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Abstract

Ultrasound perfusion imaging is a rapid and inexpensive technique which enables observation of a dynamic pro-
cess with high temporal resolution. The image acquisition is disturbed by various motion influences due to the
acquisition procedure and patient motion. To extract valid information about perfusion for quantification and di-
agnostic purposes this influence must be compensated. In this work an approach to account for non-linear motion
using a markov random field (MRF) based optimization scheme for registration is presented. Optimal transforma-
tion parameters are found all at once in a single optimization framework. Spatial and temporal constraints ensure
continuity of a displacement field which is used for image transformation. Simulated datasets with known transfor-
mation fields are used to evaluate the presented method and demonstrate the potential of the system. Experiments
with patient datasets show that superior results could be achieved compared to a pairwise image registration ap-
proach. Furthermore, it is shown that the method is suited to include prior knowledge about the data as the MRF
system is able to model dependencies between the parameters of the optimization process.

Categories and Subject Descriptors (according to ACM CCS): 1.4.3 [Image Processing and Computer Vision]:

Enhancement—Registration

1. Introduction

Acquisition of dynamic medical images is used to measure
functional processes for early detection and diagnosis of dis-
eases and pathologies. As an important part of this, perfu-
sion imaging describes and quantifies the passage of fluids
through blood vessels, the lymphatic system, organs or tis-
sue. Signal acquisition is performed consecutively, depicting
multiple instances of the same region of interest (ROI) over
time, resulting in an additional function dimension ¢. The
spatial domain of the ROI can either be two-dimensional or
three-dimensional leading to 2D+t or 3D+t data.

2D ultrasonography (US) enables immediate and inexpen-
sive examinations with high temporal resolution. It is well
suited for imaging abdominal and thoracic organs. There are
no contraindications and the patient is not exposed to radia-
tion. US is also used for perfusion imaging employing con-
trast agents (CA) [CCA*08]. CA consists of gas-filled micro
bubbles that have a high degree of echogenicity as they in-
crease the US backscatter [PG11]. By acquiring 2D contrast
enhanced US (CEUS) multi-frame sequences, propagation
and contrast uptake after the injection of the CA can be mea-
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sured to assess perfusion kinetics. This is used to delineate
the vascular structure in normal and pathological tissue to
detect tumors or metastases in various organs or to assess
disease activity in Crohn’s disease [KJG*04, N@H*09]. The
perfusion is obtained by extracting and analyzing the perfu-
sion kinetics of the blood in the tissue of interest from the ac-
quired multi-frame data. The acquisition procedure of CEUS
usually produces two parallel image sequences: standard
brightness mode (b-mode) and the measured CA enhance-
ment (Fig. 1a, 1b). CEUS imaging is able to produce a high
temporal resolution (= 10 frames per second) [CCA*08].

During hand-held CEUS examinations the sonographer
normally holds the probe still in a particular position to im-
age a slice of interest during CA administration. However,
significant motion is still present in the data. On the one
hand patient movement (e.g. caused by breathing) affects the
probe position and orientation. On the other hand motion is
induced intrinsically by perfusion, digestion and breathing.

While these motion types can be interpreted by well
trained physicians [RTP*05], in computer-assisted analysis
the different image frames of a time-dependent acquisition
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Figure 1: A representative frame of a CEUS acquisition of a patient with a stenosis of the small bowel due to Crohn’s disease,
showing b-mode data (a) and contrast data (b), the most important regions labeled in (c).

need to be aligned in order to extract valid perfusion param-
eters over time. This motion compensation in medical image
analysis can be achieved by registration [HHHO1].

Research presented in this work will be targeted on the
formulation and implementation to approach this specific
problem with CEUS data. Restrictions and constraints of the
data have to be included as a priori knowledge when solv-
ing the registration problem to compensate for deficiencies
within the data such as noise or small out-of-plane motion.

To compensate homogeneous motion influence within a
predefined ROI linear translations are applied to each image
in the sequence. As most of the image data contains large
parts of soft tissue locally varying motion influence has to be
expected as well. Most applications use free-form deforma-
tions combined with spatial constraints to restrict the motion
to be locally smooth [LCKD*10]. The high temporal resolu-
tion of the data also suggests to temporally constrain trans-
formation. We introduce a markov random field (MRF) for-
mulation which is an excellent method to model these depen-
dencies. We show that the approach is more robust against
noise as a consequence of additional information introduced
by the spatial and temporal smoothness constraints.

2. Related Work

Intra-modal registration of time-dependent data has been
used in different applications. To calculate and analyze the
deformation of the human heart Ledesma-Carbayo et al. pre-
sented a combined spatio-temporal registration procedure
[LCKD*05, LCKD*10]. Similarity of the deformed 2D US
frames was measured by the mean squared distance of all
frames in the temporal sequence to a specified reference
frame. Transformation parameters for B-Splines are found
for all frames simultaneously restricting the parameters to be
continuously smooth over time. This stabilizes the approach
against outliers using prior knowledge in form of anticipated
motion over time through a smoothness constraint. Another

approach uses contour tracking on echocardiographic ultra-
sound images learning motion characteristics from training
data [JNMPB99]. However, this implies that strong contour
information is available and the motion influence is inter-
pretable (e.g. reoccurring regularly) and can be formalized.
Temporally constrained registration has also been used to be
able to quantify dilation of the brachial artery in ultrasound
image sequences by a Kalman filter [FLLO3]. An important
assumption for this is a gradual motion process over time to
be modeled by the linear Kalman filter.

Optimization with MRF has been adapted recently
to solve registration problems with spatial prior terms
[GPK*07,KLY08, SKH08, MS12]. A MRF is an undirected
graph with nodes representing the unknowns of the sys-
tem. Nodes can take labels which express a certain config-
uration. In case of the registration problem this configura-
tion represents the transformation parameters for compen-
sation of motion effects. The configuration with the high-
est probability leads to a low energy at the nodes (de-
noted as singleton energy). Constraints can be included
through edges. Edges combine exactly two nodes evaluat-
ing the probability of the connected nodes configurations
(pairwise/doubleton energy). The overall MRF energy must
be minimized to obtain the global best configuration of the
system [Bes86, GPK*07]. As a specific number of possible
configurations is required, the search space is discretized and
encoded in a label set.

A congeneric problem of registration is optical flow cal-
culation e.g in video data. Glocker et al. introduced a
spatio-temporal framework where temporal continuity is
achieved through edges connecting nodes over time in a
MRF [GPK*08]. Hereby, local uncertainties are compen-
sated through constraining the possible solution space. It was
used to solve the morphing of two images over a specific
number of intermediate steps using cubic B-Splines.

The advantage of MRF-based methods is that prior in-
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formation of the scene, such as smoothness of transforma-
tion parameters, can be specified on a non-object basis. This
makes it suitable for a large class of problems [Li94, KZ04].
Mahapatra et al. combine the registration task with the
knowledge coming from segmentation to determine the elas-
ticity of the transformation parameters for each location in-
dividually [MS12]. Additionally, the discrete search space
allows the efficient computation of all transformation pa-
rameters in a single system without using derivative-driven
objective functions [GPK*08]. MRF-based objective func-
tions can be solved efficiently using graph cut-based ap-
proaches [BLRBO1, BK04, KTPOS].

Perfusion imaging of US data is a temporal sequence of
images which may be disturbed by motion influence stem-
ming from different sources. The CA enhancement as time-
varying signal reveals perfusion which can only be quanti-
fied if correct spatial correspondence of temporal samples is
achieved. The literature does not yet offer adapted methods
for the scenario of automatic motion compensation of CEUS
perfusion images, taking account for the low signal-to-noise
ratio and the huge number of image frames to be registered.

3. Method

To approach the specific problem of motion compensation
in a time dependent 2D CEUS image sequence discrete op-
timization using a MRF is employed. The spatial and tem-
poral resolution of the measured CEUS data induce a depen-
dency of transformation parameters. Corresponding param-
eters belonging to a local neighborhood establish spatial and
temporal continuity. This can be included in the MRF-based
system through edges between parameter nodes constraining
the result of the final transformation parameters.

To avoid registration of 2D frames which do not depict
the same slice (due to out-of-plane motion), temporal re-
gions are defined containing frames with in-plane motion
only and registration is applied to theses regions individu-
ally [SAN™11]. Additionally, the user has to specify a ROI
(Fig. 5a, 5b, 5c) where the motion compensation is applied
to. This ROI is determined in a representative frame of the
sequence and can be applied to the rest of the image frames.
It should not include discontinuities, so that the above as-
sumptions for the spatial and temporal priors will hold.

As a preprocessing step the sequence is linearly registered
(using a single translation vector for each image) with tem-
porally constrained translation to remove global motion in-
fluence beforehand. This step reduces the non-linear regis-
tration task to be targeted on local motion only. As a re-
sult, the search space for the non-linear transformation pa-
rameters can be constrained to a few pixel translation for
each location in the images. If the dataset does not exhibit
global motion beforehand, the similarity term will only pro-
vide weak energies and the temporal constraint ensures con-
tinuity of the translation resulting in zero translation.
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Figure 2: The MRF model represented by a graph with nodes
being assigned a unary potential function ,,, spatial edges
within the image frames and temporal edges between image
frames (both assigned a pairwise potential function yp).

The MRF model in general consists of nodes v; € V and
edges e € £ of an undirected graph G = (V,£). An edge
always connects exactly two nodes e¢ = (v;,v;) € £ with
vi,vj € V. The goal is to find the most probable configu-
ration of random variables X within the system. This is de-
termined by the probability of the random variables x; € X
at respective nodes v; at all cliques in the graph. The differ-
ent types of cliques are defined by the neighborhood system
N. The Hammersley-Clifford theorem [Bes86] stipulates the
random variables X to be a MRF with respect to a neighbor-
hood N if and only if the probability distribution of P(X) is
a Gibbs distribution:

P(X)=2""xe V), ey

Z is a normalizing constant and U(X’) is the energy de-
fined by the sum of all different clique potentials depending
on N. In image analysis and computer vision the problem
is often regarded as an energy minimization (according to
the terminology of similar problems) using a neighborhood
of pairwise interaction only (clique number of 2 given by
Von Neumann neighborhood). Nodes are assigned an unary
potential function y,(-) and edges are assigned a pairwise
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potential function W, (-,-) (Fig. 2). The global energy of the
MREF is defined by the sum of both potentials

Eglobal = Z WM(VI') + Z WP(VﬁVj) 2
vieV e=(vi,vj)EE

and must be minimized in order to find the best solution
according to the constraints made in the system by varying
the labels of the nodes in the MRF.

3.1. MREF for registration

For image registration tasks the potential functions are used
to evaluate different transformation parameters for a local
neighborhood of the respective node. Hence, each node v;
in the MRF is assigned a label [; € £ representing a trans-
formation parameter. In our case, this is a translation in 2D
defined by a vector [y = (ty,ty).

In the case of image registration the potential functions are
used to evaluate different transformation parameters with re-
spect to the overall problem. Unary potential functions y,(-)
represent the contribution of the current parameter to the fit-
ting quality in terms of a similarity definition. Edges can
be inserted between two nodes exhibiting a certain depen-
dency or constraint (see Fig. 2). Pairwise potential functions
Wy (+,-) are used to model the dependencies. They evaluate
the probability in terms of an energy value of two neighbor-
ing labels (transformation parameters).

Common choices for similarity calculation are Normal-
ized Correlation and Mean Squared Distance. As both ac-
quired sequences are recorded simultaneously, we use the
images from b-mode to calculate the transformation and then
apply the result to the contrast sequence. In b-mode data the
intensity can be assumed to be at the same level for com-
parison, thus the simpler Mean Squared Distance measure is
used. To obtain reliable information about observed motion
a local area of a 7 x 7 pixel neighborhood M,, around the
pixel of current node v; is used to calculate similarity:

N 2
Wu(vi) My ] V;,W (H(vm) — H (vi)) 3)
H(v) =1 P(V) +L(V)) (3a)
Pv) = (xy) xy€eQ (3b)
L(vi) =l = (Zx,ty) I € L, (3¢c)

where /(-) is the image function contributing the appro-
priate intensity values to given indices. P(-) represents the
corresponding pixel indices in the image space Q and L(-)
represents the current label of given nodes v;.

The formation of the unary potential function is done
through similarity calculation of each frame to a predefined
fixed image frame. This assures best fitting to a fixed basis

‘ U frames

u fixed frame |

imilarity calculation
within unary
potential function

temporal constraints i

J: ~L 1 1

Figure 3: Scheme of the unary energy calculation to a prede-
fined fixed frame.

under the restriction of temporal and spatial smoothness to
the neighbor images both controlled by the pairwise term.
(Fig. 3). As fixed frame of a sequence the frame with max-
imum average similarity to all other frames of the sequence
is chosen [SNGT12]. To evaluate the pairwise potential en-
ergies between labels the Euclidean distance of correspond-
ing translation vectors is calculated. Moreover, the pairwise
energy Yp of the MRF energy term (see Eq. 2) consists of
energies for temporal edges and spatial edges:

\|lp = Wpt+a'\|-’ps (4)
Ypr(viva) = Wps(viva) =d(P(v1),P(v2)),  (5)

with d(-,-) being the Euclidean distance of two pixel coor-
dinates. The weighting parameter o has been set empirically
to two. Varying this parameter has shown to be very robust
towards the quality of the results.

The resulting MRF can be efficiently solved using the
graph-cut based o-expansion algorithm [BKO4]. It reaches
the optimal solution for a two-label problem. The devia-
tion to the optimal solution is bounded for multiple labels
[KTO7].

For the linear registration preprocessing step the MRF re-
duces to a markov chain (MC), as there is only one trans-
formation parameter for each image of the sequence. Spa-
tial continuity is given by default. Thus, nodes in the MC
represent the images and temporal smoothness is achieved
by the edges in the MC connecting neighbor images. This
preprocessing registration reduces the overall motion in the
sequence and, by association, the search space for the non-
linear registration step, where we assume that 5 pixel trans-
lations in each direction are sufficient to correct patient
datasets for motion. This results in 121 possible configura-
tions (labels) per node in the MRF.

4. Results and Evaluation

Results are produced using two different simulated datasets
at different noise levels (Fig. 4, 5) to evaluate the perfor-
mance of the different constraints. Additionally, three patient
datasets containing between 200 and 800 time frames are

(© The Eurographics Association 2012.



S. Schéifer & K. Toennies / Registration of ultrasound sequences 155

() (b) (©)

(d

Figure 4: Simulated dataset 1 with no noise (a), with a SNR level of 3 (b), with a SNR level of 1.5 (c) and a transformed grid
image (d) with no constraints enabled (e) and spatial and temporal constraints used (f) for registration of images with SNR=3.
It can be seen, that the constraint algorithm produces a smoother deformation field which is less susceptible to outliers (f).
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Figure 5: Simulated dataset 2 with no noise (a), with a SNR level of 3 (b), with a SNR level of 1.5 (¢). The polygonal area shows
the region of interest the motion compensation is targeted on. A grid image (d) is transformed with parameters determined with
no constraints enabled (e) and spatial and temporal constraints used (f) for registration of images with SNR=3. Both calculated
deformation fields (e) and (f) produce comparable similarity measures. However, spatially and temporally constraining the

approach leads to smoother and more plausible transformations.

used to produce first results and document the potential of
the presented approach.

The simulated datasets contain five time frames and have
been transformed with a known deformation field. The first
simulated dataset (Fig. 4) shows different objects based on
organic shapes, the second one (Fig. 5) is a single frame ex-

(© The Eurographics Association 2012.

tracted from a b-mode sequence which has been transformed
with a known deformation field. Additive gaussian noise at
different signal-to-noise-ratios (SNR=3 and SNR=1.5, ratio
of signal mean and the standard deviation of the noise) has
been added to both datasets (Fig. 4b, 4c, 5b, 5c). After re-
covering the transformation parameters with our method, the
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average distance to the ground truth parameters can be cal-
culated to measure the performance of the system. The sim-
ulated deformation fields contain parameters of zero transla-
tion. As they have to be recovered correctly by the algorithm
as well they are included in the distance measure. However,
it is more likely to recover zero translation when optimiza-
tion is constrained spatially and temporally. Therefore, the
deviation from ground truth is also calculated for all non-
zero translation parameters in the deformation field.

The evaluation of the motion compensation of simulated
datasets shows that the more prior knowledge is introduced
the better the true deformation field is recaptured. This is
confirmed by both, the average distance of all transforma-
tion parameters in the deformation field and non-zero pa-
rameters in the field (Fig. 6). For both simulated datasets
the method using no constraints, temporal constraints, spa-
tial constraints and both constraints achieves 0.75 pixel, 0.47
pixel, 0.45 pixel and 0.30 pixel average distance to all pa-
rameters of the ground truth deformation, respectively. Re-
garding non-zero parameters average distances of 1.47 pixel,
1.29 pixel, 1.05 pixel and 0.99 pixel are obtained, respec-
tively. For the simulated images without added noise the
method was able to almost reproduce the correct parame-
ters, independent from the used constraints (Fig. 6). This
shows that if the similarity term (unary potential) provides
very reliable information, neither spatial nor temporal con-
straints are necessary. At lower SNR levels the improvement
induced by the constraints is higher as the deficiency of the
data can be compensated by coupling information from the
neighborhood (Fig. 6a-6d). Although the major contribution
originates from the spatial smoothness terms, the temporal
smoothness term enhances the overall accuracy in almost all
cases. For both simulated datasets the improvement aggre-
gates to 0.11 pixel for all parameters and 0.01 pixel consid-
ering non-zero parameters in the deformation field.

Evaluation of patient datasets is performed on three dif-
ferent ROI per dataset in the b-mode and contrast data of
the sequence. These regions are chosen to represent main
areas of interest (e.g. Fig. 1c). First, the standard deviation
within the regions is measured using the b-mode data. As a
result of the registration it should decrease, as different tis-
sue types are aligned and not mixed over a certain amount
of frames. Second, the smoothness of the contrast enhance-
ment signal in contrast data is measured. The smoothness is
defined as the mean absolute difference (MAD) of the signal
over time. This is an indicator of improved contrast data cor-
respondence over the time sequence. Although the signal is
still influenced by noise and speckle, MAD decreases with
improved registration.

The measurements are performed before registration and
after registration with the proposed method. Additionally,
a classic registration approach performing pairwise regis-
tration of the sequences is tested as well for comparison
[SNGT12]. Results of this experiment are shown in Tab. 1

and indicate that the presented method is able to produce
superior results compared to the pairwise frame registration,
which does not solve the problem concurrently by the help of
information from neighboring frames. The MRF-based ap-
proach achieves an overall improvement for the three patient
datasets of 18.1 % compared to 10.6 % of the pairwise image
registration. The curve smoothness also leads to superior re-
sults, 3.2 % compared to 1.5 %. The visual registration qual-
ity could be enhanced by the proposed approach leading to a
smoother appearance of transitions between the time frames.

The patient datasets contain between 300 and 800 frames.
Depending on the number of frames regarded for temporal
registration the calculation time for the process between 20
and 60 minutes on a standard quad core processor system.
This is acceptable considering that the registered data is re-
quired for post-diagnostic analysis.

5. Conclusions and Future Work

In this work an approach for motion compensation of ultra-
sonic image sequences has been presented. The optimization
scheme uses a MRF formulation allowing to include prior
knowledge about the specifics given by the acquisition pro-
cedure to perform image registration. In our case, this is the
spatial and temporal smoothness of the deformation field of
the sequence of images. Optimization is conducted for regis-
tration of all image frames simultaneously and not between
image pairs. Experiments show the influence of the different
constraints of parameters at various noise levels and demon-
strate the robustness against noise influence through incor-
porating prior information in form of spatial and temporal
continuity of the transformation parameters. A performance
improvement compared to pairwise image registration has
been established as well.

The system is suited to incorporate more dependencies
and constraints between its parameters. The variety of ap-
plications for MRF optimization is an example of this flexi-
bility [Li94]. US image sequences have a low signal-to-noise
ratio resulting in poor data quality and artifacts. To improve
the search for correct transformation parameters, intensity
distribution information can be used to generate more sta-
ble features for registration represented by labels [SNGT12].
We want to investigate if this property could be used to im-
prove the results further as the changes of segment labels
over time can be penalized in the MRF optimization scheme.
It induces the configuration of the transformation parameters
to generate better fitting quality in terms of the original data
term (unary potential) and the energy minimization of the
segment labels (pairwise potential). Another starting point
for additional prior information is the use of the contrast se-
quence to improve fitting quality of transformation parame-
ters.

To improve the calculation time of the approach, espe-
cially with regard to the planned extensions, we want to par-
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Figure 6: Performance of the presented approach using two simulated datasets and the spatial and temporal constraints disabled
and enabled. The graphs show the average distance in pixel to the ground truth of all translation vectors of the deformation field
(a, ¢). Additionally, the average distance in pixel to ground truth of all translation vectors # (0, 0) are depicted in (b) and (d). In
general, the distance to ground truth diminishes with constraints. The effect is bigger for datasets with strong noise influence.

allelize the calculation of energies for the MRF optimiza-
tion by using either higher multi-core CPU environments or
a GPGPU implementation.
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