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Abstract

Recent advances in the understanding of animal locomotion have proven it to be a key element of many fields

in biology, motion science, and robotics. For the analysis of walking animals, high-speed x-ray videography is

employed. For a biological evaluation of these x-ray sequences, anatomical landmarks have to be located in each

frame. However, due to the motion of the animals, severe occlusions complicate this task and standard tracking

methods can not be applied. We present a robust tracking approach which is based on the idea of dividing a tem-

plate into sub-templates to overcome occlusions. The difference to other sub-template approaches is that we allow

soft decisions for the fusion of the single hypotheses, which greatly benefits tracking stability. Also, we show how

anatomical knowledge can be included into the tracking process to further improve the performance. Experiments

on real datasets show that our method achieves results superior to those of existing robust approaches.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking

1. Introduction

The in-depth understanding of animal locomotion is a key
element and an ongoing field of research in biology, motion
science and robotics [BBG∗10]. Recently, this fact was im-
pressively demonstrated when it was shown that all dogs—
no matter what size or breed—have a nearly identical loco-
motion [FL11]. Not only has this study led to new insights,
but it has also overthrown large parts of what was previously
known about dog locomotion. Another interesting class of
animals for which little is known about grounded locomo-
tion are birds. Due to the countless variations in size, body
mass, and walking speed, birds constitute an ideal field of
investigation. To analyze the locomotion of birds, only x-ray
recordings allow for accurate and unbiased in vivo insights
into all parts of the locomotor system. In practice, this is re-
alized by placing a bird on a treadmill and using a special x-
ray system (C-arm) to record the bird during locomotion. In
order to cover every important detail of the movement, these
recordings are usually carried out at 1000 frames per second.
For typical recording times of one to three seconds per se-
quence, this leads to huge amounts of data for a large scale

Figure 1: Example images of an x-ray locomotion sequence

of a quail. The images show various states of locomotion and

occlusions. Typical landmarks of the locomotor system are

marked with colored circles (red: hip joints, orange: knee

joints, blue: proximal tarsometatarsi, green: feet).

study. The biological evaluation of the recordings is mainly
based on finding anatomical points of interest, i.e. landmarks
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NAME DEFINITION RANGE
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Table 1: Overview of prominent score functions used for template matching. I
(0)
n and T

(0) are the mean centered versions of

the search image In and the template image T as defined in Subsect. 3.1.

of the locomotor system in every image of a sequence. An
example image of a bird sequence including typical land-
marks is shown in Fig. 1. Until now, the location of the
landmarks in the sequences is carried out by human experts.
However, due to the sheer magnitude of the data, this is a
tremendously time-consuming task. Even though thousands
of videos have been recorded to date, the bottleneck of man-
ual labeling has prevented the evaluation of large amounts of
data. Therefore, there is a urgent need to automate the task of
landmark tracking in x-ray locomotion sequences. Unfortu-
nately, this is a difficult task due to several characteristics of
the data. As can be seen in Fig. 1, the contrast in the images
is very low. However, the biggest problem is the presence
of occlusions of various body parts resulting from the move-
ment of the bird and the x-ray acquisition. As a consequence,
many prominent tracking algorithms fail in this setting.

The goal of this paper is to present a new robust tracking
method which can deal with the challenges occurring in the
data and substantially reduce the human effort spent in land-
mark labeling. In Sect. 2, related work and recent approaches
are discussed and the motivation of our own approach is pre-
sented. Our robust tracking algorithm is described in Sect. 3
in a general manner. Afterwards, the application to x-ray lo-
comotion data is examined in Sect. 4. We then compare the
performance of our algorithm with respect to several other
robust state-of-the-art tracking approaches based on a vari-
ety of real-life datasets in Sect. 5.

2. Related Work and Motivation

As landmark and object tracking is a crucial part of com-
puter vision, numerous approaches and variations have been
developed over time. A comprehensive overview of state-
of-the-art methods can be found in the survey of [YJS06].
Generally, we can distinguish between appearance based and
feature based tracking approaches. For the former, typical
examples are template matching, optical flow/KLT tracking
[LK81,TS94], and region tracking [HB98,JD02a]. A perfor-
mance evaluation of these methods is given in [DGBD05].
One example for feature based approaches is SIFT keypoint

tracking [Low04]. The main drawback of all aforementioned
methods is the lack of robustness with respect to severe oc-
clusions in the image data.

For the template matching approach which is also pur-
sued in this paper, various adaptions and extensions exist.
To name but a few, these include drift-free template up-
dates [MIB04, Sch07] and the dynamic template extension
[HIN10]. Most importantly, however, several approaches ex-
ist for occlusion handling. In [NWvdB01], a Kalman filter
framework [WB95] is used to model the template appear-
ance and short-term occlusions on a per-pixel basis. A sim-
ilar approach is presented in [PHZ08], where regions of the
template are classified as occluded and non-occluded. This
is closely related to the idea of dividing a template into sub-
templates and neglecting occluded parts from the estimation
of the new position as proposed in [IMB02, JD02b].

For the fusion of the results of the sub-templates, [IMB02]
assume a fixed amount of them to be non-occluded and
therefore only regard the p best matching percent of sub-
templates. While this approach works well in many cases, it
does neither allow full-occlusions nor does it use all avail-
able information in case of no occlusions. The sub-template
fusion employed in [JD02b] is identical to the method pre-
sented in [Jur99]. Here, each sub-template supports one hy-
pothesis, and all hypotheses are combined using a Gaussian
uncertainty model in the template pose space. The drawback
with both approaches is that each sub-template can only sup-
port one hypothesis and thus makes a hard decision. How-
ever, especially for x-ray occlusions, a part of the original
image structure may still be observable. This fact is the main
motivation for our approach, in which we aim to allow soft
decisions for the fusion of sub-template hypotheses.

In the field of anatomical landmark tracking in x-ray
locomotion sequences, active appearance models (AAMs)
[CET01] have proven to be well-suited for tracking certain
landmarks [HD11a]. For the case of bird locomotion, “inner-
torso” landmarks such as hip and the knee joints can be
tracked reliably. However, due to the nature of the data and
the AAMs, this approach is not suitable for landmarks that
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Figure 2: Comparison of standard and sub-template based

template matching under occlusion. When using template

matching based on a single template (a), occlusions lead

to inaccurate results (c). By dividing the template into sub-

templates (b), the correct position can still be obtained based

on the non-occluded parts (d).

have a relatively large distance to the torso, such as the outer
leg landmarks. Therefore, we mainly focus on “outer-torso”
landmarks such as legs and feet in this work. Note, however,
that our method is not limited to this kind of landmarks.

3. Landmark Tracking under Occlusions

This section describes our approach to robust landmark
tracking in a general manner. After a short overview, vari-
ous adaptions with respect to standard tracking methods will
be presented. The application of our algorithm for landmark
tracking in x-ray locomotion sequences is described in detail
in Sect. 4.

The main idea of the tracking approach proposed in this
paper is to develop an improved version of template tracking
of a region around a landmark. Motivated by the application
scenario of anatomical landmark tracking in x-ray locomo-
tion sequences, our goal is to obtain a method which has the
properties of

• invariance against rotation and scaling,
• robustness against partial and full occlusions,
• optional inclusion of global context, and
• fast computation times, allowing the evaluation of large

amounts of data.

Each of the topics mentioned above will be described in de-
tail in the following subsections.

3.1. Standard Template Tracking

Given an image sequence I1, . . . , IN ∈ I and a template
image T ∈ T , the general goal of template tracking is
to find the location of T in every frame of the sequence
[YJS06]. This matching is based on a particular score func-
tionR : I × T → I, which maps each pixel of a search im-
age In to a scalar indicating the similarity of In with the
template T located at this particular pixel. The optimal posi-
tion (x̂n, ŷn) of T in the image In is then obtained by using

the position providing the best match, i.e.

(x̂n, ŷn) = argmax
x,y

R(In,T )[x, y]. (1)

Prominent score functions are the sum of squared differ-

ences (SSD), the cross-covariance (CCOV), and the cross-

correlation (CCOR) [BK08, RN88]. Exact definitions of
RSSD, RCCOV, and RCCORR are listed in Table 1. Here, I(0)

n

and T
(0) are the mean centered versions of In and T with

I
(0)
n [x, y] = In[x, y]−

1

|T |

∑

x′,y′

I [x+ x
′
, y + y

′] (2)

and

T
(0)[x, y] = T [x, y]−

1

|T |

∑

x′,y′

T [x′
, y

′], (3)

with |T | being the number of pixels in T .

While SSD is widely used for gradient descent based
approaches such as [HB98], [JD02a], and [MIB04], cross-
covariance and cross-correlation generally tend to give bet-
ter results because of their invariance to additive and—in the
case of correlation—multiplicative influences.

For the template tracking approach described above, in-
variance with respect to rotation or scaling can easily be
achieved [KdA07]. Instead of matching only the original
template T against the search image In, rotated versions
T̃ θ1 , . . . , T̃ θM of T with a sufficiently accurate angular res-
olution are used. Similar to Eq. 1, the optimal template loca-
tion (x̂n, ŷn) and rotation θ̂ is then given by

(x̂n, ŷn, θ̂) = argmax
x,y,θ

R(In, T̃ θ)[x, y]. (4)

Above extension can be directly modified to also include
scale invariance and shall therefore not be considered sep-
arately at this point. Note that for the sake of simplicity, in
all following discussions we will use the notation of pure
translation—even for cases of template matching with rota-
tion and scaling.

3.2. Handling Partial and Full Occlusions

One major problem of standard template tracking is its fail-
ure in the case of occlusions [JD02b, IMB02]. As can be
seen in Eq. 1 and the definitions of the score functions in
Table 1, even partially corrupted image data In can tremen-
dously bias the values ofR(In,T ) and therefore change the
matching results for the worse.

In the case of partial occlusions, however, certain parts
of the image still allow a correct estimation of the real tem-
plate position. Therefore, by considering parts of the orig-
inal template independently of each other as suggested in
[JD02b] and [IMB02], partial occlusions can be resolved.
This idea is schematically shown in Fig. 2, where stan-
dard template matching Fig. 2(a, b) and sub-template based
matching Fig. 2(b, d) are compared for the case of partial
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Figure 3: Schematic process of object mask determination for various types of anatomical landmarks in x-ray locomotion data.

Anatomically motivated object masks can be obtained in a fast and robust way based on four basic steps. The masks obtained

after each step are shown in green color. Especially for the landmarks located on the joints of the tarsometatarsi, the usage of

such masks can lead to a vastly improved tracking quality.

occlusions. Where our approach differs from [JD02b] and
[IMB02] is the way in which the final estimation for the tem-
plate movement is obtained from the sub-template results.
While in [JD02b] and [IMB02] each sub-template votes for
only one final template transition and thus makes a hard de-
cision, we aim to allow a soft decision for each sub-template.
Our approach is motivated by three main observations:

• The matching results R(In,T ) of all non-occluded sub-
templates have a peak at the correct position.

• Even for partially occluded sub-templates, there is usually
a local peak around the correct position.

• Fully occluded sub-templates give somewhat random re-
sults, i.e. each occlusion leads to peaks at different posi-
tions.

As a consequence, averaging over the scores of all sub-
templates has the effect of removing peaks with small oc-
currences and preserving peaks with high support. Note that
with this method it is possible for one sub-template to vote
for multiple peaks—in fact, each sub-template gives a rating
for every possible template transition, weighted by its actual
matching quality.

If our original template T is split into K sub-templates
S1, . . . ,SK , the final template position for our proposed
method is obtained by finding the best match in the averaged
scoreR, i.e.

(x̂n, ŷn) = argmax
x,y

R[x, y] (5)

with

R =
1

K

K
∑

k=1

R(In,Sk). (6)

In the case of a full occlusion, i.e. an occlusion of all K
sub-templates, it is not possible to obtain an accurate esti-
mation based on image information. One approach to deal
with the case of short-term full occlusions is to limit the ve-
locity of template movement to prevent the template from
drifting away too quickly [YJS06]. However, this limitation
restricts the method to small template movements and fast
objects will be lost. Another idea is to apply a linear mo-
tion model to maintain the current movement when a full

occlusion occurs [PHZ08]. Because we do not make a hard
decision between occluded and non-occluded templates, this
method is not applicable here. To avoid the drawbacks stated
above, in our approach we employ a Kalman filter [WB95]
framework and combine both techniques. The Kalman filter
is used to estimate and predict the current state of motion and
template position. After each prediction step, however, the
actual measurement is limited to a small region around the
prediction. While this approach enables template motions at
arbitrary speed, the difference of template speed, i.e. the tem-
plate acceleration is limited to prevent large drifts under full
occlusions.

3.3. Usage and Refinement of Object Masks

The template matching approach in its initial form makes
use of a rectangle to cover the landmark or object of inter-
est. Therefore, the template usually contains background or
other inappropriate parts. To improve the performance of our
method we adjust the template to the actual object which
is to be tracked. This can easily be done by laying out all
initial sub templates Sk based on a given region of interest
(ROI) describing the object. Hence, the amount of neigh-
boring objects and background can be substantially reduced
and thus leads to an improved robustness. In Subsect. 4.2
it is described how anatomical object masks can be easily
computed for the case of x-ray locomotion sequences.

Additionally, the set of sub-templates can be refined to
only contain parts that can be tracked reliably, e.g. by using
methods such as [TS94].

3.4. Performance Aspects

The naive implementation of the template matching algo-
rithm described above leads to unnecessary slow computa-
tion times, as described in [KdA07]. A large performance
gain can be achieved by using the convolution theorem. Also
note that for template matching with rotation and scale in-
variance, the transformed—possibly rotated and scaled—
sub-patches can be precomputed. With this technique, only
the Fourier transform of the image has to be computed for
each frame to be tracked.
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DATASETS

Q1 Q2 Q3 B1 L1 L2

SPECIES Quail Quail Quail Bantam Lapwing Lapwing
FRAMES (LABELED) 2245 (91) 1841 (32) 1372 (81) 1024 (78) 1551 (236) 2301 (264)
STEPS (LABELED) 11 (11) 23 (4) 9 (9) 6 (5) 12 (2) 16 (2)

Table 2: Overview of the six x-ray bird locomotion datasets used for the experimental evaluations.

4. Application to X-ray Locomotion Sequences

The tracking approach presented in Sect. 3 is described in a
generic manner and is applicable for a wide variety of track-
ing tasks and conditions. While the general appliance of the
proposed algorithm to a certain scenario is straightforward,
specific aspects should be considered to match the needs
of the underlying data. Therefore, this section discusses the
characteristics of the x-ray locomotion sequences used in
this paper and describes according adaptions.

4.1. General Aspects

Due to the constrained movement on a treadmill and the spe-
cific camera setup, one very beneficial characteristic of the
x-ray sequences at hand is the fact that distance and orien-
tation of the animal with respect to the camera is approxi-
mately constant. As one consequence, scale effects can be
neglected in this scenario and only template translation and
rotation are of interest. Furthermore, as all landmarks to be
tracked are anatomical keypoints, the appearance of a small
region around a landmark does not change over time if oc-
clusions are disregarded. Therefore, unlike applications pre-
sented in [MIB04] or [PHZ08], in our case there is no need
for updating template appearances while tracking.

4.2. Obtaining Object Masks

As described in Subsect. 3.3, our approach is capable of
using object masks, i.e. arbitrarily shaped regions used for
tracking. While for many standard tracking scenarios a sim-
ple rectangular region around a landmark is sufficient, in the
present application we can include anatomical knowledge
into the selection of object masks.

Good examples for cases in which such additional knowl-
edge is advantageous are the landmarks located at the distal
and proximal ends of the tarsometatarsi (see Fig. 3, right
image). A simple rectangular template around any of these
landmarks includes parts of two bones and their connect-
ing joint. As the angle between these bones varies through-
out one sequence, this is only a suboptimal choice. Taking
anatomical knowledge into account, a better solution for the

landmarks named above is to use the tarsometatarsi as ob-
ject masks. As will be shown in the experiments in Sect. 5,
this data-specific adaption can lead to vastly improved track-
ing results.

To obtain anatomical masks for an image taken from an x-
ray locomotion sequence, we employ the following scheme:

1. Body mask: apply global threshold to image and find
largest contour [SA85].

2. Torso mask: fit ellipse on the body mask and intersect it
with the body mask.

3. Leg mask: subtract the torso mask from the body mask
and find contours below the centroid of the torso mask.

4. Tarsometatarsus mask: apply progressive probabilistic
Hough transform [MGK00] on the leg mask.

Due to the homogeneity of the underlying x-ray images, the
usage of these relatively simple steps allows for a fully auto-
matic fast and robust mask determination. An example appli-
cation of this algorithm to a typical x-ray locomotion image
is shown in Fig. 3. The masks obtained after each step are
shown in green color.

5. Experiments and Results

To analyze the performance of our proposed landmark track-
ing approach, numerous experiments on real-world datasets
were conducted. A total of six x-ray bird locomotion se-
quences are employed, of which three show quails, one
shows a bantam chicken, and two show lapwings. Each
dataset was recorded at a frame rate of 1000Hz and a res-
olution of 1536×1024 pixels. The length of the sequences
varies between 1024 and 2245 frames at a total of 10,334
frames covering 77 steps. Ground-truth landmark positions
provided by human experts (zoologists) are available for 782
frames. An overview of the used datasets is shown in Table 2.
As pointed out in Sect. 2, tracking approaches for inner-torso
landmarks exist already. For this reason, we focus mainly on
outer-torso landmarks (cf. Fig. 1) in the following experi-
ments.

In our experiments, we wish to analyze the following
questions:
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Figure 4: Comparison of standard tracking approaches to

our proposed method for x-ray locomotion data. The lines

show the median Euclidean landmark distances to ground-

truth data provided by human experts. Due to the numer-

ous occlusions, the standard approaches quickly drift away,

while our robust approach succeeds in tracking the land-

marks over the entire sequence.

1. Is our approach capable of overcoming difficulties in the
data which can not be dealt with using standard ap-

proaches?
2. How does our proposed template motion estimation per-

form compared to other state-of-the-art approaches for
sub-template fusion?

3. Is the constrained Kalman filter basedmotionmodel bet-
ter than other proposed ways of full-occlusion handling?

4. Is it beneficial to use customized object masks rather
than a simple rectangular region around a landmark?

5. Do the computation times allow for an evaluation of
large amounts of data?

If not stated otherwise, for the experiments we used tar-
sometatarsus object masks as described in Subsect. 4.2. The
sub-templates were chosen to be circular with a radius of
15 pixels. The distance between the centers of two sub-
templates was set to be 8 pixels.

5.1. Comparison to Standard Tracking Approaches

To verify that the occlusions occurring in the x-ray loco-
motion datasets are too severe to use standard tracking ap-
proaches, we tested several prominent methods and com-
pared the results to our final approach. The employed meth-
ods are standard template matching, KLT [LK81, TS94],
SIFT [Low04] and hyperplane region tracking [JD02a].

The results of the experiments are shown in Fig. 4. Note
that as the results are very similar for all six datasets, only
those of the Q1 dataset are presented here in detail. The fig-
ure shows the median Euclidean errors of the various ap-
proaches with respect to the ground-truth labelings. It can be
stated that all standard tracking approaches fail to track most
landmarks and drift away quickly, even for relatively few oc-
clusions. Our approach, on the contrary, is able to overcome
the severe occlusions and the low contrast in the data and

Figure 6: Influence of the motion model on the tracking ro-

bustness. Each boxplot shows the Euclidean landmark errors

made over the entire sequence. The usage of a Kalman filter

has the biggest influence on the tracking performance.

succeeds in tracking the landmarks over the entire sequence
at an average error of 10 pixels. Taking into account the im-
age size of 1536×1024 pixels, this is an excellent result and
comparable to human tracking results [HD11b].

5.2. Obtaining Template Motion from Sub-Templates

As stated in Subsect. 3.2, there exist several ways to estimate
the final template transformation based on all sub-template
hypotheses of one tracking step. As opposed to a fusion
based on hard decisions [JD02b, IMB02], we introduced a
new method allowing multiple hypotheses per sub-template.
In this subsection, our proposed method is compared to the
existing fusion methods of [JD02b] and [IMB02]. For the
experiments, our final tracking algorithm was used and only
the fusion method was varied to ensure a fair comparison.

In Fig. 5, the according results for all six datasets are
shown. First of all it can be stated that the method of [JD02b]
has the worst performance in this scenario, as for all datasets
the tracked landmarks quickly drift away. The method of
[IMB02] is more stable than [JD02b], as for four out of
six sequences no landmark is lost. Our approach, however,
achieves the best performance, as all landmarks are tracked
correctly for each dataset. Note that for the cases in which
[IMB02] does not drift away, the results are comparable to
our approach. This leads to the conclusion that for x-ray se-
quences our approach is as accurate as the one of [IMB02]
while being more robust to occlusions.

5.3. Influence of Motion Model

Another adaption we suggested was the usage of a Kalman
filter with constrained acceleration to tolerate short-term
full-occlusions. To determine the performance of this ap-
proach, we compare it to three other methods of motion/full-
occlusion modeling. Namely, those methods are no motion
model at all, motion vector truncation [YJS06], and a stan-
dard Kalman filter [PHZ08].

The results of the experiments are presented in Fig. 6.
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Figure 5: Comparison of fusion methods for sub-template based tracking approaches. Each line shows the median Euclidean

error of the outer leg landmarks for a particular method. The method of [JD02b] (green) has the worst results. Our approach

(red) tends to be slightly more robust than the method used in [IMB02] and has the best tracking performance.

Figure 7: Influence of the usage of anatomical object masks

instead of rectangles. The results show that specific anatom-

ical masks drastically improve the tracking results.

The most striking result is that the usage of a Kalman fil-
ter vastly improves the tracking performance. Truncating the
motion vector as suggested in [YJS06], on the other hand,
seems to have no substantial influence on accuracy and sta-
bility. While the first observation is fairly reasonable, the lat-
ter is a bit surprising. This suggests that the occurring full-
occlusions in the data are short enough to cause no observ-
able disturbances. However, as limiting the motion vector
does not worsen the tracking performance, it is possible to
use it together with the Kalman filter framework for the case
of longer full-occlusions.

5.4. Usage of Anatomical Object Masks

In Subsect. 4.2 it was shown how anatomical object masks
can obtained for x-ray locomotion landmarks in an easy and
robust manner. To answer the question whether the usage of
such specific masks rather than a rectangular region around
a landmark is able to improve the tracking performance, we
tested both cases using our algorithm. Note, however, that
also for the case of rectangular regions, homogeneous sub-
templates were removed as suggested in Subsect. 3.3.

In Fig. 7, the results are exemplarily shown for the three
datasets Q1, B1, and L1. It can be seen that in any case the
usage of anatomical object masks substantially improves the
performance. While for the Q1 dataset the median error for

the case of simple rectangular tracking regions is approx-
imately 300 pixels, the identical setup with object masks
leads to a 10 pixel median error. Note, however, how the
difference between rectangular and anatomical masks de-
creases as the leg length of the analyzed bird increases (see
Table 2 for an overview of the datasets). This interesting ef-
fect can be explained by the fact that for short legged birds
such as quails, occlusions with parts of the torso and the feet
are more likely and will cover a larger relative area. Sum-
ming up, we can verify our assumption that specific anatom-
ical masks drastically improve the tracking results in the sce-
nario at hand and can state that they are an important part of
our tracking approach.

5.5. Computation Times

Our algorithm was solely implemented in C/C++ using the
OpenCV library [BK08]. As suggested in Subsect. 3.4, pre-
computation steps and Fourier transform were used to speed
up the most time-consuming steps of our algorithm. The
experiments were carried out on a standard desktop com-
puter with an Intel R© CoreTM i7-2600 CPU @3.40GHz. The
average tracking speed achieved for the presented experi-
ments was between 7.51 fps (object masks implying many
sub-patches) and 13.73 fps (object masks implying few sub-
patches) per object mask to be tracked. Note that the run-
time of our algorithm heavily depends on the used num-
ber and size of the sub-templates. As for the x-ray locomo-
tion scenario tracking quality is more important than real-
time tracking, the parameters were selected very defensively.
However, for applications requiring real-time processing, the
parameters can easily be adopted to allow 30 or more frames
per second, while giving only slightly worse results.

6. Conclusions and Outlook

We have presented a fast and robust method for landmark
tracking in x-ray locomotion sequences. By extending robust
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state-of-the-art sub-template based matching approaches, we
are able to successfully track landmarks undergoing se-
vere occlusions. One main advantage of our proposed ap-
proach is that the tracking hypotheses generated by sub-
templates are fusioned in a soft manner, whereas recent
approaches assume a hard decision for each sub-template.
Also, we showed how the usage of additional—in our case
anatomical—knowledge can be used to further improve the
tracking results. Based on diverse experiments on real-life
x-ray locomotion datasets, we showed that our approach is
superior to other robust approaches.

An interesting point for further work is the inclusion of
context knowledge, e.g. by exploiting the relative positions
of other landmarks for the tracking process.
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