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Abstract

We present a spectral analysis of higher-order texture advection in combination with Back and Forth Error Com-
pensation and Correction (BFECC). Semi-Lagrangian texture advection techniques exhibit high numerical diffu-
sion, which acts as a low-pass filter and tends to smooth out high frequencies. In the spatial domain, numerical
diffusion leads to a loss of details and causes a blurred image. To reduce this effect, higher-order interpolation
methods or BFECC can be employed separately. In this paper, we combine both approaches and analyze the qual-
ity of different compositions of higher-order interpolation schemes with and without BFECC. We employ radial
power spectrum diagrams for different advection times and input textures to evaluate the conservation of the spec-
trum up to fifth-order polynomials. Our evaluation shows that third-order backward advection delivers a good
compromise between quality and computational costs.

1. Introduction

Nowadays advection methods are widely used for flow visu-
alization in different domains, e.g., combustion engine de-
sign, aircraft engineering, or earth sciences. In particular,
advection plays an important role in the popular flow vi-
sualization approach based on semi-Lagrangian advection.
Regardless of the specific method used, the aim is to nu-
merically solve the advection equation so that important fea-
tures, such as edges or the spectrum of the transported im-
age, are conserved. However, due to discretization and inter-
polation, error is introduced while solving the equation. This
can lead to numerical diffusion and consequently to a loss of
the feature properties. Especially, iterative methods that are
efficient for time-dependent flow visualization implicitly im-
plement a low-pass filter.

Our objective is to better understand the quality of tex-
ture advection for flow visualization. In particular, we assess
backward and BFECC strategies as well as their combina-
tion with interpolation of higher-order. To this end, we pro-
pose an evaluation method that uses radial power spectrum
diagrams to compare different time steps of the advection
processes. We also evaluate a new method that combines
higher-order interpolation with the BFECC approach. Fur-
thermore, we investigate the influence of space discretization
by testing different spatial resolutions of the texture.

2. Related Work

A simple method to obtain an impression about the trend
of a flow is to put glyphs, like arrows, into a given image
that show the direction of the flow at their respective posi-
tions. The problem here is the size of the glyphs. The bigger
they are the better they can be recognized, but the level of
detail of the flow that can be illustrated decreases. An alter-
native approach generates a texture that describes the flow
with the needed level of detail. For this purpose, Line Inte-
gral Convolution (LIC) [CL93] was introduced. This method
takes a noise image and filters it along the stream lines of an
underlying vector field. Another technique for texture gen-
eration is Spot Noise [vW91]. Thereby white spots are ran-
domly placed and smeared according to a vector field. Sim-
ilarly, flows can also be visualized by a source that emits
dye, that is then transported by the flow [LTH08, Wei04].
Furthermore, advection methods can be used to imitate high
resolution fluids [Ney03].

Texture advection methods adopt one of the following
computational views. In the Lagrangian view, the compu-
tation area is densely covered with particles that move ac-
cording to a vector field [WSEE05]. In contrast, the Eule-
rian approach adopts a view of stationary locations at which
the change of properties is observed. Typically, those prop-
erties are stored in a static grid, often even a uniform grid
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that covers the domain. Finally, the semi-Lagrangian view
combines the Lagrangian and Eulerian approaches: proper-
ties are stored on a static grid as in the Eulerian approach,
whereas transport is computed by moving positions on the
grid in a Lagrangian manner [vW02, JEH02, WBE05]. This
leads to a transport from time step to time step.

Furthermore, the techniques can be categorized into for-
ward or backward strategies. Forward means that the field is
integrated forward in direction of the field vectors to calcu-
late the new positions of particles [vW02, YNBH11]. Back-
ward integration calculates the previous position from where
properties are transported [MB96, Sta99, JEH02, Wei04]. A
combination of both strategies is also possible [KLLR05,
SFK∗08] to increase the accuracy of the advection.

In this paper, we restrict ourselves to semi-Lagrangian
advection because it is highly popular for interactive flow
visualization, e.g., see [vW02, JEH02, Wei04]. We do not
consider more complex high-quality advection methods
that come with much higher computational costs than the
semi-Lagrangian methods, such as area sampling tech-
niques [LTH08], finite-volume approaches [KSW∗12], or
blending of forward and backward advected images in the
context of water colorization [BNTS07].

For the integration of a vector field, there is a variety of
numerical methods. A simple one is the Euler method, which
computes the next location according to first-order approxi-
mation. Second-order approximation is implemented by the
Leap-Frog method [HLW03]. The Runge-Kutta method is
popular because it shows even better results than the Leap-
Frog approach at reasonable computational cost [BW96].
We employ fourth-order Runge-Kutta throughout this paper.

Our paper addresses the problem of quantifying the qual-
ity of texture advection by spectral analysis. One of the few
related papers is by Yu et al. [YNBH11], who demonstrate
that their Lagrangian method preserves the spectrum of the
input texture. Weiskopf [Wei09] regards the spectral appear-
ance of an exponential filter kernel in the context of LIC flow
visualization. However, so far no one has compared grid-
based and BFECC advection methods in frequency space.
This paper is one step toward closing this gap in the litera-
ture.

3. Advection

Advection is the process of passive transport of a scalar
quantity ϕ(x, t) within a vector field v(x, t). In the Eulerian
frame, the process of advection is described by the continu-
ity equation:

∂ϕ

∂t
+∇· (ϕv) = 0. (1)

The scalar quantity ϕ describes the distribution of the ad-
vected material, e.g., the density of smoke or, as in our case,
the color intensities ϕ = (cR,cG,cB) of an RGB texture. As
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Figure 1: Numerical diffusion in one dimension. (a) Ana-
lytical box function (blue) and discrete samples (red). (b)
semi-Lagrange advection after 50 time steps. In the spatial
domain, the discrete samples are smoothed across the sharp
boundary of the analytic solution. (c) Fourier transforma-
tion of the box function. (d) The Fourier transformation of
the numerical solution after 50 time steps shows significant
damping of high frequencies.

the channels are independent of each other, we obtain three
independent advection equations:

∂ϕi

∂t
+∇· (ϕiv) = 0, i = 1,2,3, (2)

one for each channel. The numerical solution of Equation (2)
typically introduces an error term ei(x, t) 6= 0 on the right-
hand side:

∂ϕi

∂t
+∇· (ϕiv) = ei, i = 1,2,3. (3)

Depending on the solution method, the error term is dom-
inated by different effects, such as numerical diffusion or
dispersion [KK03]. In this paper, we focus on numerical
diffusion, which is usually dominant in Eulerian and semi-
Lagrangian-based advection algorithms as the consequence
of repeated, usually linear, interpolation operations. Figure 1
depicts the impact of numerical diffusion in a 1D example of
an advected box function, using the semi-Lagrange method.
In this case, a modified partial differential equation is actu-
ally solved, i.e., an advection–diffusion equation:

∂ϕi

∂t
+∇· (ϕiv) = D∆ϕi +fi︸ ︷︷ ︸

=ei

, i = 1,2,3, (4)

where D is a diffusion coefficient and fi denotes other
sources of errors. We assume that |fi| � |D∆ϕi|, which is
a known fact for semi-Lagrangian-based methods [SFK∗08]
on which we focus in the following sections. In the special
case where the vector field v is solenoidal, e.g., if v is the so-
lution of the incompressible Navier-Stokes equations, Equa-
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time step i + 1i

Figure 2: Backward integration with interpolation of inten-
sity values.

tion (4) simplifies and yields:

∂ϕi

∂t
+v ·∇ϕi = D∆ϕi +fi, i = 1,2,3. (5)

However, independent of the properties of the vector field,
the additional diffusion term implements a low-pass filter
and the magnitude of the diffusion coefficient determines the
amount of smoothing. Depending on the algorithm, the dif-
fusion coefficient may be a function of different quantities
and its magnitude can vary significantly. While it is possi-
ble to find analytic expressions for the diffusion coefficient
for simple techniques, such as the semi-Lagrange method in
one dimension [BMF07], it is difficult to derive an analytic
expression in the general case, especially when limiters and
higher-order interpolation schemes are combined in two or
more dimensions as in our case. Therefore, we employ spec-
tral analysis to quantify the amount of numerical diffusion
by studying the conservation of high frequencies over the
advection time.

4. Advection Techniques

In this section, common basic techniques are described that
are used to compute advection and we briefly discuss the
basic concept of higher-order interpolation. In this paper,
we focus on semi-Lagrangian methods in conjunction with
BFECC. We illustrate our approch for 2D examples, but the
extension to 3D is straightforward.

4.1. Ground Truth

For our spectral analysis and comparison, we require a
ground truth that does not exhibit numerical diffusion. Thus,
to compute the color of each pixel after a finite advection
time t = T , we integrate a full path line backward in time to
determine the location of each pixel in the original image at
advection time t = 0 [MB96]:

x(0) = x(T )+
0∫

T

v(x(t), t)dt. (6)

4.2. Backward

Semi-Lagrangian techniques rely on iterative backward inte-
gration and interpolation. Backward integration can be spec-

Figure 3: Higher-order interpolation with polynomial of
third degree. First, for each row, a polynomial in x-direction
is constructed, and intermediate values are retrieved. Next,
these values are used to construct a polynomial in y-
direction.

ified by inverting the vectors to compute the intensity that
would be advected to a certain location:

x(ti) = x(ti+1)+

ti∫
ti+1

v(x(t), t)dt. (7)

In contrast to some variants of forward integration, back-
ward integration does not produce holes in the image of the
current time step. There is also no need for scattering inten-
sity values around adjacent pixels, but an interpolation of the
transported intensity is required, which is shown in Figure 2.

4.3. BFECC

The Back and Forth Error Compensation and Correction
method [DL03, DL07] is a combination of a forward and
backward technique and consists of four steps. A first im-
age is generated by backward integration. This image is then
used to perform forward integration, which results in a sec-
ond image. A third image is computed by calculating the
difference between the first and the second one. It represents
the error that has occurred during the back- and forward in-
tegration. In the last step, the intensity values of the original
image are modified by adding half of the calculated error to
the corresponding intensities of the original image. Based on
the corrected image, a backward step is performed to obtain
the final image.

4.4. Higher-Order Interpolation

For the quality of the result of an advection method, it is
of great importance to handle resampling of intensities with
high accuracy. Although bilinear interpolation is attractive
due to its high performance, it exhibits high numerical dif-
fusion and causes strong blurring of details. To increase the
precision of the interpolation, we employ higher-order in-
terpolation with polynomials of degree three and five. This
is depicted in Figure 3. For a polynomial of n-th degree,
(n+ 1)2 points are required in 2D around the position x =
(x,y)T that should be interpolated. Then, for each row in the
resulting square, a polynomial is interpolated and evaluated
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at a position that is equal to the x-component of x, generat-
ing n+ 1 intermediate data points. These points are used to
interpolate another polynomial and evaluated it at a position
that is equal to the y-component of x. This leads to the final
intensity value at position x.

4.5. BFECC with Higher-Order Interpolation

BFECC and higher-order interpolation are orthogonal con-
cepts that have been employed separately in previous ap-
proaches to reduce numerical diffusion. However, to the best
of our knowledge, a combination of both techniques has not
been discussed before in the literature. Therefore, we sub-
stitute all bilinear interpolations that are commonly used in
BFECC methods with higher-order interpolation schemes of
degrees three and five. In the following section, we analyze
and quantify the impact on quality for both concepts sepa-
rately and in combination.

5. Spectral Analysis

A spectral analysis of vector fields using texture advec-
tion techniques is appropriate, since a filtering is accom-
plished that modifies the spectrum. For example, LIC meth-
ods, which can produce good representations of vector fields,
perform an explicit filtering along streamlines.

In the following, first, the generation of radial power spec-
trum diagrams is described in detail. After that, a brief de-
scription of how to handle spectral evaluation is provided.

5.1. Radial Power Spectrum Diagram

The process for analyzing the spectrum of an image is exe-
cuted by us in four steps. First, we apply a Hamming win-
dow on the input image to avoid the artificial generation of
spurious high frequencies from discrete Fourier transform.
Next, a radial power spectrum diagram (RPSD) is computed.
To this end, we calculate for each radius the average power
along a concentric circle located around the zero-frequency-
origin of the Fourier-transformed image. This is depicted in
Figure 4. At last, we calculate the radius of the circle that
covers 99% of the power, and highlight this border in the
diagram. This frequency radius can be regarded as a highly
aggregated indicator of spectral conservation: the closer the
radius of the advected image to the original image, the higher
the quality.

5.2. Process of Analysis

One can imagine the process as a top-down approach mo-
tivated by the well-known mantra of Shneiderman [Shn96]:
“Overview first, zoom and filter, then details-on-demand”.
Here, the 99% frequency radius and the RPSD can be used
for a first glance, since they are aggregated representations of
the 2D frequency domain. As a next step, the 2D frequency
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Figure 4: (a) Input image, (b) frequency-transformed image
with some concentric circles, (c) RPSD with average power
at circles of varying radius.

domain can be observed in detail, and finally the spatial do-
main as well if necessary.

A bottom-up approach is also feasible. Here, someone
could learn how observed texture properties in the original
spatial domain could manifest in the frequency domain.

5.3. Parameter Choices for Analysis

For the evaluations in this paper, we used two input images,
a checkerboard and a Gaussian filtered white noise image to
cover a wide range of different spectra. The checkerboard
image is a very regular pattern with high and distinct peaks
in the spectrum, whereas the noise image is smoothly vary-
ing in the Fourier domain and is typically employed for LIC.
Both textures were advected with an artificial circular and
a realistic Navier-Stokes vector field obtained by numerical
simulation. For the integration of the vector fields, we chose
the time step size ∆t = 0.05, which is small enough to make
the numerical error for integration with fourth-order Runge-
Kutta negligible. We processed 500 time steps and evaluated
the advection after 25, 50, 100, 250, and 500 steps. Addition-
ally, we investigated the influence of the resolution of input
images on the advection. For this purpose, we generated a
Gaussian filtered white noise image of size 64×64. We fur-
ther modified this image in frequency space by cutting off all
frequencies located at a distance of more than 32. Upsam-
pling was done by zero padding in the Fourier domain three
times to generate textures of size 128×128, 256×256, and
512×512.
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6. Results

In this section, the results of our evaluation of backward and
BFECC methods in combination with different interpolation
strategies for texture advection are presented to demonstrate
the amount of spectral change caused by blurring. This blur-
ring effect manifests itself in the form of decreasing 99%
frequency radius in the RPSD for increasing time. A small
radius indicates that low frequencies are dominant in a tex-
ture, which corresponds to blurring. Larger radii indicate an
inclusion of higher frequencies, which corresponds to bet-
ter preservation of the spectrum. Hence, also image features
are better conserved and blurring is less pronounced. This is
shown in Figure 5 for a circular vector field and a checker-
board texture with resolution 256×256.

A Gaussian filtered noise image with the same resolution
was used for Figure 6. By comparing the radii of the RPSDs,
calculated after advection over 50 and 500 time steps, it can
be seen that by increasing the interpolation order, the radii
also increase and the blurring effect is reduced. The BFECC
methods further increase the radii and thereby decrease blur-
ring compared to backward methods.

Table 1 and Table 2 contain the radii for all time steps.
Here, one can see a decrease of the radii with progressing ad-
vection for all methods and also increasing radius values for
increasing interpolation order. Table 3 contains the radii for
the checkerboard and the noise images after 100 time steps
of advection with the Navier-Stokes vector field. Here, one
can also see that the higher-order strategies perform better.
An evaluation based on the Navier-Stokes vector field with
more then 250 time steps was not possible due to artifacts
that were produced by the BFECC methods. These artifacts
are depicted in Figure 7. The artifacts cause spurious high
frequency, which leads to an artificial increase of the radii.
This can also be seen in Figure 8(a) and 8(b).

Now we consider the convergence speed of methods that
use interpolation of different orders. The input images for
the advection are generated by upsampling the Gaussian fil-
tered noise image as described in Section 5.3. The images
are advected 500 time steps. Figure 9 shows convergence
plots for all combinations of methods. These plots represent
the ratio of the 99% frequency radii of the individual ad-
vection techniques and the ground truth. One can see that
higher-order interpolation leads to faster convergence to 1
with increasing resolution. Also, BFECC influences the con-
vergence positively compared to the backward plots. Never-
theless, the BFECC strategies cause artifacts. However, the
influence of the artifacts decreases with higher resolutions.
This can be seen in the ratio values of the BFECC curve
with fifth-order interpolation, which are greater than one in
the beginning.

The presence of artifacts that introduce high frequencies is
also noticeable in the RPSD. This is the case in Figure 8(b).
Here, the average power rises again at the end of the plot.

Table 1: Radii for containment of 99% of frequency for all
tested methods and time steps. The checkerboard image and
the circular vector field are used.

Time Steps 25 50 100 250 500
Ground Truth 55.1 54.7 54.9 55.3 55.4

B
ac

kw
ar

d bilinear 24.7 24.4 23.5 11.9 13.1
3rd order 39.3 38.4 24.9 24.7 24.5
5th order 39.6 39.5 39.1 38.1 25.5

B
FE

C
C bilinear 39.0 30.4 24.5 24.4 24.0

3rd order 39.4 39.0 32.5 24.9 24.7
5th order 39.7 39.5 39.2 38.3 25.9

Table 2: Radii for containment of 99% of frequency for all
tested methods and time steps. The Gaussian filtered noise
image and the circular vector field are used.

Time Steps 25 50 100 250 500
Ground Truth 118.6 118.9 118.1 118.7 118.6

B
ac

kw
ar

d bilinear 83.7 59.7 42.5 25.1 13.1
3rd order 92.6 76.0 58.9 43.9 36.3
5th order 98.1 85.8 70.8 56.3 49.8

B
FE

C
C bilinear 93.5 75.5 56.0 38.9 29.4

3rd order 114.6 107.4 92.3 57.6 43.8
5th order 118.5 115.2 107.9 87.7 64.3

The 2D frequency images (Figure 8(d)) reveal some obvi-
ous peaks at the high-frequency boundaries that are reflected
in the original texture (Figure 7(c)). This top-down analysis
can also be inverted to a bottom-up approach. In any case, a
look at the spatial domain is recommended for final analysis
because the aggregated view in the RPSD could hide some
effects through blurring caused by transport.

The computation speed is another important issue. Table 4
contains the average FPS rates over an advection time of 100
steps. The values were measured on a system containing an
Intel i7 CPU with 3.4 GHz. Furthermore, all methods were

Table 3: Radii for containment of 99% of frequency for all
tested methods after 100 time steps for the Gaussian filtered
noise image and the checkerboard image. The Navier-Stokes
vector field is used.

Checkboard Noise
Ground Truth 120.3 123.5

B
ac

kw
ar

d bilinear 72.3 90.4
3rd order 89.6 99.9
5th order 101.8 108.5

B
FE

C
C bilinear 96.3 96.1

3rd order 110.1 115.1
5th order 119.3 121.5
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Figure 5: Advection images and RPSDs after 50 and 500 time steps for backward and BFECC based methods with different
interpolation strategies. The checkerboard is used as input image. The vector field is circular.
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Figure 6: Advection images and RPSDs after 50 and 500 time steps for backward and BFECC based methods with different
interpolation strategies. The Gaussian filtered white noise image is used as input image. The vector field is circular.
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(a) (b)

(c) (d)

Figure 7: Apertures of advection images after 1000 time
steps with 5rd order interpolation, applied to noise (left) and
checkerboard image (right). Images (a) and (b) are based on
a backward method and have no artifacts. Images (c) and (d)
are based on BFECC and show artifacts.

implemented in a single threaded version, without any focus
of optimization. Table 4 shows a few interesting properties.
First, by using BFECC the FPS rate drops by a factor of
about 4. Considering the number of computation steps, de-
scribed in Section 4.3, this drop is justified. The next thing
that can be noticed is a decreasing FPS rate with increasing
order of interpolation. Comparing the FPS rates of the bilin-
ear and third-order interpolation, a decrease by a factor of
about 6 arises and for fifth-order by a factor of 10. This is a
greater loss then expected regarding the number of necessary
texture lookups. We believe that these effects are caused by
the cache misses.

A collection of more detailed evaluations can be found on
http://www.vis.uni-stuttgart.de/texflowvis.

7. Conclusion

We have proposed an approach to analyze the quality of tex-
ture advection techniques. Our approach is based on radial
power spectrum diagrams and is complemented by visual
inspection of the advected images in the spatial domain. Fur-
thermore, the 2D frequency image can be inspected to iden-
tify effects that occur during the advection. The advantage of
the highly aggregated measure of the 99% frequency radius
is that it can be applied to many advection images without

Table 4: Measurements of FPS rates

bilinear 3rd order 5th order
Backward 106.6 15.7 9.5
BFECC 24.1 4.2 2.4
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Figure 8: Frequency images for backward fifth-order (c),
and BFECC fifth-order (d) interpolation, based on Gaussian
filter noise image after 1000 time steps of advection. A vec-
tor field in manner of Navier-Stokes was used, see Figure 7.
Images (a) and (b) are the corresponding radial power spec-
trum diagrams.

0

0,2

0,4

0,6

0,8

1

1,2

64 ² 128 ² 256 ² 512 ²

R
at

io
 o

f 
ra

d
iu

s 

Image resolution

Ground Truth

Backward bilinear

Backward 3rd order

Backward 5th order

BFECC bilinear

BFECC 3rd order

BFECC 5th order

Figure 9: Convergence speed of methods towards the ground
truth over different image resolutions. Values are ratios be-
tween the actual radius and the ground truth radius after 500
time steps of advection.

producing too much data. As shown, it can be used for ad-
vected images for multiple time steps. Here, we have iden-
tified the dependency between decreasing radii and blurring
of the advected images. Furthermore, we have shown the in-
fluence of the resolution of an input image for advection by
regarding the convergence speed for all tested combinations
of methods.

On the side of flow visualization techniques, we have in-
troduced a combination of higher-order interpolation and
BFECC that can be used to reduce the effect of blurring.

All over, our evaluation has shown that the BFECC ap-
proach with third-order interpolation generates highly accu-

© The Eurographics Association 2012.

93

http://www.vis.uni-stuttgart.de/texflowvis


R. Netzel, M. Ament, M. Burch, and D. Weiskopf / Spectral Analysis of Higher-Order and BFECC Texture Advection

rate advection textures, but suffers from low FPS rates. The
backward integration with fifth-order interpolation tends to
result in similar texture quality and higher FPS rates. In gen-
eral, this approach exhibits the best tradeoff between compu-
tation speed and texture quality. Notice that the frame rates
were obtained here from single threaded versions of the dif-
ferent techniques. Much higher rates can easily be achieved
by multi-threaded implementations.
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