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Abstract

Engineered nanoparticles have gained importance in recent years and will do so in the future, but their poten-
tial toxicity remains an open question. To better understand their effects on the human body, it is necessary to
determine their concentration in ambient air. We propose a method to automatically detect nanoparticles in SEM
images and differentiate engineered particles from other particles common in ambient air. The method reached G-
means of 0.985, 0.779 and 0.820 for the classification against non-engineered particles of silver, titanium dioxide
and zinc oxide respectively. This is comparable to manual classification.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene

Analysis—Object recognition

1. Introduction

Nanoparticles are particles with diameters ranging from 1 to
100 nm. These can occur naturally, e.g., produced by vol-
canic eruptions or forest fires. However, major sources of
nanoparticles are automobile exhausts and factory fumes.
In the past few years, a new type of nanoparticles, engi-
neered nanoparticles, has gained importance. For example,
silver nanoparticles are used in deodorants, toothpaste and
fabrics for their antimicrobial activity, zinc oxide is used in
sun cream and titanium dioxide is used in self-cleaning sur-
faces.

The potential toxicity of these nanoparticles has not been
sufficiently explored [OMC™09]. Therefore, it is desirable to
do further research and to introduce exposure limits for the
handling of nanoparticles. For that, it is necessary to mea-
sure a person’s exposition to different types of nanoparti-
cles. A measurement system has to differentiate the engi-
neered nanoparticles from other particles of the same scale
which also occur in the ambient air, called background parti-
cles. Current automatic techniques to measure the concentra-
tion of nanoparticles in the air, however, are not sensitive to
the composition of the measured particles [MHGO09,NIO09].
This way, current automatic measurement methods cannot
distinguish between engineered particles and background
particles [SAN*10]. Therefore, to classify the nanoparticles
based on size and composition, the particles are gathered
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and images of them are taken using transmission electron
microscopy (TEM) or scanning electron microscopy (SEM)
[MHGO09, NIO09]. This method has the advantage that it is
possible to only count the engineered nanoparticles and that
the device used to gather the particles can be very small and
can be carried by a worker to directly measure his/her expo-
sure. Currently, however, it is necessary to manually locate
and identify the type of each particle, which can be very time
consuming depending on the number of particles [MHGO09].

Our goal is to remove the need to manually locate and
identify these particles and to find an automatic solution to
detect as many particles as possible and to distinguish the
particles of one engineered particle type at a time from other
particles occurring in ambient air and in industrial scenarios
in SEM images. The type of engineered particle is known
beforehand so that our method can be trained to find that
particular particle type. The constraint that only one type of
engineered nanoparticles occurs is realistic because in a pro-
duction environment, only one particle type will be produced
at a time. Thus, the concentration of the currently produced
particle type will be significantly higher than other types po-
tentially produced before, which can be neglected. There-
fore, it is no disadvantage to only consider the two-class
case. Equally, the type of product particle type to detect is
known in advance because it is the one currently produced
at the industrial site.
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(a) Cropped Ag agglomerate (b)

Figure 1. Examples of silver particles (not true to scale)
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Figure 2. Examples of titanium dioxide particles (not true to scale)
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Figure 3. Examples of zinc oxide particles (not true to scale)
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(a) Cut-off grinding particles

(b) Diesel soot agglomerate
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(h)

Figure 4. Examples of background particles (not true to scale)

In particular, we wanted to recognize silver (Ag), titanium
dioxide (TiO,) and zinc oxide (ZnO) particles with average
diameters of 200 nm, 25 nm and 10 nm respectively. We
chose these particle types because they are on the OECD’s
list of representative manufactured nanomaterials for safety
testing [OEC10] and are commonly used in commercial
products. Strictly speaking, the Ag particles are larger than
nanoparticles, but we wanted to test how our methodology
performs at different scales. TiO, and ZnO were also chosen
as they are very similar to accidentally created nanoparticles
such as diesel soot. They often have similar primary parti-
cle sizes and form agglomerates in a similar way (e.g., see
Fig. 2¢ and 4b or Fig. 3¢ and 4d). A manual classification
experiment containing large ZnO and diesel soot particles
led to an accuracy of 72%. From now on, we will refer to
both single particles and agglomerates simply as particles. If
we specifically want to refer to single particles, we will call
them primary particles.

2. Related Work

In contrast to most non-nanoscale objects, nanoparticles
form agglomerates. Therefore, our method has to recognize
agglomerates instead of single particles. This means that a
common assumption of object classification does not apply:
that the object to recognize has a well defined shape and
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size. E.g., the detection of biological particles [RTH*07] and
pollen grains [RDCFFDO06] depends on it. Instead, agglom-
erates can be small or big, jagged or smooth, elongated or
round. They only differ in the size of their primary particles
and, thus, in their local structure.

There is little literature on image-based nanoparticle clas-
sification. To the best of our knowledge, [FRAAO3] and
[Ost10] are the only works which cover the automatic classi-
fication of engineered nanomaterials via image analysis. Flo-
res et al. [FRAAOQ3] try to recognize different types of very
small engineered metal nanoparticles in TEM images using
co-occurrence matrices and polygon-based contour approxi-
mation.

Oster [Ost10] differentiates carbon nanotubes (CNT)
from diesel soot and quartz particles in SEM images using
a combination of isoperimetric quotient, band-pass filter re-
sponses and a nearest neighbor classifier achieving a preci-
sion of 100% and a recall of 83%. It must, however, be men-
tioned that only 18 CNT agglomerates and 36 other samples
were used to evaluate the method.

Kindratenko et al. [KVET96] classify silver halide crys-
tals and aerosol particles in SEM images using the fractal
dimension and Fourier coefficients of the contour.

Flores et al.’s methods are not well applicable to our
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Figure 5. Our workflow of detecting and recognizing engineered nanoparticles

problem because SEM images have different properties than
TEM images and the particles we considered were larger
and formed agglomerates. The problem covered by Oster is
not realistic because the particles were hand-picked by their
types and sizes as opposed to a real-world scenario where
many other types and sizes can occur. In addition, all used
particles are centered in the image so that they are fully vis-
ible and not clipped at the image border. Kindratenko et al.
make use of additional information about the composition of
the particles, which is only feasible for a limited number of
particles.

It remains an open question, how well an automatic sys-
tem to distinguish engineered nanoparticles from all types of
other particles common in ambient air can perform. It also
remains unanswered, which particle features are most suit-
able to be used in such a classification.

3. Materials and Methods

Here we describe the particles of our experiments and the
three phases of our workflow, which is illustrated in Fig. 5.

3.1. Particle Gathering

The particles for our experiments were either gathered using
a thermal precipitator [AWAS*09] or an electrostatic pre-
cipitator [CF98]. The samples of the engineered nanoparti-
cles were produced by introducing material samples into a
closed chamber and gathering these particles with a precip-
itator. Thus, each image contains only one type of particle.
This allowed a reliable manual classification of the particles
and agglomerates in the images preventing background par-
ticles being labeled as engineered particles and vice versa.
SEM images of the gathered particles were then taken. The
images had magnifications of 5,000 or 20,000 and a resolu-
tion of 4000 x 3200 pixels. That corresponds to pixel sizes
of 5.1 nm and 1.3 nm respectively. The magnifications are a
compromise between resolution and number of particles per
image, as the image taking process is time-consuming. To
keep the properties of different images consistent, guidelines
for the image taking process were introduced. Table 1 lists
for all sample types the number of microscopic images and
number of particles or agglomerates in the images. The high
particle counts for some types underline that a great amount
of the particles are very small.

Table 1. The number of images and particles/agglomerates for the
engineered particle types Ag, TiO, and ZnO and the background
particles

Type Images | Agglomerates
Ag 16 70
TiO, 14 68
ZnO 10 56
Construction Dust 13 89
Diesel Soot 14 5471
Composite Material Dust 6 177
Cut-Off Grinding Dust 8 1173
Welding Smoke 12 814
Industrial Dust 7 891
Ambient Air 12 170

3.2. Particle Detection

As a characteristic of the image acquisition method, all engi-
neered particles and almost all types of background particles
are brighter than the image background and can be separated
by thresholding (e.g., see Fig. 1-4). We tested three different
threshold finding methods: The heuristic method by Zack et
al. [ZRL77], fitting a mixture of two Gaussian distributions
to the image’s intensity distribution and the method by Kit-
tler and Illingworth [KI86], which was found to perform best
in a comparison with 40 other methods [SS04].

Testing these threshold finding methods by compar-
ing them to manually determined ground truth thresholds
showed that Zack’s method produced the least segmentation
errors. It is due to the fact that the background accounts for a
very high percentage of the pixels in most images and the
method by Zack et al. is mainly influenced by the back-
ground and makes only few assumptions about the fore-
ground distribution which is a much weaker signal than the
background.

The particle detection on the SEM images performs the
following steps:

1. Smoothing using a Gaussian filter with 6 = 1.5

2. Thresholding using Zack’s method

3. Find 4-connected components in the resulting binary im-
age

4. Discard any connected components that are smaller than
80 pixels

The engineered nanoparticles used in our experiments
mostly occur in agglomerates with the smallest observable
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particle being ~ 370 nm?. Hence, our method classifies
structures only if they occupy at least 80 pixels (corresponds
to ~ 35% of the smallest particle size at 20,000x). Setting
a minimum object size reduces the risk to detect parts of the
background as particles in noisy images.

3.3. Feature Extraction

As a result of the particle detection step, the positions of the
particles are known. For statistical classification, every par-
ticle has to be represented by features which best capture
the typical differences of the involved classes. The feature
vector we used consisted of shape features capable of repre-
senting low and high frequency components of the contour
and histogram-based intensity features.

The simplest features we used were the microscope’s
Magnification setting m for the corresponding image, the
Area (A) of the particle in nm?, the Outer Contour Length
(Lo), which is the length of the contour which surrounds the
particle, and the Sum of Outer and Inner Contour Lengths
(Lt) calculated as Ly plus the sum of lengths of the con-
tours of the holes inside the particle.

Another simple feature we used was the Isoperimetric
Quotient (Qy). It is defined as the ratio of the particle’s area
A and the area of a circle having a perimeter equal to Ly. It
is calculated as Oy = 4mA/ L:‘}. If the particle has a circular
shape, its value is 1 and it becomes smaller as the shape be-
comes more complex. This complexity can either stem from
global features (e.g., a very elongated shape) or local fea-
tures (e.g., a ragged shape). These features were selected as
they capture some of the characteristics of nanoparticles vis-
ible at the boundary of the agglomerates.

3.3.1. Mean Contour Angle Wavelet Response

The aforementioned features are suitable to distinguish
round shapes from irregular ones or small objects from large
ones. However, the agglomerates often only differ in the size
distribution of the primary particles. E.g., the agglomerates
of engineered nanoparticles typically have small variance in
primary particle sizes while background particles such as
diesel soot agglomerates can contain primary particles from
a wider size range. These size distributions are typically re-
flected in the texture and the contour of the agglomerates.
Because the texture is greatly affected by the noise and blur
in some images, we decided to concentrate on the contour.

The fractal dimension is a shape feature which is used in
several publications [aGWO1]. However, real objects do not
really possess fractal dimensionality [KVvET96], its compu-
tation is complex and, most importantly, it yields only one or
two values, so that it isn’t able to successfully discriminate
complex shapes [DDFO00]. In addition, the fractal dimension
does not discriminate between particle sizes as it is scale-
invariant.

Another popular tool are Fourier descriptors [ZLO04].
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However, these are more suitable for regular shapes such as
crystals than for irregular contours [KvET96] like those of
nanoparticle agglomerates because the approach tries to find
regular global rather than changing local frequencies in the
contour. This manifests in the fact that it cannot well handle
changes in the phase of the waves which can easily happen
in irregular contours.

Instead, we decided to use a scale-space approach which
is able to capture local contour frequencies caused by the
size distribution of the primary particles in an agglomerate.
We used wavelets because they are able to detect these local
frequencies. To apply a wavelet analysis, the contour shape
has first to be converted into a 1D real-valued function. We
chose the Normalized Cumulative Angular Function (also
known as Normalized Tangent-Angle Function) originally
proposed by Zahn and Roskies [ZR72] because it is suitable
for non-convex shapes and the function’s shape is invariant
under translation and rotation. If we regard the outer contour
of a detected particle or agglomerate as a series of points
(x(1),y(1)) = Z(I) as a function of arc length /,0 <[ < Lo,
we define the Cumulative Angular Function ¢(I) to be the
change of the contour angle between the starting point and /.
Note that the angle of the contour here is not defined rel-
ative to a particular point but relative to the global coor-
dinate system. It follows that ¢(0) = 0 and ¢(Lp) = —2m.
We define the Normalized Cumulative Angular Function
0" (1) = ¢(1) +2nl /Lo so that ¢*(0) = 0™ (Lp) = 0. This
way, 0™ = 0 is true for a circular shape. Note that, in con-
trast to Zahn and Roskies, we do not set the domain of the
function to the interval [0, 27] but instead to [0,L¢] because
we want to infer the real size of structures from the function.
¢*(I) can be understood as a periodic function with period
Lo which is smooth if the original contour is smooth.

As wavelet functions, we used the real parts of Morlet

12
wavelets y; (1) = e () cos (2 ), where A is the wave-
length of the wavelet. To make the responses to wavelets
with different wavelength more comparable, we normalized

the wavelets’ L' -norm: y; () = ‘mg‘)l = ;%\VT (%)

)

The Mean Contour Angle Wavelet Response (W)) is de-
fined as the mean absolute response of the contour function
¢* to the wavelet W and is obtained by the convolution of
the two functions:

W L[
Y Lo Jo

We computed the values of W, for the following wave-
lengths: 5, 10, 20, 50, 100, 200, 500, 1000 and 2000 nm.

/_oo O (I — )y (¢)dt| dl. e))

3.3.2. Normalized Relative Histogram

Another distinguishing factor is the varying intensity of the
particles. E.g., the Ag agglomerates often appeared brighter
than many other particle types. To include information about
the particles’ intensity distributions, we computed a Nor-
malized Relative Histogram (h;) with 10 bins hy, ..., hy for
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the pixels of every connected component. To compensate for
contrast and brightness differences, we normalized the his-
tograms so that the minimum intensity of each histogram
was set to the modal intensity of the image which was also
the most common background intensity. The maximum his-
togram intensity was set to the highest intensity present in
the particle. While this could be prone to outliers, it com-
pensates for varying contrast and brightness settings, which
can be freely adjusted by the microscope operator and we
never observed this to be a problem.

3.4. Classification

For the classification of the particles, we used the data min-
ing software Weka [HFH*09]. Because the distributions of
the applied features were unknown, a geometric classifica-
tion approach using decision boundary construction was ap-
propriate [JDMOO]. We therefore used Support Vector Ma-
chines (SVMs) with polynomial (Poly) and radial basis func-
tion (RBF) kernels trained using sequential minimal opti-
mization [Pla98] as classification algorithms. An advantage
of SVMs is that they are less prone to class imbalance than
other classification learning algorithms [SWKO09]. Class im-
balance means that one class is much more prevalent in the
training data than the other class(es). In our data, the ratio of
engineered nanoparticles to other particles was in the order
of 1:100. Before training the classifiers, we normalized the
feature values so they were in the interval [0, 1].

For both tasks of classifying TiO,- and ZnO-particles
against the background particles respectively, training the
classifiers on all given samples did not work. In most cases,
every sample was classified as a background particle. A
good solution for that is to resample the data before train-
ing the classifier [SWKO09]. For TiO; and ZnO respectively,
we therefore oversampled the class of engineered particles
using SMOTE [CBHO02] and then randomly undersampled
the class of background particles so that both classes had the
same size.

Given a fixed number of training samples, the classifica-
tion quality can decrease with the number of features. This
is known as the curse of dimensionality. A common solution
for it is feature selection [JDMOO]. After determining the
best classification parameters using all features, we used the
genetic search algorithm described by Goldberg [Gol89, pp.
59-70] with a population size and generation count of 20,
a crossover probability of 0.6 and a mutation probability of
0.033 to find the best feature set. Each feature set was eval-
uated with the parameters, which yielded the best results in
a 10-fold cross-validation when using all features.

4. Evaluation and Results

The class imbalance problem needs to be considered in the
choice of the classification performance measure which is
used to evaluate the method. The commonly used accuracy,

the ratio of correctly classified samples to the total number
of samples, is a poor choice as classifying every sample as
a part of the prevalent class (in our case, the background
particles) leads to a relatively high accuracy of 0.99 for a
ratio of 1:100. Sun et al. [SWKO09] suggest F-measure and
G-mean as appropriate measures in the case of class imbal-
ance. We used G-mean because it only relies on the true pos-
itive rate and the true negative rate and, thus, in contrast to
F-measure, normally doesn’t change if the ratio between the
classes changes. G-mean is defined as the geometric mean
of the true positive rate and the true negative rate [KHM98]:
g = VTP:-TN;. To evaluate the classification quality, we
used 10-fold cross-validation on the training data. Note that
the SMOTE resampling was done separately for each step
of the cross-validation guaranteeing that no training sample
was created using the data of test samples.

The separation of particles from the background worked
well, often detecting particles a person would overlook. Only
very few artifacts occurred. The major problem was that
some background particles which were hard to distinguish
from the image background were divided into multiple parts
by the algorithm. The classification results are summarized
in Table 2. The polynomial kernel performed best for Ag
and TiO, while ZnO was best classified by the RBF ker-
nel. However, for all materials, the two kernel types yielded
comparable results. For the classification of Ag particles and
background particles, only 9 (Poly) and 7 (RBF) of all 8855
particles were incorrectly classified. In addition, 4 of the 5
false negatives that occurred were caused by the Ag parti-
cles being cut off at the image edges and, thus, not being
fully visible (e.g., see Fig. 1a). Most of the false positives
were agglomerates of few round particles with a size similar
to the Ag primary particles. E.g., the two particles in Fig. 4a
were created by cut-off grinding steel and are likely made of
steel which melted and formed spheres. For TiO;, and ZnO,
almost all false positives were agglomerates of primary par-
ticles with a similar size to the engineered particles (e.g., see
Fig. 2c and 4b). Most of these agglomerates were very small,
making a manual classification almost impossible.

Every one of our 24 features was used by at least one of
the classifiers. This suggests little redundancy between the
features. For Ag and TiO;, both kernel types show better re-
sults for a magnification of 5,000 while both kernel types for
ZnO work better for a magnification of 20,000. That sug-
gests that 5,000 is sufficient for Ag and TiO,, which have
larger primary particles (200 and 25 nm). The classification
of ZnO with an average primary particle size of 10 nm can
benefit from the increased resolution brought by a magni-
fication of 20,000 making smaller details visible. The de-
crease in classification quality for the higher resolution for
the other particle types could be explained by a smaller train-
ing set due to a smaller area being covered by the images
and a higher probability of particles being cut off by image
edges.
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Table 2. The best parameter values and classification results for the different nanoparticles and SVM kernels. The following information is
given: the kernel type, the soft margin parameter C, the exponent E of the polynomial kernel, the scaling parameter y of the radial basis
function kernel, the G-mean before the feature selection (g,;;), the features selected by the genetic algorithm, the true positive rate 7 P,, the true
negative rate TN, the corresponding G-mean g and the G-means for the particles separate for magnifications of 5,000 (gsx) and 20,000 (g20x)

respectively
Material | Ker. C Y gall Selected Features TP, TNy g g5k 820k
Ag 200 Poly 5 - 0.985 | m, Qr, Ws, Wi, Wao, Wsg, | 0.971 | 0.999 | 0.985 | 0.991 | 0.957
Wi00, Wso0, Wao00, h0> h1s
h2’h3vh4’h59h69h8
RBF | 10 1.0 | 0.971 | m, O, Ws, Wao, Wso, Wioo. | 0.957 | 1.000 | 0.978 | 0.982 | 0.957
Wa00, Wso0, 12, B3, hs, hy
TiO, 25 | Poly 1 - 0.735 | m, Qr, Ws, Wio, Wag, Wigo, | 0.750 | 0.809 | 0.779 | 0.785 | 0.746
Ws00, ho, ha, 3, hs, hg
RBF | 1 0.005 | 0726 | A, Lo, 01, Ws, Wio, Wao, | 0.691 | 0.784 | 0.736 | 0.744 | 0.713
Ws00, Wio00, /1, 12, g, hy
ZnO 10 | Poly | 300 - 0.795 | A, Ly, Q1, W, Wsg, Wago, | 0.821 | 0.814 | 0.818 | 0.808 | 0.866
Wso0, hos hes h7, g
RBE | 10 | = | 0.1 | 0.797 | Lz, Wao, Wso, Wsoo, Fio, o, | 0.804 | 0.838 | 0.820 | 0.808 | 0.885
h3, he, hg, hy

5. Conclusions and Future Work

We have shown that a reliable automatic detection of en-
gineered nanoparticles in SEM images is possible provided
they are sufficiently distinct in shape. The approach is lim-
ited to cases where particles of different types do not overlap.
However, this can be achieved by controlling the population
density of particles on the sample carrier by reducing the
gathering time of the used precipitator.

The classification of Ag nanoparticles against background
particles yielded a true negative rate of 0.999 and a true pos-
itive rate of 0.971 while most of the false negatives were
caused by particles only being partly visible. Our approach
does not need human interaction and makes it feasible to
search for specific particles in a large number of images.

The detection of the titanium dioxide and zinc oxide
particles was more challenging. As mentioned before, this
is caused by the high resemblance to accidentally created
nanoparticles such as diesel soot due to similar primary par-
ticle sizes and the high amount of small agglomerates. The
small particles only occupy a limited number of pixels. To-
gether with the blur and relatively strong noise typical for
SEM, this leads to a lack of distinct contour features. Given
that the manual classification of these particles is very diffi-
cult, the obtained results represent a good outcome.

The classification of ZnO particles in images with a mag-
nification of 20,000 resulted in a G-mean of 0.885 compared
to 0.808 for 5,000. This indicates that higher magnifications
could lead to better results for ZnO. However, this would re-
quire more images to capture the same amount of particles.
Also, single agglomerates could become too large to be cap-
tured by a single image.

All used features seem to be appropriate to distinguish the
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nanoparticles as each of them was present in at least one set
of selected features.

A simple way to improve the classification reliability is
to gather more training samples, especially from engineered
particles. Further improvement could be brought by adding
more features. Since we currently do not take texture into
account, we will investigate ways to compute such features
in view of the fact that agglomerates greatly vary in size and,
hence, the texture measures must scale well with size. An-
other possibility that we will investigate is the detection of
circular patterns in the contours of agglomerates to infer the
size of the primary particles. This will require the use of
magnifications for which the primary particles are clearly
visible. We will also have to deal with particles which are
only partially visible, which is, however, fairly easy as it
only requires to take image boundaries into account when
computing the features.
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