system, we find a canonical coordinate frame by minimizing the energy in
an efficient and elaborate optimization process. We provide a fully automatic normalization pipeline with the pos-
sibility to manually set various intuitive parameters in order to influence the outcome. The symmetry part of our
energy function uses a combination of plane reflective and rotational symmetries. In this context, we introduce
a novel continuous symmetry measure which is entirely implemented on the GPU. The high efficiency of the im-
plementation enables us to find an optimal alignment for 3D objects interactively, making our method suitable
even for large 3D databases. We also demonstrate the applicability of our framework for 3D shape matching by
approximating the Hausdorff distance for 3D models.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Geometric algorithms, languages, and systems

1. Introduction

Normalizing 3D objects with respect to translation, rota-
tion and scaling is an important pre-processing step in many
different tasks such as shape analysis, visualization and
robotics. Many shape matching and retrieval methods, for
example, have to rely on a robust alignment of similar ob-
jects before extracting shape features or measuring similar-
ity [PPPT07, TV04, NK01].

An essential task in order to normalize 3D objects is to
find a canonical coordinate frame for each object (see Fig-
ure 1) and the most common method to do this is the prin-
ciple component analysis (PCA). It uses the barycenter as
center and computes the system of orthogonal axes along
which the variance of the vertices is maximal. Variants of
this method take the triangle areas (CPCA) or the surface
normals (NPCA) into account. However, the simplicity of
the computation opposes the lack of robustness. PCA-axes
are known to be very sensible to small object perturbations
as it is illustrated for example in [FMK∗03, BKS∗05].

In this approach, we introduce an elaborate energy func-

Figure 1: Canonical coordinate frames as returned by our
method.

tion to evaluate the quality of an object’s coordinate frame.
The major parts of the energy function are a measure of
plane reflective and rotational symmetries and a measure of
rectilinearity which evaluates how well the faces of the ob-
ject are aligned with the current axis aligned bounding box
(AABB). A third term, the center energy, is used to control
the origin of the othogonal system. An optimized system is
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then found by minimizing the energy function in the space
of rotations and translations. This optimization process can
be done very efficiently due to the following properties of
the energy function: Firstly, it behaves smooth when the cur-
rent system is translated or rotated, allowing the application
of gradient-based optimization methods. Secondly, a single
evaluation of the energy function takes less than a millisec-
ond due to an efficient GPU-implementation of the symme-
try measure. The contributions of our work are:

- We introduce a novel continuous symmetry measure for
plane reflective and rotational symmetries which can be
implemented entirely on the GPU.

- We propose a hybrid energy function which measures the
quality of a orthogonal coordinate frame for 3D objects
by considering symmetric properties and rectilinearity.

- We present an efficient method to find optimized coor-
dinate frames for 3D objects by minimizing the energy
function in the space of rotations and translations.

The rest of the paper is organized as follows: in Section 2,
we give an insight into previous methods. Section 3 proposes
our continuous symmetry measure and its implementation.
In Section 4, we describe the individual contents of our en-
ergy function while Section 5 deals with the optimization
of this function to determine a canonical coordinate frame.
Finally, Section 6 provides some results and discussion with
respect to 3D object alignment and shows the applicability of
our framework for shape matching and Section 7 concludes
this paper.

2. Related Work

As already mentioned in the introduction, PCA is the most
commonly used method to perform object normalization.
The remainder of this Section summarizes existing methods
which use more elaborate techniques.

2.1. Symmetry-based alignment

In [Fer00], Ferguson found out that symmetry plays an im-
portant role in orientation effects, leading many researchers
to develop alignment algorithms based on symmetry. Ted-
jokusumo and Leow [TL06] use bilateral symmetry planes
(BSP) to normalize the pose of 3D models. They find the
plane with the largest amount of reflective symmetry and de-
fine the first BSP axis to be the direction on this plane along
which the variance of the vertices is greatest. Chaouch and
Verroust-Blondet [CVB09] exploit the properties of PCA
axes to detect plane reflection symmetries and select axes
based on the amount of symmetries. If the object has at most
one reflectional symmetry, they introduce a measure of local
translational invariance in order to find the remaining axes.
While the methods above only deal with the orientation of
the objects, Podolak et al. [PSG∗06] also propose a center
of the canonical system by introducing the center of sym-
metry. They define the three orthogonal alignment axes to

be the normals of the three orthogonal planes with maximal
reflectional symmetry and the center of symmetry to be the
interSection point of these planes.

2.2. Projection-based alignment

The methods in this class find canonical coordinate frames
by considering the orthographic projection areas of the ob-
ject. Johan et al. [JLWI11] take the axis which renders the
minimum projection area as first principal axis and then
search for the minimum projection area along the directions
perpendicular to the first axis. Napoleon and Sahbi [NS10]
define the visual hull as the sum of the projection areas of
three orthographic projections along the axes of an orthogo-
nal system and pick the system out of different PCA-variants
which renders the minimum visual hull for normalization.
Lian et al. [LRS08] define a measure of rectilinearity as the
ratio of the visual hull and the surface area. The maximum of
this measure under all possible orthogonal systems is found
by means of an evolutionary algorithm and the resulting axes
are taken for object alignment.

2.3. Hybrid methods

A method which combines the benefits of different attributes
was proposed by Fu et al. [FCODS08]. The goal of this work
is not to find an entire canonical coordinate frame of the
model, but to detect the plane on which the object would nat-
urally stand upright. To achieve this, they consider attributes
such as static stability, symmetry, parallelism and visibility.

The method we propose in this paper also falls in the cat-
egory of hybrid methods. The focus thereby lies on symme-
try and rectilinearity. While only reflective symmetry was
considered in previous symmetry-based approaches, we also
take rotational symmetries into account and show that they
contribute valuable additional information to improve the
normalization system. However, our objective function is not
restricted to symmetry, but also comprises the rectilinearity.
In this context we use an alternative way to get a measure of
rectilinearity than the one in [LRS08], which is not based on
projection areas but on the distribution of normal vectors.

3. Continuous Symmetry Measure

Measuring global symmetries of an object is a well studied
topic and the principle behind it is to measure the correlation
between the object and an accordingly transformed version
of it. Existing approaches use the extended Gaussian image
[SS97] or volumetric functions [KCD∗02] to measure these
correlations. We propose an efficient method using a pre-
computed distance field and a sample point representation
of the object.
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3.1. Pre-Processing Steps

In order to measure the distance between an object f and
a transformed version f ∗, the distance between each trans-
formed sample of f ∗ and the closest point on f should be
considered. As a distance metric, we use an integer metric
such as the Manhattan distance instead of exact euclidean
distances, which are exhaustive to compute.

The distance field we use is the one proposed in
[MGG11]. An efficient boundary voxelization of the object
is performed and the surrounding voxels are filled with the
discrete distance values in a wavefront scheme using the
Manhattan distance. Figure 2 illustrates a cut through a re-
sulting distance field of a chair model. The dimension of
the voxel-domain is 1283 and the distance field is stored in
a 3D texture, making it accessible form a shader. The fi-
nal part of the pre-processing is to generate uniformly dis-
tributed sample points on the object. If the object is initially
represented as a point cloud, for example from 3D scanner
data, we can skip this step. The distance field computation
from [MGG11] is also capable of processing point data. Fur-
thermore, it is entirely GPU-implemented and the time con-
sume of the process is in the magnitude of 10−3 seconds,
including the voxelization.

Figure 2: Left: insight of a voxelized distance field around a
chair object. The right image shows the sample points of a
rotated version of the object rendered into the distance field.

3.2. Symmetry distance

After the pre-process, we have a voxelized distance field
around the object in the reference pose featuring M differ-
ent distance layers and a representation of f in terms of N
sample points. An approximate distance of a sample point in
f ∗ to the closest point on f can now be obtained by look-
ing up in which of the M distance layers the points lies. The
right image of Figure 2 shows an example. The object was
rotated by 180◦ and the sample points are color-coded to
indicate the distance to the unrotated version of the object.
Let mi be the number of sample points located in distance
layer i , i ∈ [0,M] while a point outside the distance field is
counted to mM . We now define the distance d(T ) between f
and its transformed version f ∗ as follows:

d( f , f ∗) =
M

∑
i=1

i
MN

mi (1)

If f and f ∗ perfectly match each other, all sample points are
located in distance layer 0 and equation 1 correctly returns
the value 0.0. The other extreme occurs when all points of
f ∗ are outside the distance field, returning a distance of 1.0.
In between, the function gives a continuous measure of how
much f and f ∗ match. We can re-formulate equation 1 as
a sum over all 3D sample points pi by introducing a func-
tion l(p)∈ [0..M], which returns the distance layer of a point
p. We also parameterize the distance by the Transformation
Matrix T, which maps f onto f ∗.

d(T ) =
N

∑
i=0

l(T pi)
MN

(2)

In order to measure plane reflective symmetry (PRS), we
set T to the according mirror matrix. In the following, we
will identify a plane through the origin with its normal vec-
tor. Thus, if we say PRS with respect to an axis a, we mean
a reflection at the plane to which a is a normal vector. The
matrix for this reflection is denoted as Pa and the measure
for PRS SPRS(a) is defined as follows:

SPRS(a) =
N

∑
i=0

l(Papi)
MN

(3)

In contrast to PRS, rotational symmetry (RS) is ambigu-
ous since there is an additional parameter in terms of the
order of RS. An object is rotationally symmetric of order n
with respect to an axis a, if it looks the same after a rota-
tion about an angle 2π/n. However, we introduce a function
which considers the best order for each individual sample
point to get a measure which captures different orders of RS
in a single value. The remaining question is which orders
are to be considered. Obviously, every even-ordered RS im-
plies RS of order two, so it would not make sense to take
the orders 2n for n > 1 into account. In case of odd-ordered
RS, we only consider the first two orders (i.e 3 and 5) since
higher orders would imply nearly cyclic RS which is anyway
covered by the other orders. The rotation angles correspond-
ing to the three considered orders 2,3 and 5 are 180◦,120◦

and 72◦ respectively. However, we measure RS of fifth order
with an angle of 144◦ in our implementation since a rotation
of the object with an angle of 72◦ would be too close to the
original pose. Let Ra

j be the rotation matrix which performs
a rotation around axis a with an angle of 2π/ j. We now in-
troduce the symmetry measure for RS SRS(a) with respect to
an axis a as the following equation:

SRS(a) =
N

∑
i=0

1
MN

min
j=2,3,5

l(Ra
j pi) (4)

The measure allows us to detect axes along which the object
has rotational symmetries of different orders. An example is
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provided in Figure 3. While the object does not have a global
RS of a fixed order along the displayed axis, we find at least
one perfect RS for each individual sample point, which we
assigned a color according to the order of RS. The axis is
correctly identified as perfect RS axis by our measure.

Figure 3: Object with different local roational symmetries.
The colors on the right indicate the order of the RS for each
sample point. Red means perfect RS of 2nd order, blue of 3rd
order, cyan of 5th order and green means cyclic RS.

3.3. GPU Implementation

The design of the two symmetry functions from equations 4
and 3 are perfectly suitable for an evaluation on the GPU.
In fact, given an orthogonal system of three axes ai with
i = 1,2,3, we can evaluate all of the six symmetries (one
RS and one PRS for each of the three axes) in a single pass
using the geometry shader. Since we eventually need six out-
put values, we set the render target to a FBO of size 1× 6.
Having pre-computed the voxel-based distance field into a
3D texture, we can access it in the geometry shader so that
the inner parts of the sums in equations 4 and 3 can be en-
tirely evaluated there. This is done six times for each incom-
ing sample point and a vertex, carrying the computed value,
is emitted such that it is rendered into the respective frag-
ment of the 1× 6 render target. The blend stage adds the
computed value for each measure to the value already in the
FBO, eventually producing the required sums.
In our implementation, we use N = 10,000 and M = 10 and
the evaluation of the all six symmetry measures takes less
than 1 millisecond.

4. Energy of an Orthogonal System

We express an orthogonal system as tuple Ω = (c,A) where
c is a 3D Point denoting the origin of the system and A de-
scribes the three orthogonal directions a1, a2 and a3. The
entire energy function E(Ω) consists of three parts, the sym-
metry energy Esym, the rectilinearity energy ER and the cen-
ter energy EC:

E(Ω) = αEsym(Ω)+βER(A)+ γEC(c) (5)

In the following, we describe the individual parts of this
function.

4.1. Symmetry Energy Esym

As can be seen in equation 5, the symmetry part Esym de-
pends on the entire System Ω since rotation axes as well
as reflection planes are not fully defined by an axis alone,
but also by a reference point. Thus, we have to perform a
translation of the object such that c coincides with the ori-
gin before computing the 6 symmetry measures SRS(ai) and
SPRS(ai) for i = 1,2,3. The remaining question is how to
combine these individual measures to a single symmetric en-
ergy value in terms of avoiding potential redundancies. We
therefore consider the fact that a 180◦-rotation around an
axis a is identical to a series of two plane reflections. The
respective planes are orthogonal and contain the axis a. This
implies the following property:
Given an orthogonal system Ω and an object with perfect
plane reflective symmetry with respect to the axis a1, the
180◦-rotation around axis a2 is identical to the plane reflec-
tion with respect to a3 and the plane reflection with respect
to a2 is identical to the 180◦-rotation around a3. Another
fact is that most man-made objects have at least one good
place reflective symmetry which was empirically shown in
[CVB09]. In order to avoid the redundancy of two identical
pairs of measures in our energy function, we use the follow-
ing strategy, which implicitly provides a robust ordering of
the axes.
Let ar be the axis rendering the minimum value for SPRS
over all three axes and let as be the axis with the minimum
value of SRS over the remaining two axes. The symmetric
energy Esym is defined as:

Esym =
λ(SPRS(ar)+SRS(ar))+(1−λ)(SRS(as)+SRS(as))

2
(6)

This strategy avoids the redundancy by only considering one
of the two axes which would have the same sum of SRS and
SPRS in most cases. The parameter λ is introduced to gain
more weight on the significant measures, i.e. the best RS
measure and the best PRS measure of the system Ω. We use
λ = 0.75 in our implementation.

4.2. Rectilinearity Energy ER

The rectilinearity measure for 3D meshes was proposed by
Lian et al. [LRS08] and describes the extent to which a 3D
object is rectilinear. Given three coordinate axes, Lian com-
putes the measure as the ratio between the surface area of
the entire mesh and the sum of the three projected areas ac-
cording to the three coordinate planes. We introduce an al-
ternative and more efficient computation of the amount of
rectilinearity which not only works on polygonal meshes
but also on point clouds. The only demand is that each 3D
point has a normal vector. If no normals are associated to
the points, they can be computed by the method described
in [HDD∗92], for example.

According to [LRS08], a 3D mesh M is rectilinear, if and
only if there is a coordinate system for which the surface
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area of M coincides with the sum of the three projected ar-
eas. We reformulate this definition with respect to the sur-
face normals: A 3D mesh or a 3D point cloud is rectilinear
if and only if each normal vector is aligned with one of the
coordinate axes. As a continuous measure, we take the av-
erage of the dot product of each normal vector and the best
coordinate axis.

R(A) =
1
N

N

∑
i=0

max
j=1,2,3

ni ·aj (7)

If the object is a triangle mesh, we weight each dot prod-
uct with the area of the respective triangle and normalize
the sum by the total area of the mesh rather than by N.
Clearly, a perfectly rectilinear object returns a value of 1.0.
The largest angle which can occur between a vector and the
best of three orthogonal vectors is tan−1√2 ≈ 54.74◦ (i.e.
the angle between the diagonal of a unit cube and one of
the edges). In the worst case, the measure from equation 7
returns cos(54.74) ≈ 0.57. Our rectilinearity energy, just as
the symmetry energy, should contribute 0 in the best case
and 1.0 in the worst case which is achieved by the following
equation:

ER(A) =
1−R(A)

1− cos(tan−1
√

2)
(8)

4.3. Center Energy EC

The rectilinearity energy only depends on A, i.e the direc-
tions of the orthogonal axes of the system Ω. We need addi-
tional constraints for the center c particularly for cases when
ER is the superior part in the total energy function from equa-
tion 5. But also the symmetric energy can sometimes push c
far off the canonical center as can be seen in Figure 6a).
We thus introduce the center energy as the distance between
the system’s center c and the center cBB of the axis aligned
bounding box (AABB), which refers to the three orthogonal
axes of A. We also normalize this value to the range [0,1]
by dividing it by the largest possible distance a point inside
a box can have from it’s center, the half of the diagonal’s
length d.

EC(c) =
2||c− cBB||2

d
(9)

if c is even further away from cBB than d/2, the value is
clamped to 1.0.

5. Optimization of the System Ω

The previous section described how we can measure the
quality of a current orthogonal system Ω. We now aim at
finding the system with the minimum energy.

5.1. Local Minima

The objective function is the energy function from equation
5 and the parameter space for the global optimization is the
6D-space of allowed transformations which include a trans-
lation T and a rotation R. The objective function is contin-
uous and smooth in the space of these transformations and
thus, we can apply gradient-based optimization methods in
order to find local minima. Figure 4 shows the smooth be-
havior of the energy function during a translation and a rota-
tion of the system Ω.
We found, that instead of performing gradient computations
and line searches in the entire 6D domain it is much more
efficient to split the process into two 3D optimizations, one
translation for the center optimization and one rotation for
the optimization of the orientation of the system. The en-
tire local optimization process then employs a flip-flop op-
timization between both sub-processes. Before we deal with
the strategy to find the global minimum, let us describe how
this process can be significantly simplified by reducing the
complexity of the problem during the iterative process.

Figure 4: Plot of the energy function of a translation T along
the green axis (left) and a rotation R around the blue axis
(right). The respective value of the current system is marked
red in the plots.

5.2. Dimension Reduction due to Symmetry

We can reduce the dimension of the optimization process
on-the-fly by considering the individual parts of the sym-
metric energies. As soon as one of the three axes reveals (al-
most) perfect rotational or plane reflective symmetries, we
can mark it as fixed and reduce the subsequent searching do-
main. The exact reduction depends on the kind of symmetry
which is shown in Table 1.
If a PRS was detected, we can reduce the space of transfor-

mations to a rotation around the respective axis and a trans-
lation along the plane spanned by the other two axes, thus
reducing the dimensions from six to three. In case of RS, the
dimensions can even be reduced to two. The choice of the
PCA axes as initial system has a big advantage in terms of
immediate dimension reduction. If an object has a good PRS,
the normal to this plane is an eigenvector of the covariance
matrix and thus, an axis of the PCA-system. This property
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Translation Rotation
PPRS(ak) < ε al,am ak
PRS(ak) < ε ak ak

Table 1: Remaining Translations and Rotations axes after a
symmetry with respect to axis ak was detected in a system of
axes ak,al,am.

was proven in the appendix of [CVB09]. Therefore, the op-
timization will be a 3D problem from the beginning for ob-
jects with a PRS. For objects with no PRS but a RS, such as
the fan from Figure 3, the scenario for dimension reduction
will be reached after the first local minimization.

5.3. Determination of the Canonical System

We now describe the automatic method which finds a canon-
ical coordinate frame by minimizing the energy function.
The optimization process starts by initializing the system
Ω with the PCA-system, so the initial center Point c is the
barycenter and the axes from A are the PCA-axes. Note that
after each step of the algorithm the axes are sorted such that
a2 is always the best PRS-axis and a1 is the best RS-axis out
of the remaining axes.

The first step of the algorithm is a local optimization of
the initial PCA-system with all three parameters α = 1.0,
β = 1.0 and γ = 0.5. The value for γ is set to a lower value
since the bounding box center is sensitive to outliers.

The subsequent step depends on the detected symmetries.

a) If more than one axis reveal RS or PRS, the system is
already optimal.

b) If a1 reveals RS, we find the global minimum of the sys-
tem Ω by two line-searches, one translation along a1 and
one rotation around a1.

c) If a2 reveals PRS, the search domain can be reduced to
three degrees of freedom according to Table 1. The opti-
mal center point c lies somewhere on the plane spanned
by a1 and a3 and the optimal orientation can be at most
a rotation around a2 away. We sample this remaining ro-
tation as well as the translation along the remaining axis
with the least amount of RS and start a local optimization
from the best sample point. This helps us out of a possi-
ble local minimum in which we might have fallen due to
imperfect local symmetries.

d) If no significant symmetry was detected after the first lo-
cal optimization, we automatically decrease the parameter
α in the energy function, giving more weight to the rec-
tilinearity measure, and start another local optimization
with the new parameter set.

6. Results and Discussion

In this section we present some normalization results and
analyze the importance of the individual energies.

6.1. Object Alignment

Our energy function is a combination of different measures
which provides more robustness and can be applied to a
wider range of objects than the use of only one of these mea-
sures alone. In [LRS08] for example, a rectilinearity measure
is used for object alignment (only orientation), which can be
emulated in our framework by setting α and γ in our energy
function (equation 5) to 0. In [PSG∗06], principal symme-
try axes are defined with respect to plane reflections. These
axes can also be computed by our method by setting β and γ

to zero while considering only the PRS for each axis.

Generally, all existing alignment methods based on sym-
metric properties have only applied plane reflective symme-
tries. We found that the additional consideration of rotational
symmetries has a positive effect on the canonical system of
objects with local rotational symmetries. A good example is
the office chair from Figure 5.

Figure 5: Left: Use of PRS only. Middle: Additional consid-
eration of our RS measure. Right: Display of the local RS.
green means cyclic RS, red 2nd order RS and magenta 5th
order.

The object has a global PRS with respect to the green axis.
Since the rectangular-shaped backrest is significantly larger
than the seat, the other mirror planes are aligned such that
they capture the local PRS at the backrest. However, the ob-
ject has a strong local rotational symmetry due to the square-
shaped seat and the 5-fold rotational symmetric legs. Our
method is able to detect this major RS axis since it is capa-
ble of determining hybrid RS as we have described in Sec-
tion 3.2. In the following, we describe the benefits of each
component of our energy function and fortify them by ex-
amples.

The importance of the center energy SC was already men-
tioned in Section 4.3. Since the rectilinearity measure is in-
dependent of the center c, only the symmetric energy would
be responsible to optimize c if there was no additional center
energy. In that case, the resulting center might be highly un-
satisfying if strong local symmetries are located at the outer
regions of an object. Part a) of Figure 6 shows two exam-
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ples as well as the corresponding improved alignments with
enabled center energy SC.

Figure 6: Benefits of the individual parts of the energy func-
tion. The respective object on the right shows the canonical
system of our hybrid method. The one on the left respectively
shows the system with a) no center energy b) no rectilinear-
ity energy c) no symmetry energy

Figure 6 b) shows examples which demonstrate the impor-
tance of the rectilinearity measure. Sometimes, local sym-
metries can lead to unnatural alignment axes which can be
detected by a high rectilinearity energy ER. In case of the
gun from Figure 6, for example, the handle partly maps onto
the barrel under a plane reflection with respect to the blue
axis in the left version. However, due to the high amount of
ER (and EC) of this system, our method proposes the axes
shown in the version to the right.

In Figure 6c), we see examples where the rectilinearity
measure alone fails to determine good coordinate frames. In
case of the piano, the system is tilted due to the opened cover
which contributes a large amount of normals pointing to a
rather unnatural alignment axis. Generally, the energy ER is
not suitable for round objects since their normals are dis-
tributed rather uniformly along the radial directions. How-
ever, Such objects have a high amount of rotational symme-
try so the symmetric energy Esym robustly leads the coordi-
nate frame to a good canonical system in these cases. Figure
7 shows further alignment results of our method in direct
comparison to the PCA method. We particularly chose ob-
jects for which PCA produces poor results and also demon-
strate the applicability of our alignment scheme for 3D point
data.

The time for an optimization is depending on the amount
of symmetries of the object since significant symmetries lead

to an early reduction of the degrees of freedom as described
in Section 5.3. In the average, our method took 350ms to
optimize the coordinate frame of an object of the Princeton
Shape Benchmark on an Intel Core i7 with an Nvidia GTX
485. The maximum time we measured for a single object
was 1.1 seconds.

6.2. Shape Matching

Our framework is capable of performing shape matching by
approximating the Hausdorff-distance of two objects in a
very efficient way, using the distance-field-based compare
function from Section 3.2. While we applied this function
on a model and a translated version of it in order to measure
symmetry during the optimization process of the orthogonal
system Ω, we can as well apply it on two different models af-
ter they have been perfectly aligned with our normalization
method. In that case, however, the function is not commu-
tative. We have to compute the distance field for one object
and render a point cloud version of the other into it, and vice
versa. The resulting distance between the two objects is the
maximum of both measures, which is nothing else but the
Hausdorff distance, approximated by the Manahattan metric
instead of using exact euclidean distances. Due to the fact
that both, the distance field computation and the actual dis-
tance evaluation for each sample point are implemented on
the GPU, the evaluation of the approximated Hausdorff dis-
tance can be performed in real time. Figure 8 shows exam-
ples of the Hausdorff measure for similar objects.

Figure 8: Hausdorff distance of different guitars-objects us-
ing our method. The relative similarities are well reflected
by the computed distances.

7. Conclusion

We presented a method to determine a canonical coordinate
frame of 3D polygonal meshes and point clouds which is
based on the minimization of a hybrid energy function. This
function combines symmetric properties and rectilinearity
and we have shown, that the combination provides more ro-
bustness and flexibility than one measure alone. We also in-
troduced a novel continuous symmetry measure which is ca-
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Figure 7: Alignment results of our method with polygonal data and point data compared to the corresponding PCA-alignment.

pable of measuring rotational symmetries of different orders
along a specific axis. An efficient GPU-implementation of
this measure allows us to measure symmetries in real-time.
The minimization process of the energy function starts by
initializing the coordinate frame with the PCA axes and then
performs a series of elaborate steps to find the system with
the lowest energy, exploiting symmetric properties to signif-
icantly reduce the complexity of the process on-the-fly. The
resulting global minimum of the energy function provides a
natural and intuitive coordinate frame for the majority of ob-
jects. It not only delivers canonical orthogonal axes, but also
a consistent object center and can thus be applied to per-
form normalization with respect to translation, rotation and
scale. We further showed how our normalization in combina-
tion with our efficient pose-variant compare function can be
applied to efficiently approximating the Hausdorff distance
between 3D objects.
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