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Abstract
In the last three years a number of multi-volume GPU ray casting systems have been presented. Some of them
are very powerful and provide a wide variety of features. However, these approaches are either only capable of
displaying multiple modalities together without logically combining them or they lack the necessary flexibility for
rapid visual development. These features are fundamental for visualizing the coherent information of multimodal
data. In this paper we therefore present an integrated way of visually specifying a volume rendering pipeline
including a flexible multimodal compositing of sampling, transfer functions, logical operators and shading. As a
result the data flow can be visually constructed and retraced from preprocessing through to the shader operations.
Hence intuitive visual prototyping of multimodal transfer function compositing is possible at runtime.

Categories and Subject Descriptors (according to ACM CCS): l.3.3 [Computer Graphics]: Picture/Image
Generation—l.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Multimodal data acquisition appears to be the most promis-
ing method for diagnosis by means of volumetric datasets
in future. However, visualization of multimodal data is still
quite complicated. Especially when modalities exhibit di-
verging resolutions, extents or orientations (e.g. they were
taken from different scanners) their combined visualization
is complex. While alternative visualization methods like
glyphs (e.g. [OHG∗08]) or “linked feature display” are al-
ready well investigated, up until a couple of years ago it
has technically not been possible to visualize multimodal
data via direct volume rendering, due to lack of computation
power. Instead, compositing could only be applied in prepro-
cessing, utilizing resampling of the volumes to a common
multimodal grid, which introduces a lot of sampling errors
and is time-costly. Therefore flexible experimentation with
multimodal compositing was not imaginable. In the last few
years there has been a great deal of work on GPU-based ren-
dering methods for multiple overlapping volumes. However,
for experimenting with multimodal visualizations the inter-
section of the volumes is most important, reducing the com-
plexity of this problem. However, it is not only important to
display several volumes, but also to combine their provided
information in order to attain a more expressive visualiza-

Figure 1: Simple example of a multimodal pipeline in our
system showing a heart with a ray casting renderer (a). The
PET volume (b) is co-registered to the CT volume using a
transformation node (c) and determines the rgb-color (d) for
each sample, that is defined by the color ramp TF (e). The
CT volume (f) on the other hand serves as the basis for the α

value (g) of each sample, defined by a 1D TF (h). The three
connection lines indicate which node provides which widget.
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tion. Most of the proposed systems are capable of displaying
several volumes together, but not to combine their informa-
tion. In this paper we present a flexible but integrated data
flow, for exploring multimodal compositing schemes in di-
rect volume rendering. Using this, the data flow can be eas-
ily constructed and retraced from preprocessing to the final
composed color. This approach is aimed at engineers that
experiment with new modalities and visualization methods.
We provide an intuitive and simple interface, as we treat vol-
umes, computed metrics (e.g. curvature or size) and segmen-
tations uniformly within the pipeline. On the other hand this
approach supports a deep understanding of the created visu-
alizations, which is necessary to improve them. Hence, new
logical combinations of modalities, metrics, transfer func-
tions and segmentations can be created in an efficient way
but without programming skills.

2. Related Work

Most of the recent papers dealing with multimodal volume
rendering focus on rendering multiple arbitrary aligned vol-
umes correctly in real-time, including all overlapping parts.
There are essentially two strategies for solving this problem
for GPU-based approaches: depth peeling [RBE08, PHF07,
BBPtHR08] and binary space partitioning [LLHY09,LF09].
If someone wants to combine the information of differ-
ent volumes logically, he needs to specify separate shading
pipelines for all overlapping parts. E.g. in Figure 1, where
PET is used for color and CT for opacity, three specifications
would be necessary. One for the region with PET and CT,
one for PET only and one for CT only; that is 2n− 1 spec-
ifications for n volumes, leading to a very high effort. But
in medical diagnoses the information of different modalities
(like PET and CT) needs to be combined, to be insightful.
Since the organ of interest is always in all of these modali-
ties, typically the specification of the region intersecting with
all modalities is the most important one. That is why we de-
cided to restrict the rendering to this region, demanding only
one specification from the user. Nevertheless, this technique
is extendable to other not completely overlapping parts of
the scene.

In [CS99] three intermixing strategies have been formu-
lated (Illumination Level Intermixing, Accumulation Level
Intermixing and Image Level Intermixing), that were imple-
mented in most of the stated publications. But these strate-
gies are formulated in such a way, that a single volume is
always given a visual appearance unaffected by the other
volumes. The intermixing strategy only enables the joint dis-
play of the volumes with their individual appearance. This is
because only chains of processing stages are defined, whose
color values are joined by the selected intermixing scheme.
Graphs are required in order to make use of the full infor-
mation given at a sample’s location in multimodal data by
giving a sample a visual appearance affected by the other
volumes. Figure 2 shows an example with three modali-

Figure 2: All subsets of three overlapping volumes contain-
ing one different positioned sphere each are separated and
colored individually during rendering using logical opera-
tors and a two-dimensional transfer function. The appear-
ance of each modality is affected by all others.

ties, where each modality is given an appearance affected
by all others. However, in [BBPtHR08] two modalities can
be combined by a two-dimensional transfer function to use
their coherent information. Up to now, a general graph can
only be constructed by the software system of [PHF07]; the
other proposed systems only allow for data flow chains, that
are merged by predefined intermixing schemes. Compared
to our pipeline, the system in [PHF07] only allows for a
specification of shading but is missing sampling that is im-
portant for seamless integration of segmentations and e.g.
iso-surface rendering. Furthermore, their system lacks the
direct visual connection between incoming data of the pre-
processing and the shader graph, leading to a data flow that
is difficult to retrace. Finally their system is using texture
slicing whereas our system uses GPU ray casting.
In [RBE08, PHF07, LLHY09, LF09] shader instantiation is
used to avoid costly conditional branching on the GPU. We
adopted this technique and adapted it to the conditions of the
flexible pipeline.

3. Data Flow Pipeline

Many volume rendering systems try to simplify the user in-
terface as much as possible, regardless of technical details
and properties. Such a concept is only adequate if the behav-
ior of the software is always the same. In case of a modi-
fiable and thus unsteady pipeline, it is necessary to visual-
ize the behavior of the pipeline e.g. with a data flow graph.
But the degree of freedom when constructing a pipeline is
bounded, due to the fact that it needs to be technically re-
alizable. I.e. global functions operating on volumes in the
preprocessing and local functions operating on a per sample
basis, that need to be performed on the graphics hardware,
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dictate a rough framework to the structure of the pipeline.
To control the data flow from loading to final coloring, we
decided to construct it graphically in one single pipeline,
despite of the named technical issues. It consists of ele-
ments with input and output ports, elements containing el-
ements and connections that define the data flow between
compatible ports. To make clear and enforce the technically
given order of preprocessing functions and local functions
per sample, these element groups are visually nested. Out-
side the rendering element is the data flow of the preprocess-
ing stages. Inside the rendering element is a subpipeline that
produces a color and an opacity for each sampling position.
This transition is thereby visible and enforced but unobtru-
sive concerning the interaction with the user interface.

The shading elements of the subpipeline provide GLSL
snippets that are composed to a shader program, that is used
for the GPU-based rendering. The connection between the
outer and inner data flow is specified clearly by connection
ports. Small icons at the ports and more detailed tooltips re-
veal the signature of a port, and hence, which elements can
be connected. All elements and connections are inserted via
drag&drop into the data flow graph, whereby connections
between incompatible ports and circles within the pipeline
are automatically suppressed. Figure 2 shows a result illus-
trating the flexibility of our system, which provides the full
power of set theory.

The pipeline concept fits to all renderers that provide sam-
pling positions. As most other renderers do that use ray
casting, we encode the start and end points of each ray in
precomputed entry and exit textures. We currently provide
a ray caster and a renderer for curved planar reformations
[KFW∗02]. Both use the same render core and only distin-
guish in the way they compute the rays’ entry and exit po-
sitions. Hence, both encapsulate the same concept for con-
structing subpipelines to generate shader code. We decided
to not pass entry and exit textures as parameters through the
pipeline, since this part of the pipeline is almost always the
same. Hence, renderers must provide their own entry/exit
texture computation. But that clearly simplifies the pipeline
specification.

3.1. Elements

Although being technically severely different, the user han-
dling of the preprocessing elements and the shading ele-
ments are absolutely identical. This way the user is not con-
fronted with the difference of shaders, CPU programs or
GPGPU programs. As a second advantage, the whole data
flow can be visualized in a single graph, leading to a much
easier creation and specification of the data flow. Elements
that contain inner pipelines can be displayed "expanded" and
"collapsed" to improve the overview.

The result of many elements does not only depend on the
input values but on additional properties. These properties

Figure 3: Example of how different metrics computed in
preprocessing can serve special visualizations. Shown are
vessels on the pericard in a CT-angiographic dataset en-
hanced by curvature and gaussian metrics. This kind of com-
bination is only possible with data flow graphs. Figure 4
shows the corresponding pipeline. The small pictures under-
neath show results without the use of curvature (left) and
without suppressed lungs (right). Even those would not be
possible with data flow chains.

are displayed on a property pane that comes with every el-
ement. See Figures 5 – 7 for an exemplary shader element
that uses properties. To develop new elements more rapidly,
we programmed a generator that produces dummy elements
(preprocessing elements as well as shader elements) with
ports and properties, that are automatically arranged on the
property pane and saved, when the pipeline is being saved.
This way the programming of new elements is reduced to a
minimum. E.g. for most shading elements only the body of
one GLSL function has to be programmed.

3.2. Preprocessing Pipeline

In the preprocessing part of the pipeline data is loaded and
processed by algorithms that need to run only once (or at
least not every frame) and do not affect the shader pro-
gram. The processed data are basically volumes, meshes and
points and are passed through by the connections. Volumes
are passed through voxel by voxel instead of moving whole
buffers. This way memory consumption can be reduced to
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Figure 4: Pipeline of Figure 3. In the upper chain of the pipeline the CT data is preprocessed by a gaussian filter followed by a
computation of the curvature κ1 to emphasize the small vessels of the pericard in the original dataset. The lower chain is used
to suppress the lung vessels by eroding them with a widespread gaussian filter. The ray casting element contains 3 samplers, 4
transfer functions, a gradient element, a phong element, a multiply- and an add-element to combine the metrics usefully. The
whole data flow from preprocessing to final shading can be retraced in one graph.

a minimum, because many functions can be implemented
inline without caching (e.g. an element that crops the in-
coming volume can be implemented by just modifying the
requested index). Ports provide metadata to hold resolution,
voxel spacing, transformation etc.. In contrast to software
systems that use image level intermixing, in this stage there
is no data flow containing images or other rendering data.

Some of our preprocessing elements make use of
OpenCL, to reduce execution time. Additionally we de-
cided to provide a generic OpenCL element that processes
OpenCL programs that contain simple convolutions. Besides
these simple convolution filters we are currently able to com-
pute more complex metrics such as median, standard devi-
ation, size [CM08], vesselness according to [PBB05] and
[FNVV98] and curvature [KWTM03] to use them as addi-
tional modality.

Figure 3 shows how metrics computed in the preprocess-
ing can visualize the individual vessels on the pericard while
simultaneously suppressing the lung vessels (that share the
same value and curvature). With data flow chains only, these
visualizations would not be possible. Figure 4 shows the cor-
responding pipeline. The two gaussian filters make use of the
stated generic OpenCL element.

3.3. Shading Pipeline

The shading pipeline is always a subpipeline of a renderer. It
contains shading elements that provide GLSL shader func-
tions. Due to the varying elements, the varying number of
volumes and meshes used, the shader is generated during
runtime by the shader composer. This way costly condi-
tional branches in the shader are avoided. Input and out-
put ports are directly made available as GLSL variables and
properties are automatically bound to uniforms. To avoid
naming collisions between multiple instances of the same

shading element the variables are given a unique name inter-
nally.

The position of the samples depends on the renderer.
Therefore the renderer passes the volumes including the cur-
rent sampling position as well as the texel spacing to the in-
ner shading pipeline. This integrated embedding is also rep-
resented by a triple-port that connects data flow between in-
ner and outer pipeline. The expected result of each sampling
procedure is an RGB and an opacity value, which is why
these two ports are placed on the right side of each renderer.

Figure 5: The upper part of the figure shows a portion of an
inner shading pipeline. The element "DistanceToPoint" (a)
computes the sample’s distance to a point specified in the
properties (b). Based on this metric the transfer function (c)
defines a function (d) that distinguishes near and far sam-
ples. In the not shown part of the pipeline two appearances
(i.e. color and opacity per sample) are defined, one for the
near region (e) and one for the far region (f). The "And" el-
ements (g) in combination with the "Not" element (h) use
the mapping of the "distance transfer function" to set the al-
pha value of one appearance to zero before blending (i). See
Figure 6 and 7 for C++ and GLSL shader code used for the
"DistanceToPoint" element.
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distancetopoint.cpp 1

/*
 * VolumeStudio2 - Visualization of Medical Data
 *
 * Copyright (C) 2010 The VolumeStudio2 Authors
 *
 * Use of this source code is governed by the LGPL license, see the
 * copyright.txt file and license.txt file for details.
 */

#include "distancetopoint.h"

#include <QFile>

#include <tgt/shadermanager.h>

#include <core/pipeline/port.h>
#include <core/logging/logmanager.h>
#include <core/properties/vector3property.h>

namespace vs2 {

    using tgt::vec3;
    using tgt::Shader;
    using Port::Direction_Input;

/** This shading element computes the sampling position's  distance  to  the  specified  point.  */
DistanceToPoint::DistanceToPoint() :
    ShaderElement("DistanceToPoint"),
    _samplingPosInputPort(new Port(this, "vec3", "samplingPos", Port::Direction_Input)), // create input port  
    _distanceOutputPort(new Port(this, "float", "distance", Port::Direction_Output)),    // create output port  
    _pointProperty(new Vector3Property("point", "Point",                                 // create property, id, label   
                                       "Point to compute distance to", this,             // description
                                       vec3(0.5f), vec3(0.0f), vec3(1.0f), vec3(0.01f))) // default, min, max, step   
{
    addPort(_samplingPosInputPort);                                                      // add ports 
    addPort(_distanceOutputPort);
    addProperty(_pointProperty);                                                         // add and connect property

// add uniform "point" and 
// bind to _pointProperty

   
    connect(_pointProperty, SIGNAL(valueChanged()), this, SIGNAL(shaderOutputChanged()));
    addShaderUniform("point", "vec3", _pointProperty);
}

/** Implementation of ShaderElement method. */
void DistanceToPoint::bindShaderUniforms(const QString &prefix, Shader *shader) const
{
    shader->setUniform((prefix + "point").toStdString(), _pointProperty->getValue());    //bind uniform "point" to
}                                                                                        //value of _pointProperty

DistanceToPoint::~DistanceToPoint()
{
}

/*!
  \brief Implementation of ShaderElement method.
  */
QStringList DistanceToPoint::getShaderIncludes() const
{
    return QStringList();
}

/*!
  \brief Implementation of ShaderElement method.
  */
QString DistanceToPoint::getShaderCode() const
{
    QFile file(":/plugins/transferfunction/distancetopoint.frag");

    if (!file.open(QIODevice::ReadOnly)) {
        LOG_ERROR("Could not open '%s", ASCII(file.fileName()));
        return QString::null;
    }

    return file.readAll();
}

} // namespace vs2

Figure 6: C++ code for constructing the "DistanceToPoint" element (Fig. 5 (a) ) and its properties (Fig. 5 (b) ). Only a few lines
have to be modified when creating new elements with the element generator. Input and output ports are directly made available
as GLSL variables. Properties are bound using addShaderUniform. See Figure 7 for the corresponding shader code.

distancetopoint.frag 1

// distanceToPoint Shader:
// in vec3 samplingPosition
// out float distance
// uniform vec3 point

  
distance = length(point - samplingPos);

Figure 7: The complete GLSL shader code that has to be
written for the "DistanceToPoint" element. The variables
samplingPos, distance and point are bound to their corre-
sponding ports and properties by the shader composer. See
Figure 6 for the corresponding C++ code.

Within the pipeline all compatible ports can be connected.
This way e.g. the gradient can serve as color. We decided
to consequently disjoin color and opacity values in the ren-
dering pipeline. This leads to a better understanding com-
pared to joined RGBA values and to a faster specification
compared to completely disjoined red, green, blue and alpha
channels. Nevertheless, there is no limitation that prohibits
to pass other data types than "float" and "vec3" through the
ports of the elements.

For logical combination of the modalities, there currently
exist the shader elements AND, OR, XOR, NOT, ADD,
ADD-Color, Multiply, Multiply-Color and Blend-RGBA.
Each of them combines the values at the input ports using
the corresponding logical operator. Additional operators can
be generated within seconds, using our element generator.
Additionally two-dimensional transfer functions can be used
to map any two floats within the pipeline to one value.
All in all, for the mapping of values we provide a one-
dimensional, a two-dimensional and a style-based transfer
function. Each of them can output a three-dimensional vec-
tor (typically used as color), a floating point value (typi-
cally used as alpha), or both. Using the logical operators an
arbitrary-dimensional transfer function can be constructed.

Figures 6 and 7 show the main C++ and GLSL code that is
mandatory for a shader element that computes the sample’s
distance to a specified point in the properties. Figure 5 shows
how a transfer function and logical operators can be used

to merge two appearances dependent on the result of this
element. Since the distance is computed in the shader, the
sphere with colored appearance can be moved through the
volume in realtime by changing the position of the specified
point in the properties.

3.4. Texture Lookup

The texture lookup is done within sampling elements in the
pipeline. This way sampling options, such as nearest neigh-
bor, trilinear interpolation and iso-value, can be chosen in-
dependently from the input volume. Additionally, segmenta-
tions can be processed by the same pipeline elements as used
for other modalities by choosing nearest neighbor sampling.
For example it is possible to use a transfer function that maps
the selected segmentation label to 1 and all other labels to
0.3. Multiplying the result to alpha (using the multiply el-
ement) fades out everything outside the selected segmenta-
tion. Figure 8 demonstrates this pipeline inside a curved pla-

Figure 8: Segmentations integrate seamlessly into the
pipeline and are simply treated as another modality. Here a
segmentation is used to modify the opacity value in a curved
planar reformation of a coronary artery.
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nar reformation renderer. Notice that the sampler element for
the segmentation needs the voxel spacing as a third parame-
ter to take samples via nearest neighbor method.

3.5. Histograms

At each position of the shading pipeline, 1D and 2D his-
tograms can be computed, that accumulate the values up to
this stage in the pipeline. Figure 9 shows a simple example
of histograms taken at different stages of the pipeline. This
is a particularly useful feature when combining several met-
rics and modalities by logical operators. Every transfer func-
tion makes use of this feature, too. The computation of the
histograms is done with the method of [SH07] on the GPU
and was extended to 2D histograms. The computation takes
about 100ms, leading to an almost real-time update when
changing a transfer function. To achieve this speed we re-
duced the number of samples to 5 million, which reduces
the quality of the histogram hardly noticeably.

Figure 9: Five histograms taken at several stages of the
pipeline. The first three histograms show the original data
in 1D and 2D histograms. The fourth and the fifth show the
histograms after manipulation by a 1D transfer function as
shown by the red line.

4. Conclusion

In this paper we presented a volume rendering software sys-
tem, which allows a construction of arbitrary multi-volume
pipelines. Volumes in form of original data or modalities,
metrics and segmentation can be arbitrarily combined us-
ing logical operators rather than simply displaying them to-
gether. This way the advantages of the evolving imaging
technologies can be combined without any programming. As
far as we know, our system is the first one that is capable of
this combination, using ray casting. Furthermore, our con-
cept is the first one that combines the visualization of the
preprocessing’s data flow with that of the GPU rendering
seamlessly. In future we want to make the graph more self-
explanatory and add links between elements that shall share
the same properties or parameters. Furthermore, we are in-
terested in porting this pipeline concept to an open source
volume rendering platform to make it available to a wider
community.
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