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Abstract
The main purpose of this paper consists of demonstrating advantages of using implicit filtering schemes (non-
causal IIR filters, in the signal processing language) for some basic image processing and geometric modeling
applications. In particular, applications of implicit filtering for curve subdivision, image filtering, estimating im-
age derivatives, and deblurring Gaussian blur are considered.

1. Introduction

Implicit finite differencing and filtering schemes constitute a
powerful and widely used tool for accurate numerical simu-
lations of physical problems involving linear and non-linear
wave propagation phenomena [CL04], [PT05, Section 5.8],
[LC09, Chapter 5]. Implicit finite difference schemes were
considered by Collatz in his influential book [Col60] on nu-
merical analysis of differential equations and implicit fil-
ters were studied by Raymond [Ray88, RG91] in relation
with modeling weather phenomena. Widespread use of im-
plicit finite differences and filters had been triggered by
Lele [Lel92] who demonstrated their usefulness for compu-
tational problems with a range of spatial scales.

In the signal processing language, implicit filtering
schemes correspond to noncausal infinite impulse response
(IIR) filters. In image processing applications, finite impulse
response (FIR) filters dominate over IIR image filtering
schemes [Lim90,LA92] in spite of existence of highly com-
putationally efficient implementations for the latter [DW97].

The main contribution of this paper consists of adapting
implicit filtering schemes for uniformly-sampled univariate
signals for image processing and shape modeling applica-
tions. In particular, applications of implicit filters for curve
subdivision, image filtering, estimating image derivatives,
and deblurring Gaussian blur are considered.

2. Implicit image filtering

Estimating image gradient. Given an image I(x,y), the
common way to estimate the first-order image derivatives

consists of convolving I(x,y) with kernel (mask)

Dx =
1

2h(1+2α)

 −α 0 α

−1 0 1
−α 0 α

 (1)

and its π/2-rotation. Here h is spacing between two neigh-
boring pixels and, without loss of generality, we can assume
that h = 1. Note that (1) can be decomposed into the product
of standard central difference [−1,0,1]/2 in x-direction and
smoothing [α,1,α]/(1+2α) acting in y-direction.

Let us take a brief look at stencil (1) from a fre-
quency point of view. The eigenvalue (also called the fre-
quency response) of (1) corresponding to the eigenfunction
exp{ j (ω1x +ω2y)}, j =

√
−1, is given by

j sinω1
1+2αcosω2

1+2α
, −π < ω1, ω2 < π,

where the first term of the product is the frequency response
for the central difference and the second one corresponds to
the smoothing kernel.

One can easily observe that the frequency response j sinω

delivers a satisfactory approximation of j ω, the frequency
response for the ideal derivative, only for sufficiently small
frequencies ω (see, for example, [Ham98, Section 6.4]).
Now it is clear how (1) improves the standard central dif-
ference: smoothing introduced by the central difference is
compensated by adding a certain amount of smoothing in
the orthogonal direction. Such compensation leads to a more
accurate estimation of the gradient direction while it adds
smoothing to the gradient magnitude.

If an accurate estimation of both the gradient direction
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and magnitude is required, one can combine differencing
and smoothing in a different way. Namely, for each vari-
able, let us combine finite differencing with inverted smooth-
ing (sharpening). This simple idea leads us immediately to
the concept of implicit finite differences. For example, the
derivative of a one-dimensional signal f (x) represented by
its uniformly sampled values { fi} can be estimated by

1
1+2α

(
α f ′i−1 + f ′i +α f ′i+1

)
=

1
2

( fi+1− fi−1) . (2)

Here smoothing by [α, 1, α]
/

(1 + 2α) compensates
smoothing introduced by central differencing [−1, 0, 1]

/
2.

Now the question is how well (2) approximates the true
derivative. In other words, one has to study how well

j sinω
1+2α

1+2αcosω
, (3)

the frequency response function corresponding to (2) ap-
proximates jω, the frequency response of the true derivative,
for 0≤ ω≤ π.

Following [Lel92], let us evaluate the quality of approxi-
mation by its resolving efficiency, the range of frequencies ω

over which a satisfactory approximation is achieved. Since it
is not possible to get a reasonably good approximation when
ω is close to π, the frequency range for the optimization is
often specified by 0≤ ω≤ rπ with some 0 < r ≤ 1.

The left image of Fig. 1 illustrates the resolving effi-
ciency of (2), (3) for various values of α. Setting α = 1/4
delivers the highest possible approximation accuracy that
can be achieved by (3) at a small vicinity of ω = 0 and
corresponds to a fourth-order Padé approximation at ω =
0 [Lel92, Col60]. Its explicit counterpart was studied by
W. G. Bickley [Bic48] who showed that (1) with α = 1/4 has
asymptotically optimal rotation-invariant properties when
grid spacing h tends to zero (or, equivalently, for ω� 1).

The case α = 3/10 constitutes an implicit counterpart of
the Scharr scheme [SKJ97, JSK99] which is given by (1)
with α = 3/10. The Scharr filter delivers a more accurate
approximation of the gradient direction than the classical So-
bel filter (mask (1) with α = 1/2) and, as a result, is popular
among computer vision researchers and practitioners [BK08,
Chapter 6]. The first image of Fig. 1 demonstrates remark-
able frequency-resolving efficiency of (2) with α = 3/10
which is natural to call the implicit Scharr scheme.

Although the image gradient (Ix, Iy) is a rotation-invariant
quantity, its finite-difference approximations are not. For
many image processing and computer vision applications,
a correct estimation of the gradient direction arctan(Iy/Ix) is
of primary importance.

It turns out that, for the same value of parameter α, ex-
plicit kernel (1) and implicit filter (3) produce remarkably
similar results in estimating the gradient direction for low
frequencies (ω1,ω2). Indeed, it is easy to see that (1) can be

decomposed into product of (3) and averaging kernel

1
(1+2α)2

 α
2

α α
2

α 1 α

α
2

α α
2


which only slightly affects low frequencies.

Fig. 2 shows results of our numerical experiments with si-
nusoidal grating

I(x,y) = sin
(

x2 + y2
)

,

where x and y are ranging from −16 to 16 with step-size
h = 0.1. It means that the frequencies vary from 0 to 0.51
cycles/pixel. The images of the top row show gradient direc-
tion errors∣∣arctan

(
I appr
y

/
I appr
x

)
− arctan

(
Iy
/

Ix
)∣∣

calculated using various approximations of the gradient for
each pixel. The images of the bottom row present gradient
errors √

(Ix− I appr
x )2 +(Iy− I appr

y )2

for various approximations of the gradient at each pixel.
Comparing the images obtained using the Scharr (α = 3/10)
and Bickley (α = 1/4) kernels (1) with their implicit coun-
terparts justify our theoretical results and demonstrate ad-
vantages of using implicit schemes for gradient estimation.

Implicit low-pass and band-pass filters. Inspired by
[Lel92] let us consider a simple one-parameter family of im-
plicit low-pass filters

1
1+2α

[
α f̂i−1 + f̂i +α f̂i+1

]
=

1
2

fi +
1
4

( fi−1 + fi+1) (4)

The corresponding frequency response function is given by

Tα(ω) =
1+2α

1+2αcosω

1+ cosω

2
(5)

Here we assume that −1/2 < α < 1/2. Observe that (4)
combines smoothing kernel [1/4,1/2,1/4] with the inverse
of

1
1+2α

[α,1,α] . (6)

Note that −1/2 < α < 0 makes (6) a sharpening filter while
0 < α < 1/2 turns it into a smoothing kernel.

It turns out that (5) belongs to the family of the so-called
implicit tangent filters introduced by Raymond [Ray88,
RG91] and described by their corresponding frequency re-
sponse functions

Tε,p(ω) =
(

1+ ε tan2p ω

2

)−1
, p = 1,2,3. . . . , (7)

where ε and p are user-specified parameters. Namely, sub-
stituting p = 1 and ε = 1−2α

1+2α
in (7) gives (5). Monotonicity
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Figure 1: Graphs of frequency response functions for various implicit filtering schemes. Left: various approximations of the
first-order derivative operator. Middle: implicit tangent filters used for image deblurring (thick line) and curve subdivision (thin
lines) examples considered in this paper. Right: various approximations of the second-order derivative operator. See the main
text for further details.

(a) (b) (c) (d) (e)

Figure 2: Gradient direction (top row) and gradient (bottom row) errors calculated using various approximations of the gra-
dient. Cooler color means higher accuracy. (a) Sobel kernel (1) with α = 1/2. (b) Scharr kernel (1) with α = 3/10. (c) Implicit
Scharr scheme (2) with α = 3/10. (d) Explicit filter (1) with α = 1/4. (e) Implicit filter (2) with α = 1/4. The Scharr kernel and
implicit Scharr scheme deliver very similar gradient direction accuracy. Notice how good the implicit schemes are in estimating
the gradient.

of (7) for 0 < ω < π and asymptotics

Tε,p(ω) =

{
1− ε(ω/2)2p +O(ω2p+2) as ω→ 0
1
ε

(
ω−π

2
)2p

+O
(
(ω−π)2p+2

)
as ω→ π

justify remarkable properties of the implicit tangent filters.

The middle image of Fig. 1 displays the frequency re-
sponse functions of several simple implicit tangent filters.
These filters are used in image deblurring and curve subdi-
vision examples considered in this paper.

One can easily verify that

(1+2α)(1+2β)
β−α

[
Tβ(ω)−Tα(ω)

]
with β =

1−α

1+8α
, (8)

where 0.1 < α < 0.25, corresponds to an accurate implicit
approximation of the second-order derivative for low fre-
quencies ω. In particular, the two limit cases α→ 0.25 and
α = 0.1 correspond to the Padé scheme for the first-order
derivative (implicit differencing (2) with α = 1/4) applied
twice and a similar Padé scheme for the second-order deriva-
tive

f ′′i−1 +10 f ′′i + f ′′i+1 = 12( fi+1−2 fi + fi−1) . (9)
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(see also [Col60, p. 538]), respectively. The right image of
Fig. 1 displays graphs of the frequency response functions
corresponding to (8). The main advantage of using (8) for
estimating the 2nd-order derivative is that it is computation-
ally efficient (solving three-diagonal systems of linear equa-
tions) and allows the user to control amount of smoothing
needed for processing noisy signals.

It is also worth to note that (8) resembles the standard
Difference-of-Gaussian (DoG) filter and, therefore, can be
used for edge detection and non-photorealistic rendering
purposes (see, for example, [Win06] where DoG was used
for edge-based image enhancement and abstraction).

A different normalization of Tβ(ω)−Tα(ω) yields a two-
parametric family of band-pass filters. The normalization co-
efficient is found analytically and the resulting band-pass fil-
ters have low-computational complexity.

Stabilized inverse diffusion. Backward heat diffusion

∂I/∂t =−∆I, I(x,y, t)|t=0 = I0(x,y) (10)

is a classical ill-posed problem and many inverse-diffusion
regularization methods can be found in the literature
[Pay75]. In particular, since the main source of instability
in (10) consists of an exponential grow of high frequencies,
it was proposed to stabilize (10) by suppressing high fre-
quencies (low-pass filtering) [Sei96]. In [LK04], this natural
approach was adapted for removing Gaussian blur from im-
ages.

It is also worth to note that Sobolev gradient flows
[CMY10,CMY11,CM11] and closely related screened Pois-
son equation approach [BCCZ08] used for image sharpening
exploit the same idea of suppressing high-order image fre-
quencies.

Our regularization approach to (10) combines the forward
Euler method with low-pass filtering

I(x,y, t +dt) = (low-pass) [I(x,y, t)−dt ∆hI(x,y, t)] . (11)

The low-pass filtering scheme we use employs implicit
tangent filters defined by (7). As shown in [Ray88, RG91],
for p = 2 the filters have a particulary simple form

(S + εL) ·


f̂i−2
f̂i−1
f̂i
f̂i+1
f̂i+2

= S ·


fi−2
fi−1
fi
fi+1
fi+2

 (12)

with S = [1 4 6 4 1] and L = [1−4 6−4 1]. Despite of
its simplicity, (12) maintains a relatively sharp cut-off tran-
sition.

Fig. 3 demonstrates our experiments with (11) and (12).

We add blur using a discrete 7×7 kernel

K =
1

1003



0 0 1 2 1 0 0
0 3 13 22 13 3 0
1 13 59 97 59 13 1
2 22 97 159 97 22 2
1 13 59 97 59 13 1
0 3 13 22 13 3 0
0 0 1 2 1 0 0


which approximates the Gaussian with σ = 1. The origi-
nal image was convolved 25 times with kernel K, which
is equivalent to adding Gaussian blur with σ = 5 and some
noise due to discrete approximating the Gaussian kernel.

A good deblurring result was achieved after 75 iterations
of (11), (12) with step-size dt = 0.2 and ε = 0.14 (see
the middle image of Fig. 1 where the thick line visualizes
the graph of the frequency response function corresponding
to (12) with ε = 0.14). In theory, σ

2/dt = 62.5 iterations
are needed to recover the original image. However discrete
Laplacian ∆h introduces some smoothing and, therefore, ad-
ditional iterations of (11) are needed.

Very similar results are obtained if implicit filters pro-
posed recently by J. W. Kim [Kim10] are used instead of
(12).

We use (9) for approximating the second-order deriva-
tives. According to our experiments, using standard explicit
approximations of the Laplacian leads to slightly worse re-
sults since those approximations are less accurate for low
and middle range frequencies ω than that obtained from (9).

3. Interpolation and curve subdivision

Subdivision of remains a hot research topic in computer
graphics and geometric modeling [PR08, Sab10] (see also
references therein). Below we establish simple links between
implicit interpolation filters for uniformly sampled signals
and implicit subdivision schemes.

Implicit subdivision schemes were introduced by Kobbelt
in the case of interpolatory subdivision from a variational
standpoint [Kob96, KS98, Kob98]. Unfortunately they were
mostly forgotten: Sabin does not mention them at all in
[Sab10] (although the key paper [Kob98] is listed the bib-
liography section) and Peters and Reif devoted to them only
two sentences where the authors acknowledged their ex-
istence but wrongly stated that more or less nothing was
known about the underlying theoretical properties of vari-
ational subdivision schemes [PR08] (see the last paragraph
of [PR08, Section 9.2]).

In fact, [Kob98] contains mathematically rigorous and de-
tailed analysis of variational subdivision schemes. The ap-
proach developed there can be used for studying theoretical
properties of subdivision schemes considered below.
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Figure 3: Stabilized inverse diffusion for deblurring Gaussian blur. Left: original image. Middle: discrete Gaussian blur with
σ = 5 is added. Right: deblurring by (11). See the main text for details.

Implicit interpolation and interpolatory subdivision. Let
us consider a simplified version of an implicit midpoint in-
terpolation scheme introduced in [Lel92]

α f̂i−1 + f̂i +α f̂i+1 (13)

=
a
2

(
fi−1/2 + fi+1/2

)
+

b
2

(
fi−3/2 + fi+3/2

)
The corresponding frequency response function is given by

H(ω) =
acos(ω/2)+bcos(3ω/2)

1+2αcos(ω)

One can easily observe that the famous four-point inter-
polatory subdivision scheme of Dyn, Levin, and Gregory
[DLG87] is obtained from (13) when α = 0 and a = 1/16,
b = −1/9. Kobbelt’s K2 scheme [KS98] corresponds to
α = 1/6, a = 4/3, b = 0. Convergence and approximation
properties of the interpolatory subdivision schemes corre-
sponding to (13) follow from the spectral analysis technique
developed in [Kob98].

In Fig. 4, we use four-times signal upsampling as a testing
problem. Advantages of implicit interpolation/subdivision
schemes over explicit ones are clearly demonstrated.

A family of implicit approximation subdivision schemes.
Similar to implicit midpoint interpolation (13), we use
implicit low-pass filters (4) for constructing approxima-
tion subdivision schemes. Given an initial control polygon{

v(0)
i

}
, a sequence of subdivided polygons

{
v(k)

i

}
, k =

1,2,3, . . ., is generated by

u(k)
2i = v(k−1)

i , u(k)
2i+1 = 1/2

(
v(k−1)

i + v(k−1)
i+1

)
,

1
1+2α

[
αv(k)

i−1 +v(k)
i +αv(k)

i+1

]
(14)

=
1
2

u(k)
i +

1
4

(
u(k)

i−1 +u(k)
i+1

)
.

To the best of our knowledge, implicit approximation sub-
division schemes have never been considered before. Fig. 5

demonstrates how parameter α, −1/2 < α < 1/2, controls
approximation properties of implicit subdivision scheme
(14). See the middle image of Fig. 1 where graphs of the
corresponding frequency response functions are plotted by
thin lines.

We do not present here a convergence analysis of the
family of implicit subdivision schemes corresponding to (4)
since such an analysis can be done similar to that presented
in [Kob98].

4. Conclusion

We hope that we clearly demonstrated advantages of using
implicit filtering schemes for basic image and curve process-
ing applications. We believe that the potential of implicit fil-
tering schemes is largely underestimated and consider this
work as an attempt to demonstrate usefulness of implicit fil-
ters for image processing and shape modeling purposes.

Some nontrivial issues that we have not touched in this pa-
per include an appropriate treatment of boundary points (in
this study, simple reflection boundary conditions are used
for images and periodic bounary conditions are used for
closed polygons), deriving implicit filtering schemes with
high spectral resolution properties (see, for example, [Bel11]
and references therein), and constructing implicit filtering
schemes for irregularly sampled signals. These topics are
widely studied in computational aeroacoustics [CL04] and
their adaptation for image and shape processing purposes
constitute an interesting theme for future research.
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