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Abstract

Time-of-Flight (ToF) cameras are able to simultaneously record intensity and depth images at a high frequency.
Many applications require images that are recorded from different viewpoints. In order to consolidate the recorded
data into a common coordinate system, the extrinsic calibration between the cameras needs to be known. From a
practical point of view this calibration should be accomplished without any user interaction or artificial calibra-
tion objects. Classical approaches for extrinsic self-calibration fail to extract correct point correspondences and
do not exploit the important information provided by the depth images. In this paper we discuss the characteristics
of extrinsic ToF camera calibration and present a descriptor combination for the extraction of 3D point corre-
spondences. Several experiments on real data demonstrate the robustness and high accuracy of our approach. Our
method outperforms the state-of-the-art approach for point correspondence extraction in classical camera images.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene

Analysis—Range data

1. Introduction

In the recent years several new camera technologies for
real-time acquisition of depth data have been presented.
The most prominent example is Microsoft’s Kinect camera
which computes the depth by projecting a special infrared
pattern. Another technology is the Time-of-Flight (ToF)
camera which uses modulated near-infrared light to measure
the depth based on the Time-of-Flight principle [XSH*98].
Many different research areas benefit from these cameras
e.g. robot navigation [PMS*08], medical image processing
[SPHOS8] or computer graphic topics like light fields or aug-
mented/mixed reality as motivated by Kolb et al. [KBKL10].

For many applications a single camera does not suffice.
Instead the object or scene needs to be recorded from sev-
eral different viewpoints. In order to establish a relationship
between the intensity and depth images from the different
viewpoints, an accurate extrinsic calibration of the cameras
is necessary. This calibration describes the relative camera
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Figure 1: Two static ToF cameras in a wide-baseline setup.
Classical approaches for extrinsic self-calibration fail to
calibrate such a configuration due to the low resolution and
high noise of the ToF images.

rotations and translations (the relative poses) and enables the
transformation of points between the different camera coor-
dinate systems.

In the case of moving objects or dynamic scenes, these
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Figure 2: The intensity (left column) and depth images (right
column) recorded by two cameras in a wide-baseline setup.

images need to be recorded simultaneously which requires
the use of multiple cameras. The advantage of ToF cameras
is that several of these can operate simultaneously without
affecting one another if each camera uses a different mod-
ulation frequency. This is why we will focus on ToF cam-
eras in this work. However, the described approach is also
applicable to other types of cameras that are able to record
depth and intensity images. A multi-camera setup consisting
of two ToF cameras is shown in Figure 1.

Classical approaches for extrinsic camera calibration use
several images of a calibration pattern [Zha99, SBKO08], or
track a moving LED in a dark room [CDS00, SHVGO02] or
some other easily detectable object [GP08] to establish 2D or
3D point correspondences. These approaches work also for
ToF cameras. However, from a practical point of view a pure
self-calibration is much more appealing. Self-calibration in
this context means that no artificial calibration objects or any
user interaction are necessary. Instead, the cameras estimate
their relative orientation and position only from the images
that they record from the scene. Extrinsic self-calibration ap-
proaches for classical cameras extract 2D point correspon-
dences, e.g. using SIFT [Low04]. Based on these the relative
orientation and translation up to scale can be estimated with
methods like the 5-point algorithm [Nis04]. There exist sev-
eral reasons why these approaches are inappropriate for the
extrinsic self-calibration of ToF cameras. The low resolution
and high proportion of image noise complicates the extrac-
tion of correct point correspondences. Especially in camera
setups like in Figure 2 (almost) no correct point correspon-
dence can be extracted. The cameras in this example are in a
wide-baseline setup which means that the distance between
the cameras is quite big in relation to the scene distance.
Another problem is that approaches like the 5-point algo-
rithm [NisO4] estimate the translation only up to scale since

2D point correspondences do not offer enough information
to estimate this scale. For the transformation of depth mea-
surements between the different camera coordinate systems,
however, the correct translation scale is inevitable.

The acquisition of depth images at high frequency is also
of special interest for the robot navigation. Hence several ap-
proaches can be found in the literature that cover the topic of
estimating the relative pose between the different images of a
moving ToF camera. All of these approaches assume a small
baseline, i.e. the movement of the cameras between the im-
ages is relatively small. Beder et al. [BSK08] present a max-
imum likelihood approach that estimates the camera motion
directly from the depth images. Swadzba et al. [SLP*(7]
use KLT tracking to establish 3D point correspondences be-
tween consecutive images of a moving ToF camera. From
these the relative poses are estimated and refined using an
iterative closest point (ICP) approach [BM92]. May et al.
[MDH*09] compare and benchmark several different ap-
proaches for registering small baseline ToF data. Further-
more they suggest an extension to the iterative closest point
algorithm that increases the robustness under restricted field
of view and under larger displacements. Huhle et al. [HJS08]
combine the information of three calibrated sensors (ToF
camera, color camera, and inertia sensor) to robustly esti-
mate the relative pose of the moving multi-sensor system.

The remainder of this paper is structured as follows. We
will first pay attention to the characteristics of multiple si-
multaneously operating ToF cameras and how to extract dif-
ferent types of 3D data from the depth measurement (Sec-
tion 2). In the thereafter following Section 3 we will specify
the extrinsic calibration between ToF cameras and how to es-
timate it from 3D point correspondences. The extraction of
these point correspondences is then described in Section 4
where we present our combination of a 3D and an intensity
descriptor. The results of various experiments on real data
are presented in Section 5. The paper ends in Section 6 with
conclusions and problems for future work

2. Time-of-Flight Cameras

Time-of-Flight (ToF) cameras emit modulated near-infrared
light to acquire simultaneously three types of images: an
intensity image /(x), a depth image D(x) and an ampli-
tude image A(x). The amplitude image provides information
about the reliability of the single measurements. Swadzba
et al. [SLP*07] calculate the mean amplitude and define a
threshold relative to this to reject pixel positions X with a
bad amplitude A(x).

2.1. Configuring Multiple Time-of-Flight Cameras

The image acquisition of the cameras is disturbed if two
or more ToF cameras simultaneously emit infrared light
with the same modulation frequency f. Consequently each

(© The Eurographics Association 2011.
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camera needs to operate on a different modulation fre-
quency. Note that the modulation frequency limits the maxi-
mum depth that can be measured unambiguously [XSH*98].
Hence the possible modulation frequencies are limited by
the application of the camera.

Another important parameter of a ToF camera is the inte-
gration time ¢ which specifies the sensor’s allocated time for
collecting photons. An inappropriate integration time will
result in a bad signal-to-noise ratio. Lange [Lan00] describes
these physical relations and presents a measure for the inac-
curacy of the depth measurement at pixel x

e(x) er € I (x)
4fV8 A:(x)

where c is the light speed, and I; (x) and A; (x) are the inten-
sity and amplitude images recorded with integration time #.
We find the optimal integration time

P argmin ) e (x) )
t X

&)

by minimizing the accumulated depth measurement inaccu-
racy for all pixels of the ToF sensor. Note that the integra-
tion time directly affects the frame rate of the camera. Hence
the application of the ToF camera might constrain the pos-
sible integration times. However, changing the integration
time does not affect the relative camera pose. Hence we use
f during the extrinsic calibration.

2.2. Point Cloud Estimation and Surface Triangulation

If the intrinsic calibration of a ToF camera is known [Zha99,
SBKOS], it is possible to calculate for each homogeneous
image point X € P? the position of the 3D point

@ D (X)

o ZW gy 3)
HK_IXHZ

X
where D (x) is the depth measurement at pixel position x
and K is the pinhole matrix [HZ03]. Since the extracted 3D

points correspond directly to an image coordinate, we can
def

also assign an intensity value /(X) = I(x) to each 3D point.

In order to build a surface triangulation from this 3D point
cloud we exploit the regular grid of the pixels in the ToF sen-
sor. Of course this simple method could also be exchanged
by a more sophisticated approach from the literature. We ob-
tain the surface triangulation

S={Ti, .. T:} @)

where each triangle 7° - {c1,¢c2,¢3} in the set is defined
by its three corner points ¢j,¢p,¢3 € R3. For each set of
four adjacent image points (x,y), (x+1,y), (x,y+ 1) and
(x+1,y+1) two triangles 7, and 7}, are formed from the
3D points that correspond to these image points. Note that
these triangles need to cover the complete area of the rectan-
gle defined by the image coordinates and there are only two
possibilities to select the points for the triangles in that way.

(© The Eurographics Association 2011.

Figure 3: If the image grid is used to build a triangle mesh
[from the depth image, separated objects in the scene are con-
nected in the triangle mesh (left). A simple filtering of trian-
gles with long edges separates the objects again (right).

Nearby objects in the resulting triangulation will be con-
nected with each other, even if there is no physical connec-
tion between them in the scene. This is due to the fact that
the grid based triangulation does not distinguish any object
borders. Shape and position of these connections depends
highly on the view direction of the camera and hence com-
plicates the problem of extracting point correspondences. In
order to separate the objects from each other, we apply a
simple heuristic. We determine the mean y; and the standard
deviation oy of the edge length [ of all triangles 7 € S. Tri-
angles where one of the edges has a length / > y; + o; are
deleted. Figure 3 shows an example of the triangle mesh be-
fore and after the filtering. An alternative approach to avoid
the connections between objects in the triangle mesh is to ig-
nore pixel positions with high gradients in the depth image
during the triangulation process.

3. Relative Pose Estimation

If two or more ToF cameras simultaneously record images
of the same scene from different viewpoints, each camera
records 3D data in its own coordinate system. The extrinsic
calibration describes the transformation between the differ-
ent camera coordinate systems. This transformation is basi-
cally a similarity transformation that maps a 3D point X; in
the coordinate system of camera i to its corresponding 3D
point

Xj & Si"jR,',in + ti,j 5)

in the coordinate system of camera j, where the similarity
transformation consists of a rotation R; ; € SO(3), a transla-
tiont; ; € R3 and a scale si,j € R. Since most ToF cameras
measure the depth in metric units, however, only the rela-
tive pose R; j,t; j needs to be estimated and the scale can be

def
assumed as constant s; ; = 1.

The two points (X;,X;) form a 3D point correspondence,
since both points describe the same 3D point but in different
coordinate systems. With a set of at least three of these point
correspondences it is possible to estimate the relative pose
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by minimizing
2
argminz HX'IJC - <R,<7J<X{'{ + t[,,j) H > (6)
Rijti; &

where k runs over all point correspondences. One approach
that is capable of minimizing this energy function for a set
of 3D point correspondences is the method of Walker and
Shao [WS91]. While most other approaches estimate the
translation t; ; and the rotation R; ; separately in different
steps, Walker and Shao use dual number quaternions to esti-
mate both simultaneously which improves the accuracy.

We embed this estimation method into a RANSAC
scheme [FB81] to increase the robustness against outliers.
An important property of the 3D points can be exploited dur-
ing the point correspondence sampling of the RANSAC rel-
ative pose estimation. The Euclidean distance between the
selected 3D points in one camera coordinate system needs
to be identical (or at least close) to the distances between the
corresponding 3D points in the second camera coordinate
system [DWIMO98]. If the selected point correspondences do
not satisfy this condition, the sample is discarded and a new
sample set is drawn.

The obtained calibration is finally refined by applying a
variant of the iterative closest point (ICP) algorithm [BM92]
similar to the one suggested by May et al. [MDH*09]. Each
point in the 3D point set of the first camera is transformed
into the coordinate system of the second camera using the
current estimate of the relative pose. If it lies in the area of
view of the second camera, the nearest neighbor in the sec-
ond point set is searched. If the distance to this second point
is higher than some threshold 0, the point pair is rejected.
The resulting 3D point pairs are used to estimate the relative
pose. This approach is repeated until convergence. During
the iteration the threshold 0 is slowly decreased.

4. Point Correspondences Extraction

The difficulty of point correspondence extraction from the
image data increases with the baseline between the cameras.
Classical approaches for the extraction of point correspon-
dences provide only poor results and collapse even at quite
small baselines. This is on the one hand caused by the low
image resolution and the high proportion of image noise in
the ToF camera images. But also the increasing perspective
influences complicate the extraction of correct point corre-
spondences. In this section we will present two descriptors:
one that operates on the depth images of the ToF cameras
and an intensity difference based descriptor. We describe
how both of these descriptors can be used simultaneously
to extract 3D point correspondences.

4.1. 3D Descriptor

Trummer et al. [TSD09] present an approach for the regis-
tration of 3D surface triangulations based on moment invari-
ants. Since a surface triangulation S can easily be obtained

from the ToF images (as described in Section 2.2), this de-
scriptor is well suited to be applied to our problem. We will
now shortly present the basic idea of the descriptor. For fur-
ther details the reader is referred to [TSDO09].

The (k+ [ +m)™-order 3D surface moment of the surface
triangulation S

e n .
Migm (8) = Z m;clm 0
i=1

consists of the accumulated surface moments ., of each
triangle 7; € S. In order to efficiently calculate these surface
moments, Trummer et al. [TSD09] suggest to use a minimal
parameterization for the points on a triangle 7°

pr () = (x7 () ,y7 ) ,zr ()T ()

=u(cp—ce3)+v(er—e3)+e3 , (9

where u,v > 0 are the parameterization scalars with u+v <
1. Using this parameterization, the surface moments can be
written as

i = C [ () () (v dudy - 10)
where
DE{(u,v) :u,v>0,u+v<1} an

is the domain of the triangle parameterization and

Cd:Ef (xﬁ—i—y%—i—z%) (x%-ky%-m%) - (xuxv +)7u)’v+Zqu)2
(12)
contains the coefficients of the first fundamental form. The

notation

aer Ox7 (,v)
xll I —
Ju
denotes a partial derivative. Trummer et al. [TSD09] show
that the integrals in (10) can be easily resolved and the com-
putation of the surface moments 1, is reduced to a simple
equation

13)

k l
Mg = C <(x1 —x3)" (v1 =¥3)" (21 = 23)" My 14mp0
ot ayheme ) (14)

that only contains the coordinates of the 3D triangle corner
points and the area moments of the triangle parameterization

mpqd:”//l)upquudv . (15)

These area moments mp, have two advantages. First, they
are easy to compute. But much more important: they are in-
dependent from any specific triangle. Hence, they can be ef-
ficiently precomputed.

The 3D surface moments Mj;,,(S) are finally used to
compute the 3D descriptor which consists of the eleven 3D
moment invariants 13, 3y, .. - ,113“3 proposed by [LD8&9].

(© The Eurographics Association 2011.
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These invariants include moments up to third order. For fur-
ther details on these moments and how to compute them, the
reader is referred to [LD89].

Since we are interested in estimating a descriptor that dis-
tinguishes a single 3D point X, not the complete surface tri-
angulation is used. Instead only the triangles

S(er)déf{T:min{Hci_XHZ:i:11273}Sr} (16)

that lie within a sphere of radius r around X are used. Trian-
gles that jut out of the sphere are approximated in the way
suggested by Trummer et al. [TSD09].

Obviously the radius needs to be selected identical for all
cameras and depends on the camera-to-scene distance. How-
ever, our experiments (Section 5) show that the choice of the
radius is not that critical. A good heuristic used in our exper-
iments is to select several different radii r & Ardyy relative to
the dilation dyy of the 3D point set in x and y direction, where
we use three different relative radii A € {0.03,0.06,0.09}.
Note that during the matching only descriptors with identical
radius are compared.

4.2. Intensity Descriptor

The 3D descriptor described in the previous section is built
entirely from the depth estimates of a ToF camera. Thus it is
only possible to match the 3D points of the different cameras
if there is enough 3D structure in the scene to distinguish the
corresponding descriptors. If the scene does not offer enough
structural variation or if the structure is very redundant, the
simultaneously recorded intensity images can resolve the re-
sulting ambiguities. Hence, we describe in this section a sec-
ond descriptor based on the intensity images.

Classical image descriptors like [Low04] use histograms
of image gradients and scale spaces to create distinguishable
and invariant descriptors. Since the 3D descriptor already de-
scribes the local structure and we can use the 3D information
around the keypoint, we suggest a different approach. For
each keypoint X we consider only 3D points

P(X) = (X X=X, < r} a7

that lie in a sphere with radius r around the keypoint. Note
that this is exactly the point set used to calculate the 3D de-
scriptor. Using only points lying in this sphere ensures scale
invariance of the descriptors since descriptors with identical
radius describe equally sized 3D areas.

Each 3D point X corresponds to some pixel coordinate, as
described in Section 2.2. Hence we can assign an intensity
value /(X) to each 3D point in the set. Calculating intensity
gradients between these 3D points is not trivial, since the
density of the local 3D point cloud might vary and no clear
neighborhood relation exists. Instead we build a histogram
of intensity differences between the keypoint X and nearby
points P (X). The histogram ensures the rotation invariance

(© The Eurographics Association 2011.

Figure 4: Ten out of 109 inlier point correspondences found
using the combined descriptor.

of the descriptor and the intensity differences ensure invari-
ance to additive illumination changes.

For each X; € P(X) the two histogram bins closest to the
intensity difference

1(Xi) = 1(X) (18)

are increased by a weight ® using a bilinear interpolation to
apportion the weight to the two bins. The weight is chosen
from a normal distribution

o (X;) NN(Xi |X,62> (19)

that is centered on the keypoint and has a variance of e
2. The purpose of this Gaussian weighting is to avoid that
small changes in the position of the sphere result in severe
descriptor changes. The final descriptor is normalized to unit
length.

4.3. Matching

The method described in Section 4.1 computes a 3D descrip-
tor for each single 3D point obtained from the depth image.
Matching the entire descriptor sets of two images would take
much too long. Instead we search for a subset of the point set
which includes the points with the most distinctive descrip-
tors. We evaluate the distinctiveness of a point by comparing
its descriptor with the descriptors of the neighboring points
as proposed by Trummer et al. [TSDO09].

The two descriptors described in Section 4.1 and Sec-
tion 4.2 cannot be easily combined to a single descriptor
since they differ in dimension and magnitude. Hence we use
two normalized distance measures to determine the descrip-
tor distance

o 1 1
d(Xi,X;) = o (Xi X)) + dr (X X)) 20)

between two 3D points X; and X; of different ToF camera
images, where d3p(X;,X;) and d;(X;,X) are the Euclidean
distances between the 3D and intensity descriptors of the 3D
points. The normalization factors 63p and ©; are the stan-
dard deviations of the nearest neighbor distances of the re-
spective descriptor type. Note that we calculate these dis-
tances only between descriptors of different images and not
within the descriptors of one image.
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Figure 5: The camera-to-scene distance (extracted from the
measured depth) and the distance between the cameras in
our experiments.

Figure 6: The intensity (left column) and depth image (right
column) of two very different scenes used in the experiments.
The first scene (top row) offers almost no 3D structure but a
lot of texture. Contrary to this, the second scene (bottom row)
consists of various 3D structure but only few texture.

For each interest point in the first camera, we search for its
nearest neighbor in the point set of the second camera. The
same procedure is repeated vice versa. The final point corre-
spondence set is the intersection of these two sets. Figure 4
shows some example point correspondences extracted using
both descriptors. Note that these point correspondences are
not totally accurate due to the heavy noise in the depth and
intensity images. However, the accuracy of the extracted cor-
respondences suffices to estimate a good initial relative pose
which is then refined using ICP (Section 3).

5. Experimental Evaluation
5.1. Setup

For our experiments we use two PMDTechnologies
PMD[vision] 19k cameras. Each of these has a resolution
of 160 x 120 pixels. The selected modulation frequencies
are 20 MHz and 21 MHz, respectively. The automatically ad-
justed integration times lie between 30 ms and 60 ms. For the
intrinsic calibration of each camera and the extrinsic ground

truth calibration between the two ToF cameras we use the
calibration pattern based method of Zhang [Zha99]. The
point correspondences extracted from the calibration pattern
are also used to evaluate the reprojection error of the esti-
mated calibration.

Each camera selects its integration time using (2). The
depth image is smoothed by a 3 x 3 Gaussian. Only the 15%
most distinctive points (see Section 4.3 for details) are used
which results in 2880 interest points for each image. We use
16 bins for the intensity difference histogram. This value has
been determined in additional experiments. We calibrate 10
different setups of the camera pair. In each setup the rela-
tive camera orientation and position as well as the scene are
changed. Most of our results are presented using boxplots
(the line in the middle is the median, the box depicts the
0.25 and 0.75 quantiles, crosses are outliers [MTL78]).

Figure 5 shows the camera-to-scene distance (extracted
from the measured depth) and the distance between the cam-
eras. The scenes vary in the amount of available texture and
3D structure. Figure 2 and Figure 6 give an example of the
used scenes, reaching from a textured wall to a scene consist-
ing of low textured objects. Since we are using RANSAC,
each calibration is repeated 100 times in order to take effects
into account that are caused by the random sampling.

5.2. Results
5.2.1. Evaluation of the Relative Descriptor Radius

In Section 4.3 we explained that the selection of the descrip-
tor radius depends on the camera to scene distances of the
involved cameras. Since the depth measurements of the ToF
cameras are in metric units, a coarse estimate for a good de-
scriptor radius can be derived from the image data. We sug-
gested to select it relative to the dilation dyy of the 3D point
set in x and y direction. Figure 7 shows the median repro-
jection error of our proposed method for a varying relative
descriptor radius A,. Note that the interval of relative radii
that lead to a good calibration is quite big. Hence, the choice
of the descriptor radius r is not that critical. For the following
experiments we use three relative descriptor radii simultane-
ously A, € {0.03,0.06,0.09}. The resulting absolute radii in
our experiments vary between 3.4 cm and 20.8 cm. The me-
dian numbers of 3D points that lie inside a sphere are 65,
269 and 588 for the three respective relative radii.

5.2.2. Calibration Accuracy

Figure 8 shows the calibration accuracies achieved by dif-
ferent methods. Three different versions of our approach are
evaluated: the Intensity and the 3D descriptor each on its own
and the Combined version of these two descriptors, as pro-
posed in the paper. Note that all three descriptors use the
same interest points. These are extracted using the method
described in Section 4.3. Hence the Intensity descriptor also
uses a certain amount of 3D information.

(© The Eurographics Association 2011.
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Figure 7: The achieved median reprojection error for varying relative descriptor radii Ar. The results show that the se-
lection of this parameter is not that critical. For the later experiment we use three relative descriptor radii simultaneously
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Figure 8: The calibration errors consisting of the rotation error (top), the position error (center) and the reprojection error
(bottom). We present the results using the Intensity and 3D descriptor each on its own and of the Combined descriptor. For

comparison we also present the results using SIFT [Low04].

We also compare our method with SIFT [Low04] applied
on the intensity images of the ToF cameras. As motivated in
Section 1, when using 2D point correspondences the relative
pose can only be estimated up to scale. Hence, we use the
3D points corresponding to the 2D point correspondences
extracted by SIFT and use the relative pose estimation de-
scribed in Section 3. This approach is very similar to the
method proposed by May et al. [MDH™09] for 3D mapping.

For all calibrations of each of the different approaches we
present the rotation error in degree (top row) and the posi-
tion error in millimeters (center row) of the estimated rela-
tive pose. Furthermore the reprojection error in pixel (bottom
row) of both cameras is presented.

Most of the calibrations using SIFT are inaccurate which
is caused by the severe amount of outliers in the point corre-
spondences. The low image resolution and the high amount
of image noise complicate the extraction of SIFT point cor-
respondences in the wide-baseline setups used for the ex-
periments. The Intensity and the 3D descriptor both achieve
a good calibration for most setups. However, it is not sur-
prising that both fail at very different setups. The Combined
descriptor, finally, reaches the best results since it is able to

(© The Eurographics Association 2011.

resolve the ambiguities of the 3D descriptor in low struc-
tured scenes using the additional intensity information. We
achieve a median error of 1.97 degree for the rotation and
70.8 millimeters for the position of the cameras. Due to the
low median reprojection error of 0.63 pixels, the calibration
can be used for many different types of applications.

Note that we do not correct the systematic depth mea-
surement error of the ToF cameras. Estimating a model of
this error with one of the calibration pattern based meth-
ods [LK06, SBK08] might result in lower rotation and posi-
tion errors. However, in our future work we want to expand
our self-calibration approach in a way that it is also able to
estimate a model for this systematic error.

5.2.3. Runtime

Our current implementation takes about 97 seconds on an
off-the-shelf quad-core processor for the calibration of two
images. About 63 seconds are needed for computing the 3D
descriptor since this is done for each single 3D point. Hence,
a GPU implementation of this descriptor computation would
result in a much better runtime.
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6. Conclusions

In this paper we discussed the problem of extrinsic self-
calibration of Time-of-Flight (ToF) cameras. Classical ap-
proaches for relative pose estimation between cameras are
inappropriate since they fail to extract point correspondences
in wide-baseline camera setups. Furthermore they do not use
the depth measurements of the ToF cameras which are im-
portant to estimate the correct scale of the translation. Only
if this scale is known, depth estimates of different ToF cam-
eras can be transformed into a common coordinate system.

We suggested to estimate the relative pose between the
cameras using 3D point correspondences. For that purpose
we described the entire calibration starting with the extrac-
tion of 3D data from the depth measurements and how the
relative pose is estimated using 3D point correspondences.
We presented a descriptor combination consisting of a 3D
descriptor that is built from the 3D data obtained from the
ToF camera and a descriptor based on intensity differences.
The advantage of this descriptor combination is that it is
able to extract point correspondences in structured but low
textured scenes as well as in low structured but textured
scenes. In several experiments on real data we demonstrated
the robustness and high accuracy of our approach and that
the descriptor combination improves the results compared to
each of the single descriptors. We achieve a median error of
1.97 degree for the rotation, 70.8 millimeters for the position
and 0.63 pixel for the reprojection.

In our future work we want to improve the localization
of interest points in the camera images. Similar to the com-
bined descriptor this interest point localization should be
performed in the depth and the intensity image. A more so-
phisticated selection of the interest points would also im-
prove the runtime. Furthermore we aim to use our extrinsic
calibration to estimate a model of the systematic depth mea-
surement error.
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