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Abstract

We propose a hybrid continuum—discrete model to simulate tumour growth on a microscopic scale. The lattice—
based spatio—temporal model consists of reaction—diffusion equations that describe interactions between cancer
cells and their microenvironment. The components that are typically considered are usually nutrients, like oxygen
and glucose, matrix degrading enzymes (MDE) and the extracellular matrix (ECM).

The in—vivo processes are very complex and occur on different levels. This in turn leads to huge computational
costs. Thus, the aim is to describe the processes on the basis of simplified mathematical approaches, which depict
realistic results at the same time. In this work we discuss if we have to model the MDEs or if the ECM can be
modelled directly depending on the cancer cells distribution. Comparing the results for modelling the tumour
growth with the common choice and with the simplified model without MDE, we observe almost similar results.

The model without MDE allows for a straightforward, fast and accurate implementation.

Categories and Subject Descriptors (according to ACM CCS):

Development—Modeling methodologies

1.6.5 [Simulation and Modeling]: Model

1. Introduction

Cancer is one of the most common diseases in adulthood and
has gained more and more attention in research of different
scientific disciplines in recent years.

Generally, the modelling of tumour growth is described
either on a macroscopic [KCM*10], a microscopic [KTI*00,
RAI10] or a molecular level [AMDO5], rarely multi-scale
approaches are used. The macroscopic models are gener-
ally based on continuous, deterministic reaction-diffusion
formalisms [KCM™*10] and lead to a global description of
the tumour as it can typically be observed in magnetic
resonance imaging or computed tomography. Such model,
though allowing for visual comparisons with medical, non-
invasive in-vivo imaging data, neglects the complex pro-
cesses on the microscopic and molecular level. Mathemati-
cal approaches for simulating tumour growth on the cellular
level are typically formulated in terms of discrete methods
like cellular automata [HDO8, FMV02] or agent based mod-
els [CUD10,DSCHO09].

The main core for simulation methods is the simplification
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of the underlying complex processes while maintaining the
realistic findings. One of the most important approaches for
modelling cell processes was proposed from Anderson and
Chaplain in 1998 [AC98] where the discretisation of par-
tial differential equations gives a probability range for cells
to move in a specific direction or in some cases to be quies-
cent. For modelling interactions between cancerous cells, the
extracellular matrix (ECM) and matrix degrading enzymes
(MDE) it is common to use a system of partial differential
equations that describe the haptotactic and/or chemotactic
movement of the cells [AGL*10, And05, ARGQO09, GCO0S8,
JQC10]. For the ECM the equation consists of a degrad-
ing and a remodelling term. Degradation occurs where the
enzymes are located, hence the first part of the ECM de-
pends on the MDE. It has been proven that the degradation of
the ECM occurs because the MDEs are secreted by tumour
cells [ITMO1]. As described above, mathematical modelling
provides for simplifying the very complex real processes.
To this end we introduce a model describing the same pro-
cesses as above, without explicitly modelling MDE. That is
the degradation of the ECM modelled without the specific
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term of the matrix degrading enzymes. We assume in our
implementation that the cancer cells themselves are able to
degrade the matrix. To get similar results, we determine the
level of the degradation on the basis of the degrading param-
eter ay. To prove the findings, we compare the two models
by simulating different initial conditions for the ECM and by
different arrangements of the nutrient delivering blood ves-
sels. In this work we neglect the cell-cell adhesion of cancer-
ous cells to better focus on the influence of the MDEs and
matrix.

In this paper, we aim to simplify the mathematical mod-
elling of the complex biological processes. In section 2, we
study the common method for cellular interactions described
by eq. (1) and the simplest possible case of it is described in
equation (2). Finally, in Section 3, we discuss our results for
different positions of capillaries and for a random or constant
distributed extracellular matrix, highlighting the successes
of our approach. In section 4 we conclude with a short out-
look.

2. Methods

We simulate brain tumour growth on a two-dimensional area
of brain tissue Q = [0,1] x [0, 1] with boundary I" := 9Q. A
400 x 400 grid with a space step of h = 0.0025 is overlaid
forming the basis for the discrete methods. The domain we
consider is defined in a region of 4mm X 4mm, thus each
square of the grid corresponds approximately to the area of
a tumour cell, i.e. 6.25 x 10~ cm? (cf. [AndO05]). The grid
is introduced for computed tumour or necrotic cells but not
for the host tissue considered, because of the clumps like
growth of the tumour. For interactions of the tumour with
the host tissue, we recommend to look at the macroscopic
scale [MBT*11, BMT*10]. At this level one gets a better
representation of processes like the displacement and defor-
mation of the environmental tissue.

2.1. Hybrid Model

As for the description of the tumour growth, we use a hybrid
model [And05], i.e. the model includes continuous and dis-
crete methods. The complete system of equations consisting
of the distribution of cancer cells ¢, nutrients concentration
u, ECM f and MDE m is given by:

% =D Ve — V- (cVu) —pV - (cVf), (la)
ou 2

5 =D,V u—oyu, (1b)
)

L= —apfm s, (10)
aairl':l = DmVZm + Bmc — O, (1d)

where D., D, and D,, denote the diffusion coefficients of

the tumour cell, oxygen and enzymes, respectively. Further-
more, % is the chemotaxis coefficient and p the haptotaxis
coefficient. Uptake and decay of particular substances due
to tumour growth are o, and o7 (uptake rate for glucose and
ECM) and au, (decay coefficient for MDE). B¢ and 3, repre-
sent the remodelling parameter for ECM and the productions
constant for MDE, respectively.

For our new model we assume that the extracellular ma-
trix is directly affected by the cancerous tissue i.e. we unify
(1c) and (1d) such as to model solely the ECM. The only
change we made in this model is the first component of the
ECM equation, i.e. from —azfm to —as fc. The complete
system is now defined as follows:

% =D, V?c—yV - (cVu)—pV-(cVf), ()
ou 2

5= DuNV"u — oyu, (2b)
d

a—]tC:—(XffC-i-Bff (20)

Due to the diffusive behaviour of the MDEs, we regulate
the uptake of the extracellular matrix through the varying
parameter O.y. Both models are initialized in the same way:
100 tumour cells are placed in the middle of the domain.
As for the ECM we refer to section 2.3. The amount of ini-
tially available nutrients (Fig. 1, left image) are estimated
from the steady state solution of (1b)/(2b). The distribution
of the nutrients over time is shown in Fig. 1, right image.
The initial MDE concentration is set to zero throughout the
domain. Depending on the location of the blood vessels, we
have Dirichlet and Neumann boundary conditions (see sec.
2.3). For the ECM and MDE we assume zero flux boundary
conditions.
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Figure 1: The distribution of the nutrients with blood ves-
sels at all surrounding sides at time t=0 (left) and 335h
(right). Colouration as given in the look-up table.

2.2. Non-dimensionalisation

We rescale and non-dimensionalise the variables and param-
eters of the systems (1) and (2) so that all computed quan-
tities are of similar magnitude in the range [0,1]. The new
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(a) modelled with (1), (b) modelled with (1), t=325h

t=100h

(d) modelled with (2), t=325h

(¢) modelled with (2),
t=100h

Figure 2: The distribution of the ECM with constant initial
condition modelled with method (1) and (2) at time t=100 h
(left), 335 h (right). Colouration as given in the look-up ta-
ble.
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Figure 3: The distribution of the MDE at time t=100 h (left)
and 335 h (right). Colouration as given in the look-up table.

dimensionless variables are defined as:

. X ) t n c

X= — = — = —
L T o’

U A . m

U= —, fzia m=—. (3)
uo Jo mg

For the appropriate length scale L we use 0.1cm (taken
from [AGL*10, GC08]), for the time T = L?/D, where
D= 10"%cm? /s is a representative diffusion coefficient
(c.f. [GCOS8]). For the tumour cell density ¢, the nutrient
concentration #y and ECM density fy we follow [AndO5],
the matrix degrading enzyme density mg = 0.1nM is taken
from [AGL*10].

For the dimensionless cell diffusion coefficient of the tu-

mour cells we get D, = 13" = 107> and for the dimension-

less haptotaxis parameter p = % = 0.26 [And05, GCO8].
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We assume the chemotaxis parameter ¥ to be equal to
the haptotaxis parameter, so the cells are equally attracted
to nutrients and interacting with the ECM. The parameter
Dy =107 cmz/s is taken from [And05], so we get D, =
TL%“ = 10. The uptake rate is assumed to be 0y = 0% =
6.25-107>. The parameters of the MDE, ﬁm =land b, =0
are taken from [And05]. The dimensionless diffusion coeffi-
cient of the MDE is assumed to be 0.08. For the ECM uptake
and the remodelling part we choose different parameters for
system (1) and for (2). For the MDE dependent model, we
follow [SRMLO09]. Apart from that we assume for the con-
stants &y = 0.01 and ﬁ_f- = 0.001 because of the differences
of MDE and cancer. Hence, we drop the hats in the following
for notational convenience.

2.3. Numerical Implementation

For discretising the systems of partial differential equations
(1) and (2) we use standard finite-difference and the finite
element method. For equations (1a) and (2a), respectively,
we use the resulting coefficients of the five- and nine-point
finite-difference stencil to generate the probabilities of the
movement of an individual cell in response to its local mi-
lieu. The 5-point stencil is equivalent to the von Neumann
neighbourhood and the 9-point stencil to the Moore neigh-
bourhood. We implement both and use a switching mech-
anism to select one of them for each iteration (see section
2.5). Witht =mk, x=ihand y = jh (m , k, i, j, h>0)
we use forward differences at time point #;; and second or-
der central differences for the spatial derivative at point x; ;.
The resulting equation for the 5-point stencil governing the
chemotactic-haptotactic migration of the tumour cell (1a)
and (2a) has then the form

m+1 m m m
ij =Po-cijtPrcipjtPrciog;

m m
+P3-cijr1+Pa-cij,

c

where Py is proportional to the quiescent cells. Py, P>, P3, Py
are probabilities that are proportional to a movement of the
cell to the right, left, up or down, respectively. For the 9-
point stencil, the resulting equations are straight forward, we
just have additionally the probabilities Ps, Pg, P7,Pg, which
are proportional to a movement of the cell to the bottom
right, bottom left, top right and top left, respectively. For the
computation of the nutrients (1b), (2b) and MDE (1d) we
use the method of finite elements. Because of the discrete-
continuum interaction in every time step, we have to solve
the equations in the steady state. The boundary and initial
conditions for nutrients depend on their position relative to
the oxygen and glucose delivering blood vessels or capil-
laries. This can be modelled by placing them at all four sur-
rounding boundaries, at two of them, or on a single side only.
For the sites occupied by blood vessels we apply Dirich-
let boundary conditions with constant functions. For the re-
maining boundaries we use zero flux boundary conditions
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(Neumann). Thus at any time ¢ € [0, 7]
ou/on=0

U=ug onI'p,

on FN,

where I'y and I'p are the Neumann and Dirichlet bound-
ary, respectively, with 'y UI'p =T. We set u; = 1 since the
concentration of glucose and oxygen is highest in the capil-
laries. For the extracellular matrix we model different initial
conditions. On one side we take random values between 0
and 1, which corresponds to the density of the ECM fol-
lowing [AndO5]. On the other side we take a constant value
f(x) = 0.8 to allow for the assumption that the density of
the ECM is high at the beginning, but smaller than 1, which
would be equivalent to a maximum of density. Fig. 2 depicts
the distribution of the ECM with a constant initial condition
modelled in dependency of the MDE (Fig. 2(a), 2(b)) and
with the method (2), (Fig. 2(c), 2(d)). This choice of value is
taken in reference to [ZamO05], where the extracellular space
is described.

2.4. Cell actions

For modelling the cell actions proliferation, motility, death
and quiescent we have to look at some criteria. In each time
step and for each tumour cell we account for the local nu-
trient concentration and decide then how the cell will react.
In case that the oxygen value is under a critical threshold
acrir = [0.2,0.6], we assume that with a probability of 80%
the cell will die due to insufficient oxygen. Thus, the cell
consequently is marked as necrotic tissue and not consid-
ered for the next step. After checking the necrosis criteria,
each cell moves according to the scheme described in sec-
tion 2.3. In case the nutrient concentration is high enough,
the cell is selected to divide. The duration of the proliferation
takes some hours, in general a day [AMDOS5]. We assume
that the cell cycle takes eight hours, which is realistic for
malignant tumours [And05]. In case there is no free place in
the neighbourhood, the tumour cell becomes quiescent until
a free place becomes available or the cell becomes necrotic
due to insufficient oxygen.

2.5. Neighbourhood and Update

For lattice-based models the update of the state of an indi-
vidual cell is computed on the basis of its local neighbour-
hood. We use a 50/50 probability to decide if we take the
eight neighbours into account or the four orthogonally sur-
rounding cells [TMS*11]. At each discrete time point and
for each cell in order to decide whether the Moore or the von
Neumann neighbourhood is favoured, we generate a random
number.

Additionally, cells are not updated in a left-to-right, top-
to-bottom manner but randomly [And05]. If we would run
sequentially over the lattice to look at every tumour cell one
by one, the first cell has almost always more possibilities for

migration (in case of division: to place the daughter cells)
than the one sitting very next to it.

3. Results and Discussion

For all simulations we show the progression of the extra-
cellular matrix, the nutrient distribution, the tumour cell ar-
rangement and additionally in case method (1) is used the
matrix degrading enzymes. We show all results after 200 and
640 iteration steps, which is equivalent to a period of time of
100 h and 325 h, respectively. At first computer simulations
using system (1) have been run assuming a random initial
ECM distribution (see also sec. 2.3). Corresponding results
are shown in Fig. 4. We compared these data with the simu-
lation results of system (2), i.e. without explicitly modelling
the MDE (Fig. 5), but using the same initial conditions. Ob-
viously expected differences for the ECM in the Fig. 4(a)
and 5(a) can be observed, since the degradation is modelled
differently. The extracellular matrix in Fig. 4(a) has been re-
duced through the diffusive MDEs shown in Fig. 4(c). This
is because the parameter oy has been chosen to be smaller
than the one in model (1).

Comparing the tumour cell distribution in the Fig. 4(d),
(h) and 5(c), (f), respectively, a quite similar size of the bulk
can be observed. This becomes even more evident in Fig.
6 representing the difference image of the tumour cell dis-
tribution from Fig. 4(h) and 5(f). Apart from a small rim,
only zero entries occur. The points with values 1 and -1
show the missing tumour cells in one of the pictures, the
entries between these values denote different states of the
cancerous cell (proliferating, quiescent, necrotic). It should
be noted that this must not be misunderstood as a qualitative
difference error estimation because of the probabilities and
randomly-guided model (see sec. 2).

We now vary the placement of the blood vessels and ini-
tial condition for the ECM into a constant value to evalu-
ate the above statement. Fig. 7 shows the results simulated
with Dirichlet and Neumann boundary conditions, i.e. the
capillaries are placed at two sides, at the top and at the bot-
tom of the domain. Contrary, Fig. 8 shows results modelled
with the second approach (2). Again, we notice a quite sim-
ilar structure of the tumour 7(d), (h) and comparing 8(c),
(f). However, the invasive spatial expansion of the cancerous
cells are even better noticeable in Fig. 8(c) and (f). After 100
hours the tumour becomes a little bit more spherical using
the second method ( cf. Fig. 8(f)), but after 225 h a substan-
tial proliferation towards the nutrients delivering vessels can
be observed (cf. Fig. 8(f)). Here, we gain quite equal results
for the cancer cells. We can also observe that the ECM in
the Fig. 8(a) is at first just a little degraded compared to Fig.
7(a), because of the strong diffusion of the MDE. However,
after 325 hours the distribution of the extracellular matrix in
Fig. 8(d) manifests similar to the tumour in Fig. 8(f). These
observations are also true for Fig. 9 and 10 where we assume
nutrients delivering blood vessel at only one side. This can
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Figure 4: Results of method (1) at time t=100h (a-d) and
t=325 h (e-h), respectively. The initial condition of the ECM
is a random distribution (see sec. 2.3), the blood vessels
are placed at all surrounding sides. Colouration as given in
the look-up table. For the cancerous cells yellow represents
necrotic tissue, red quiescent cells and dark red proliferating
and migrating cells.

be understood as an indicator for the potential of the second
method to be used as a realistic description of the tumour
without modelling the MDE explicitly.
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Figure 5: Results of method (2) at time t=100h (a-c) and
t=325 h (d-f), respectively. The initial condition of the ECM
is random distribution (see sec. 2.3), the blood vessels are
placed at all surrounding boundaries. Colouration as given
in Fig. 4.

As for the computational complexity of the two employed
models, the proposed model (2) takes about 2.5 less time
compared to model (1) in case the ECM is initialized with a
random distribution (cf. Table 1). This gain in run-time does
even increase to a factor of about 4.6 in case the ECM is ini-
tialized to a constant value. Simulations have been computed
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using a single-threaded MATLAB implementation and have
been run on a Pentium 17920 with 2.67 GHz and 12 GB of
RAM.

initial ECM | capillaries || model 1 | model 2
all sides 85 32
random two sides 125 48
one side 138 61
all sides 92 28
constant two sides 133 31
one sides 151 24

Table 1: Computation time in minutes for the two models at
different configurations.

Figure 6: Difference image of the tumour cell distributions
computed with the two described methods.

4. Conclusion and Outlook

This paper is devoted to the modelling of cellular processes
of tumour cells, which is itself part of a complex system and
the availability of efficient means therefore an essential pre-
requisite for modelling tumour growth. To this end we devel-
oped a novel lattice based approach that does not only pro-
vide a significant simplification compared to previous mod-
els but is also computationally efficient. This is achieved
via unifying two partial differential equations allowing for a
straightforward, fast and accurate implementation. Compar-
ing the results for modelling haptotactic-chemotactic cancer
growth using the common choice of the environment and the
above introduced exclusion of the MDE, we observe a rather
similar size of the tumour. The shape of the cancer mod-
elled with the novel introduced method shows a more dif-
fusive character, i.e. the cells are migrating farther from the
bulk, constituting the high malignancy of the tumour. This
diffuse tumour behaviour is very characteristic for this type
of cancer as it has already been shown for in-vitro exper-
iments [ITMO1]. Faced with the requirement of modelling
much more complex processes than the degradation of the
ECM through the MDE (in order to adequately model tu-
mour growth) the proposed model provides a reasonable
trade-off between complexity and accuracy. Prospectively,
it will also be essential to extend the devised model by

cell-cell interactions and by incorporating the immune sys-
tem [MPO6] for a more realistic description of the in-vivo
processes. In this case, the established efficiency gain, might
pay off even more through alternative numerical solvers than
the implemented finite element method. Further, as stated
above, we aim at devising multi-scale tumour growth mod-
els that not only account for cell-cell interaction but also for
molecular events as well as for information available from
the macro-environment.

Acknowledgements A.T. and S.B. are financially supported by the European
Union and the State Schleswig-Holstein (Program for the Future—Economy: 122-09-024).
T.A.S. is supported by the Graduate School for Computing in Medicine and Life Sciences
funded by Germanys Excellence Initiative [DFG GSC 235/1].

References

[AC98] ANDERSON A., CHAPLAIN M.: Continuous and discrete
mathematical models of tumor-induced angiogenesis. Bulletin of
Mathematical Biology 60 (1998), 857-900. 1

[AGL*10] ANDASARI V., GERISCH A., LOLAS G., SOUTH A.,
CHAPLAIN M.: Mathematical modeling of cancer cell invasion
of tissue: biological insight from mathematical analysis and com-
putational simulation. J. Math. Biol. DOI 10.1007/500285-010-
0369-1 (2010). 1,3

[AMDO5] ATHALE C., MANSURY Y., DEISBOECK T. S.: Sim-
ulating the impact of a molecular decision-process on cellular
phenotype and multicellular patterns in brain tumors. J of Theor
Biol 233 (2005), 469-481. 1, 4

[AndO5] ANDERSON A.: A hybrid mathematical model of solid
tumour invasion: the importance of cell adhesion. Math. Med.
Biol. Vol. 22 (2) (2005), pp. 163-186. 1,2, 3,4

[ARGQO09] ANDERSON A., REINIAK K., GERLEE P., QUAR-
ANTA V.: Microenvironment driven invasion: a multiscale mul-
timodel investigation. J. Math. Biol. 58 (2009), 579-624. 1

[BMT*10] BECKER S., MANG A., ToMA A., ScHUTZ T.,
Buzug T.: In-silico oncology: An approximate model of brain
tumor mass effect based on directly manipulated free form defor-
mation. Int. J. Comput. Assist. Radiol. Surg. 5 (2010), 607-622.
2

[CUD10] CHENL. L., ULMER S., DEISBOECK T. S.: An agent-
based model identifies mri regions of probable tumor invasion in
a patient with glioblastoma. Phys. Med. Biol. 55 (2010), 329—
338. 1

[DSCH09] DREAU D., STANIMIROV D., CARMICHAEL T.,
HADZIKADIC M.: An agent-based model of solid tumor pro-
gression. J. Bioinform. Comput. Biol. 5462 (2009), 187-198. 1

[FMV02] FERREIRA JUNIOR S., MARTINS M., VILELA M.: A
reaction-diffusion model for the growth of avascular tumor. 1

[GCO8] GERISCH A., CHAPLAIN M.: Mathematical modelling
of cancer cell invasion of tissue: Local and non-local models and
the effect of adhesion. J. of Theor. Biol. 250 (2008), 684-704. 1,
3

[HDO8] HATZIKIROU H., DEUTSCH A.: Cellular automata as
microscopic models of cell migration in heterogeneous environ-
ments. Curr. Top. Dev. Biol. doi:10.1016/S0070-2153(07)81014-
3(2008). 1

[JQC10] JEON J., QUARANTA V., CUMMINGS P.: An off-lattice
hybrid discrete-continuum model of tumor growth and invasion.
Biophysical Journal 98 (2010), 37-47. 1

(© The Eurographics Association 2011.



A. Toma et al. / Is it Necessary to Model the Matrix Degrading Enzymes? 367

. I”
o6
[
Im
o

(a) ECM U (b) nutrients
(c) MDE Ea (d) :mur
|
"1
(e) ECM (f) nutrients
| o
(2) MDE Eu (h:ur

Figure 7: Results of method (1) at time t=100h (a-d) and
335 h (e-h), respectively. The initial condition of the ECM is
constant (see sec. 2.3), the blood vessels are placed at the
top and bottom. Colouration as given in Fig. 4.

[KCM*10] KONUKOGLUE., CLATZ O., MENZE B. H., STIELT-
JES B., WEBER M.-A., MANDONNET E., DELINGETTE H.,
AYACHE N.: Image guided personalization of reaction-diffusion
type tumor growth models using modified anisotropic eikonal
equations. [EEE Transact. Med. Imaging. 29 (2010), 77-95. 1

[KTI*00] KANSAL A., TORQUATO S., IV G. H., CHIOCCA E.,
DEISBOECK T.: Cellular automaton of idealized brain tumor
growth dynamics. BioSystems 55 (2000), 119-127. 1

(© The Eurographics Association 2011.

08

(a) ECM (b) nutrients

(c) tumour

(d) ECM (e) nutrients

a

(f) tumour

Figure 8: Results of method (2) at time t=100h (a-c) and
335 h (d-f), respectively. The initial condition of the ECM is
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